16-889 Assignment 3

Name: Sri Nitchith Akula
Andrew ID: srinitca

0-Grace Days

1. Differentiable Volume Rendering

1.3. Ray sampling (10 points)

Run Command

python main.py --config-name=box

Visualization

XY-Grid Rays
Grid Visualization Ray Visualization

1.4. Point sampling (10 points)

Run Command

python main.py --config-name=box

Visualization

Render Points Visualization

1.5. Volume Rendering (30 points)

Run Command

python main.py --config-name=box

Visualization

Rendered Cube Depth Image
Rendered Cube Depth Image

2. Optimizing a basic implicit volume

2.1. Random ray sampling (5 points)

Code:

def get_random_pixels_from_image(n_pixels, image_size, camera): xy_grid = get_pixels_from_image(image_size, camera) # TODO (2.1): Random subsampling of pixel coordinates xy_grid_sub = xy_grid[torch.randperm(xy_grid.size(0))[:n_pixels]] # Return return xy_grid_sub.reshape(-1, 2)[:n_pixels]

2.2. Loss and training (5 points)

Code:

loss = torch.nn.MSELoss(reduction='mean')(out['feature'], rgb_gt)

Run Command

python main.py --config-name=train_box

Results:

Box center: (0.25, 0.25,0.00) Box side lengths: (2.00, 1.50, 1.50)

2.3. Visualization

Run Command

python main.py --config-name=train_box

Visualization

Before Training After Training
Rendered Cube Depth Image

3. Optimizing a Neural Radiance Field (NeRF) (30 points)

Run Command

python main.py --config-name=nerf_lego

Visualization

Nerf Training Ques 3

4. NeRF Extras (Choose at least one! More than one is extra credit)

4.1 View Dependence (10 pts)

Run Command

# Change use_dirs to True in nerf_lego.yaml python main.py --config-name=nerf_lego

Visualization

Size Without View Dependence With View Dependence
128x128 Rendered Cube Depth Image
400x400 Rendered Cube Depth Image

Comments

4.3 High Resolution Imagery (10 pts)

Run Command

python main.py --config-name=nerf_lego_highres

Visualization

Low Resolution High Resolution
Rendered Cube High Res

Effect of increasing n_pts_per_ray

n_pts_per_ray = 64 n_pts_per_ray = 128 n_pts_per_ray = 256
pts pts pts

Comments