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Machine learning lifecycle
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Training Inference
Get a model to reach 

desired accuracy
Deploy model in 
target domain

Hours to weeks Milliseconds

“Batch” jobs Online



Machine learning inference
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queries predictions

cat
0.15 0.8 0.05

dog bird



Prediction serving systems
Inference in datacenter/cluster settings

Open Source Cloud Services
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Prediction serving system architectures
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Frontend

queries predictions

model
instances



Machine learning inference
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Must operate with low, predictable latency

translation

question-
answering

ranking



Unavailability in serving systems
• Slowdowns and failures (unavailability)

- Resource contention
- Hardware failures
- Runtime slowdowns
- ML-specific events

• Result in inflated tail latency
- Cause prediction serving systems to miss SLOs
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Must alleviate slowdowns and failures



Redundancy-based resilience
• Proactive: send each query to 2+ servers
• Reactive: wait for a timeout before duplicating query
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Recovery Delay

Resource Overhead

Reactive

Proactive

(lower is better)

(lower is better)



11

D1 P

D1 D2 P = D1 + D2

D2 = P – D1

encoding

decoding

D2

k data units r “parity” units

any k out of (k+r) units original k data units

“parity”

Erasure codes: proactive, resource-efficient

n = k + r
Relation to (n, k) notation 
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Storage
Communication
Prediction Serving Systems

Recovery Delay

Resource Overhead

Reactive

Proactive

(lower is better)

(lower is better)

erasure 
codes

Erasure codes: proactive, resource-efficient



Coded-computation
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F F F

F(X1) F(X2)

queries

models

predictions

Goal: preserve results of
computation over queries

Our goal: Using erasure codes to reduce tail latency in prediction serving

X1 X2



Coded-computation
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Encode queries

X1 X2

encode

F(X1) F(X2)

F F F
“parity query”

Our goal: Using erasure codes to reduce tail latency in prediction serving



Coded-computation
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Decode results of
inference over queries

encode
X1 X2

decode

F(X2)

F(X1) F(P)

F F F
“parity query”

Our goal: Using erasure codes to reduce tail latency in prediction serving



Traditional coding vs. coded-computation
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Need to recover computation over inputs

Coded-computationCodes for storage

D2D1

D1 D2

P F F F

encode
X1 X2

decode

F(X2)

encode

decode

D2

F(X1) F(P)



Challenge: Non-linear computation
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Linear computation

X1 X2 P = X1 + X2

F(X2) = F(P) – F(X1)

Non-linear computation

X1 X2 P = X1 + X2

F(X2) = F(P) – F(X1)

Actual is X2
2

Example: F(X) = 2X Example: F(X) = X2

2X 2X 2X X2 X2 X2

F(X2) = 2(X1 + X2) – X1
F(X2) = 2X2

F(X2) = 2(X1 + X2)2 – X1
2

F(X2) = X2
2 + 2X1X2



Challenge: Non-linear computation
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Linear computation

X1 X2 P = X1 + X2

F(X2) = F(P) – F(X1)

Non-linear computation

X1 X2 P = X1 + X2

F(X2) = F(P) – F(X1)

Example: F(X) = 2X

2X 2X 2X

F(X2) = 2(X1 + X2) – X1
F(X2) = 2X2

F(X2) = ???



Current approaches to coded-computation
• Lots of great work on linear computations

• Huang 1984, Lee 2015, Dutta 2016, Dutta 2017, Mallick 2018, more…

• Recent work supports restricted nonlinear computations
• Yu 2018
• At least 2x resource overhead
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Current approaches insufficient for neural networks in 
prediction serving systems



Our approach: 
Learning-based coded-computation
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Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation
https://arxiv.org/abs/1806.01259

Parity Models: Erasure-Coded Resilience for Prediction Serving Systems
To appear in ACM SOSP 2019
https://jackkosaian.github.io

https://arxiv.org/abs/1806.01259
https://jackkosaian.github.io/files/papers/sosp2019parity-models.pdf


Learning an erasure code?

22

Design encoder and decoder as neural networks

encoder
X1 X2

decoder

Accurate

Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation
https://arxiv.org/abs/1806.01259

https://arxiv.org/abs/1806.01259


Learning an erasure code?
Design encoder and decoder as neural networks
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encoder

Computationally
expensive

X1 X2

decoder

Accurate

Expensive
encoder/decoder

Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation
https://arxiv.org/abs/1806.01259

https://arxiv.org/abs/1806.01259


Accurate

Learn computation over parities
Use simple, fast encoders and decoders
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Learn computation over parities: “parity model”

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)

Efficient
encoder/decoder

Parity Models: Erasure-Coded Resilience for Prediction Serving Systems
To appear in ACM SOSP 2019
https://jackkosaian.github.io

https://jackkosaian.github.io/files/papers/sosp2019parity-models.pdf


Designing parity models
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Parity model goal
Transform parities such that decoder can reconstruct unavailable predictions

P = X1 + X2X1 X2

F(X2) = FP(P) – F(X1)

parity model 
(FP)



Designing parity models
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Parity model goal
Transform parities such that decoder can reconstruct unavailable predictions

FP(P) = F(X1) + F(X2)

P = X1 + X2X1 X2

F(X2) = FP(P) – F(X1)

parity model 
(FP)

Learn a parity model



Designing parity models
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Parity model goal
Transform parities such that decoder can reconstruct unavailable predictions

FP(P) = F(X1) + F(X2)

P = X1 + X2X1 X2

F(X2) = FP(P) – F(X1)

parity model 
(FP)



Training a parity model
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1. Sample k inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss

5. Repeat

F(X1) + F(X2)

P = X1 + X2

FP(P)1 compute loss

0.8 0.15 0.05 0.2 0.7 0.1

Desired output:



Training a parity model
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1. Sample k inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss
5. Repeat

P = X1 + X2

FP(P)2

F(X1) + F(X2)

0.15 0.8 0.05 0.3 0.5 0.2

compute loss
Desired output:



Training a parity model
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1. Sample k inputs and encode

2. Perform inference with parity model

3. Compute loss

4. Backpropogate loss

5. Repeat

P = X1 + X2

FP(P)3

F(X1) + F(X2)Desired output:

0.03 0.02 0.95 0.3 0.3 0.4

compute loss



Training a parity model: higher parameter k
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P = X1 + X2 + X3 + X4

1. Sample inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss
5. Repeat

FP(P)3

F(X1) + F(X2) + F(X3) + F(X4)Desired output:



Training a parity model: different encoder
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P =

1. Sample inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss
5. Repeat

FP(P)3



Appropriate for machine learning inference
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1. Predictions resulting from inference are approximations

2. Inaccuracy only at play when predictions otherwise slow/failed

Learning results in approximate reconstructions
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Frontend

Encoder Decoder

parity model

queries predictions

slow/failed

Implementing parity models in Clipper



Design space in parity models framework
Encoder/decoder

• Many possibilities
• Generic: addition/subtraction
• Can specialize to task

Parity model architecture
• Again, many possibilities
• Same as original model ⇒

same latency as original
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P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)



Evaluation

1. How accurate are reconstructions using parity models?
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2. How much can parity models help reduce tail latency?



Evaluation of Accuracy
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• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication



Evaluation of Accuracy
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Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication



Evaluation of Accuracy
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Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication



Evaluation of Overall Accuracy
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Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication6.1%



Evaluation of Overall Accuracy
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Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication6.1%0.6%



Evaluation of Overall Accuracy
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Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication

expected operating regime



Evaluation of Accuracy: Higher values of k
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Tradeoff between resource-overhead, resilience, and accuracy

• Addition/subtraction code



Evaluation of Accuracy: Object-localization
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Ground Truth Available Parity Models



Evaluation of Accuracy: Task-specific encoder
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32

32
32

32encode

Input Images
Parity Image

22% accuracy improvement over 
addition/subtraction at k = 4 



Evaluation of Tail Latency Reduction: Setup
• Implemented in Clipper prediction serving system

• Evaluate with 18-36 nodes on AWS with varying:
• Inference hardware (GPUs, CPUs)
• Query arrival rates
• Batch sizes
• Levels of load imbalance
• Amounts of redundancy
• Baseline approaches

• Baseline: approach with same number of resources as parity models
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Evaluation of Tail Latency Reduction
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40%
same 

median

In presence of resource contention



Limitations of current parity models framework
• Training a parity model is slow!

• Dataset with N samples ⇒ parity model dataset with Nk samples
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Training a parity model
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F(X1) + F(X2)

P = X1 + X2

1. Sample k inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss
5. Repeat

FP(P)3
compute loss



Limitations of current parity models framework

• Training a parity model is slow!
• Dataset with N samples ⇒ parity model dataset with Nk samples

• How to efficiently train under this combinatorial explosion?

• Theoretical understanding?
• Subject to same problems as existing NNs (e.g., adversarial examples)

• Can’t bound inaccuracy

• Potential privacy concerns
• Combining query A with query B into a parity query might leak info

• More research needed to tackle the above
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Landscape of learning in coded-computation
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Learn a code

encoder
X1 X2

decoder

Learning a parity model

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)



Landscape of learning in coded-computation
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encoder
X1 X2

decoder

Jointly learn encoders, decoders, and parity models?

parity model 
(FP)

Balance complexity, 
execution time across

components



Parity Models: Erasure-Coded Resilience 
for Prediction Serving Systems
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• Coded-computation is promising, but current approaches cannot 
support popular machine learning models like neural networks

• Parity models: judicious use of learning allows for accurate 
reconstruction of unavailable ML inference predictions

• Enables erasure-coded resilience in prediction serving systems

Code available: github.com/Thesys-lab/parity-models

https://github.com/Thesys-lab/parity-models

