Parity Models Erasure-Coded Resilience for Prediction Serving Systems

Jack Kosaian

Rashmi Vinayak

Shivaram Venkataraman

Rashmi Vinayak

Carnegie Mellon University

Shivaram Venkataraman

Machine learning lifecycle

Training

Get a model to reach desired accuracy

Inference Deploy model in

target domain

"Batch" jobs

Online

Hours to weeks

Milliseconds

Machine learning inference

Prediction serving systems

Inference in datacenter/cluster settings

Prediction serving system architectures

Machine learning inference

ranking

translation

Must operate with low, predictable latency

Unavailability in serving systems

- Slowdowns and failures (unavailability)
 - Resource contention
 - Hardware failures
 - Runtime slowdowns
 - ML-specific events
- Result in inflated tail latency
 - Cause prediction serving systems to miss SLOs

Must alleviate slowdowns and failures

Redundancy-based resilience

- Proactive: send each query to 2+ servers
- Reactive: wait for a timeout before duplicating query

Erasure codes: proactive, resource-efficient

Erasure codes: proactive, resource-efficient

Coded-computation

Our goal: Using erasure codes to reduce tail latency in prediction serving

Goal: preserve results of computation over queries

Coded-computation

Our goal: Using erasure codes to reduce tail latency in prediction serving

Encode queries

Coded-computation

Our goal: Using erasure codes to reduce tail latency in prediction serving

Decode results of inference over queries

Traditional coding vs. coded-computation

Codes for storage

Coded-computation

Need to recover computation over inputs

Challenge: Non-linear computation

Linear computation Example: F(X) = 2X

Non-linear computation Example: $F(X) = X^2$

Challenge: Non-linear computation

Linear computation

Example: F(X) = 2X

Non-linear computation

Current approaches to coded-computation

- Lots of great work on linear computations
 - Huang 1984, Lee 2015, Dutta 2016, Dutta 2017, Mallick 2018, more...
- Recent work supports restricted nonlinear computations
 - Yu 2018
 - At least 2x resource overhead

Current approaches insufficient for neural networks in prediction serving systems

Our approach: Learning-based coded-computation

Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation https://arxiv.org/abs/1806.01259

Parity Models: Erasure-Coded Resilience for Prediction Serving Systems To appear in ACM SOSP 2019 https://jackkosaian.github.io

Learning an erasure code?

Design encoder and decoder as neural networks

Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation https://arxiv.org/abs/1806.01259

Learning an erasure code?

Design encoder and decoder as neural networks

Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation https://arxiv.org/abs/1806.01259

Learn computation over parities

Use simple, fast encoders and decoders Learn computation over parities: "parity model"

Parity Models: Erasure-Coded Resilience for Prediction Serving Systems To appear in ACM SOSP 2019 https://jackkosaian.github.io

Designing parity models

Parity model goal

Transform parities such that decoder can reconstruct unavailable predictions

Designing parity models

Parity model goal

Transform parities such that decoder can reconstruct unavailable predictions

Designing parity models

Parity model goal

Transform parities such that decoder can reconstruct unavailable predictions

Training a parity model: higher parameter k

- **1.** Sample inputs and encode
- 2. Perform inference with parity model
- 3. Compute loss
- 4. Backpropogate loss
- 5. Repeat

Training a parity model: different encoder

- **1.** Sample inputs and encode
- 2. Perform inference with parity model
- 3. Compute loss
- 4. Backpropogate loss
- 5. Repeat

Learning results in approximate reconstructions

Appropriate for machine learning inference

- **1.** Predictions resulting from inference are approximations
- 2. Inaccuracy only at play when predictions otherwise slow/failed

Implementing parity models in Clipper

Design space in parity models framework

Encoder/decoder

- Many possibilities
- Generic: addition/subtraction
- Can specialize to task

Parity model architecture

- Again, many possibilities
- Same as original model ⇒ same latency as original

Evaluation

1. How accurate are reconstructions using parity models?

2. How much can parity models help reduce tail latency?

Evaluation of Accuracy

Evaluation of Accuracy

Parity model only comes into play when predictions are slow/failed

Addition/subtraction code

2x less overhead than replication

Evaluation of Accuracy

Parity model only comes into play when predictions are slow/failed

Addition/subtraction code

• 2x less overhead than replication

Evaluation of Overall Accuracy

Parity model only comes into play when predictions are slow/failed

Addition/subtraction code

$$k = 2, r = 1 (P = X_1 + X_2)$$

2x less overhead than replication

Evaluation of Overall Accuracy

Parity model only comes into play when predictions are slow/failed

Addition/subtraction code

$$k = 2, r = 1 (P = X_1 + X_2)$$

2x less overhead than replication

Evaluation of Overall Accuracy

Parity model only comes into play when predictions are slow/failed

- Addition/subtraction code
- k = 2, r = 1 (P = X₁ + X₂)
- 2x less overhead than replication

Evaluation of Accuracy: Higher values of k

Tradeoff between resource-overhead, resilience, and accuracy

Evaluation of Accuracy: Object-localization

— Ground Truth — Available — Parity Models

Evaluation of Accuracy: Task-specific encoder

22% accuracy improvement over addition/subtraction at k = 4

Evaluation of Tail Latency Reduction: Setup

- Implemented in Clipper prediction serving system
- Evaluate with 18-36 nodes on AWS with varying:
 - Inference hardware (GPUs, CPUs)
 - Query arrival rates
 - Batch sizes
 - Levels of load imbalance
 - Amounts of redundancy
 - Baseline approaches
- Baseline: approach with same number of resources as parity models

Evaluation of Tail Latency Reduction

In presence of resource contention

Limitations of current parity models framework

- Training a parity model is slow!
 - Dataset with N samples \Rightarrow parity model dataset with N^k samples

- 1. Sample k inputs and encode
- 2. Perform inference with parity model
- 3. Compute loss
- 4. Backpropogate loss
- 5. Repeat

Limitations of current parity models framework

- Training a parity model is slow!
 - Dataset with N samples \Rightarrow parity model dataset with N^k samples
 - How to efficiently train under this combinatorial explosion?
- Theoretical understanding?
 - Subject to same problems as existing NNs (e.g., adversarial examples)
 - Can't bound inaccuracy
- Potential privacy concerns
 - Combining query A with query B into a parity query might leak info
- More research needed to tackle the above

Landscape of learning in coded-computation

Learn a code

Learning a parity model

Landscape of learning in coded-computation

Jointly learn encoders, decoders, and parity models?

Balance complexity, execution time across components

Parity Models: Erasure-Coded Resilience for Prediction Serving Systems

- Coded-computation is promising, but current approaches cannot support popular machine learning models like neural networks
- Parity models: judicious use of learning allows for accurate reconstruction of unavailable ML inference predictions
- Enables erasure-coded resilience in prediction serving systems

Code available: <u>github.com/Thesys-lab/parity-models</u>