
Parity Models
Erasure-Coded Resilience for 
Prediction Serving Systems

Jack Kosaian Rashmi Vinayak Shivaram Venkataraman



Rashmi Vinayak Shivaram Venkataraman

2



Machine learning lifecycle

3

Training Inference
Get a model to reach 

desired accuracy
Deploy model in 
target domain

Hours to weeks Milliseconds

“Batch” jobs Online



Machine learning inference

4

queries predictions

cat
0.15 0.8 0.05

dog bird



Prediction serving systems
Inference in datacenter/cluster settings

Open Source Cloud Services

5



Prediction serving system architectures

6

Frontend

queries predictions

model
instances



Machine learning inference

7

Must operate with low, predictable latency

translation

question-
answering

ranking



Unavailability in serving systems
• Slowdowns and failures (unavailability)

- Resource contention
- Hardware failures
- Runtime slowdowns
- ML-specific events

• Result in inflated tail latency
- Cause prediction serving systems to miss SLOs

8

Must alleviate slowdowns and failures



Redundancy-based resilience
• Proactive: send each query to 2+ servers
• Reactive: wait for a timeout before duplicating query

9

Recovery Delay

Resource Overhead

Reactive

Proactive

(lower is better)

(lower is better)



11

D1 P

D1 D2 P = D1 + D2

D2 = P – D1

encoding

decoding

D2

k data units r “parity” units

any k out of (k+r) units original k data units

“parity”

Erasure codes: proactive, resource-efficient

n = k + r
Relation to (n, k) notation 



12

Storage
Communication
Prediction Serving Systems

Recovery Delay

Resource Overhead

Reactive

Proactive

(lower is better)

(lower is better)

erasure 
codes

Erasure codes: proactive, resource-efficient



Coded-computation

13

F F F

F(X1) F(X2)

queries

models

predictions

Goal: preserve results of
computation over queries

Our goal: Using erasure codes to reduce tail latency in prediction serving

X1 X2



Coded-computation

14

Encode queries

X1 X2

encode

F(X1) F(X2)

F F F
“parity query”

Our goal: Using erasure codes to reduce tail latency in prediction serving



Coded-computation

15

Decode results of
inference over queries

encode
X1 X2

decode

F(X2)

F(X1) F(P)

F F F
“parity query”

Our goal: Using erasure codes to reduce tail latency in prediction serving



Traditional coding vs. coded-computation

16

Need to recover computation over inputs

Coded-computationCodes for storage

D2D1

D1 D2

P F F F

encode
X1 X2

decode

F(X2)

encode

decode

D2

F(X1) F(P)



Challenge: Non-linear computation

17

Linear computation

X1 X2 P = X1 + X2

F(X2) = F(P) – F(X1)

Non-linear computation

X1 X2 P = X1 + X2

F(X2) = F(P) – F(X1)

Actual is X2
2

Example: F(X) = 2X Example: F(X) = X2

2X 2X 2X X2 X2 X2

F(X2) = 2(X1 + X2) – X1
F(X2) = 2X2

F(X2) = 2(X1 + X2)2 – X1
2

F(X2) = X2
2 + 2X1X2



Challenge: Non-linear computation

18

Linear computation

X1 X2 P = X1 + X2

F(X2) = F(P) – F(X1)

Non-linear computation

X1 X2 P = X1 + X2

F(X2) = F(P) – F(X1)

Example: F(X) = 2X

2X 2X 2X

F(X2) = 2(X1 + X2) – X1
F(X2) = 2X2

F(X2) = ???



Current approaches to coded-computation
• Lots of great work on linear computations

• Huang 1984, Lee 2015, Dutta 2016, Dutta 2017, Mallick 2018, more…

• Recent work supports restricted nonlinear computations
• Yu 2018
• At least 2x resource overhead

19

Current approaches insufficient for neural networks in 
prediction serving systems



Our approach: 
Learning-based coded-computation

21

Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation
https://arxiv.org/abs/1806.01259

Parity Models: Erasure-Coded Resilience for Prediction Serving Systems
To appear in ACM SOSP 2019
https://jackkosaian.github.io

https://arxiv.org/abs/1806.01259
https://jackkosaian.github.io/files/papers/sosp2019parity-models.pdf


Learning an erasure code?

22

Design encoder and decoder as neural networks

encoder
X1 X2

decoder

Accurate

Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation
https://arxiv.org/abs/1806.01259

https://arxiv.org/abs/1806.01259


Learning an erasure code?
Design encoder and decoder as neural networks

23

encoder

Computationally
expensive

X1 X2

decoder

Accurate

Expensive
encoder/decoder

Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation
https://arxiv.org/abs/1806.01259

https://arxiv.org/abs/1806.01259


Accurate

Learn computation over parities
Use simple, fast encoders and decoders

24

Learn computation over parities: “parity model”

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)

Efficient
encoder/decoder

Parity Models: Erasure-Coded Resilience for Prediction Serving Systems
To appear in ACM SOSP 2019
https://jackkosaian.github.io

https://jackkosaian.github.io/files/papers/sosp2019parity-models.pdf


Designing parity models

25

Parity model goal
Transform parities such that decoder can reconstruct unavailable predictions

P = X1 + X2X1 X2

F(X2) = FP(P) – F(X1)

parity model 
(FP)



Designing parity models

26

Parity model goal
Transform parities such that decoder can reconstruct unavailable predictions

FP(P) = F(X1) + F(X2)

P = X1 + X2X1 X2

F(X2) = FP(P) – F(X1)

parity model 
(FP)

Learn a parity model



Designing parity models

27

Parity model goal
Transform parities such that decoder can reconstruct unavailable predictions

FP(P) = F(X1) + F(X2)

P = X1 + X2X1 X2

F(X2) = FP(P) – F(X1)

parity model 
(FP)



Training a parity model

28

1. Sample k inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss

5. Repeat

F(X1) + F(X2)

P = X1 + X2

FP(P)1 compute loss

0.8 0.15 0.05 0.2 0.7 0.1

Desired output:



Training a parity model

29

1. Sample k inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss
5. Repeat

P = X1 + X2

FP(P)2

F(X1) + F(X2)

0.15 0.8 0.05 0.3 0.5 0.2

compute loss
Desired output:



Training a parity model

30

1. Sample k inputs and encode

2. Perform inference with parity model

3. Compute loss

4. Backpropogate loss

5. Repeat

P = X1 + X2

FP(P)3

F(X1) + F(X2)Desired output:

0.03 0.02 0.95 0.3 0.3 0.4

compute loss



Training a parity model: higher parameter k

31

P = X1 + X2 + X3 + X4

1. Sample inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss
5. Repeat

FP(P)3

F(X1) + F(X2) + F(X3) + F(X4)Desired output:



Training a parity model: different encoder

32

P =

1. Sample inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss
5. Repeat

FP(P)3



Appropriate for machine learning inference

33

1. Predictions resulting from inference are approximations

2. Inaccuracy only at play when predictions otherwise slow/failed

Learning results in approximate reconstructions



34

Frontend

Encoder Decoder

parity model

queries predictions

slow/failed

Implementing parity models in Clipper



Design space in parity models framework
Encoder/decoder

• Many possibilities
• Generic: addition/subtraction
• Can specialize to task

Parity model architecture
• Again, many possibilities
• Same as original model ⇒

same latency as original

35

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)



Evaluation

1. How accurate are reconstructions using parity models?

36

2. How much can parity models help reduce tail latency?



Evaluation of Accuracy

37

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication



Evaluation of Accuracy

38

Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication



Evaluation of Accuracy

39

Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication



Evaluation of Overall Accuracy

40

Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication6.1%



Evaluation of Overall Accuracy

41

Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication6.1%0.6%



Evaluation of Overall Accuracy

42

Parity model only comes into play when predictions are slow/failed

• Addition/subtraction code

• k = 2, r = 1 (P = X1 + X2)

• 2x less overhead than
replication

expected operating regime



Evaluation of Accuracy: Higher values of k

43

Tradeoff between resource-overhead, resilience, and accuracy

• Addition/subtraction code



Evaluation of Accuracy: Object-localization

44

Ground Truth Available Parity Models



Evaluation of Accuracy: Task-specific encoder

45

32

32
32

32encode

Input Images
Parity Image

22% accuracy improvement over 
addition/subtraction at k = 4 



Evaluation of Tail Latency Reduction: Setup
• Implemented in Clipper prediction serving system

• Evaluate with 18-36 nodes on AWS with varying:
• Inference hardware (GPUs, CPUs)
• Query arrival rates
• Batch sizes
• Levels of load imbalance
• Amounts of redundancy
• Baseline approaches

• Baseline: approach with same number of resources as parity models

46



Evaluation of Tail Latency Reduction

47

40%
same 

median

In presence of resource contention



Limitations of current parity models framework
• Training a parity model is slow!

• Dataset with N samples ⇒ parity model dataset with Nk samples

48



Training a parity model

49

F(X1) + F(X2)

P = X1 + X2

1. Sample k inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss
5. Repeat

FP(P)3
compute loss



Limitations of current parity models framework

• Training a parity model is slow!
• Dataset with N samples ⇒ parity model dataset with Nk samples

• How to efficiently train under this combinatorial explosion?

• Theoretical understanding?
• Subject to same problems as existing NNs (e.g., adversarial examples)

• Can’t bound inaccuracy

• Potential privacy concerns
• Combining query A with query B into a parity query might leak info

• More research needed to tackle the above

50



Landscape of learning in coded-computation

51

Learn a code

encoder
X1 X2

decoder

Learning a parity model

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)



Landscape of learning in coded-computation

52

encoder
X1 X2

decoder

Jointly learn encoders, decoders, and parity models?

parity model 
(FP)

Balance complexity, 
execution time across

components



Parity Models: Erasure-Coded Resilience 
for Prediction Serving Systems

53

• Coded-computation is promising, but current approaches cannot 
support popular machine learning models like neural networks

• Parity models: judicious use of learning allows for accurate 
reconstruction of unavailable ML inference predictions

• Enables erasure-coded resilience in prediction serving systems

Code available: github.com/Thesys-lab/parity-models

https://github.com/Thesys-lab/parity-models

