
1

Causality and Machine Learning 
(80-816/516)

Instructor: 
Kun Zhang (kunz1@cmu.edu) 

Zoom link: https://cmu.zoom.us/j/8214572323) 
Office Hours: W 3:00–4:00PM (on Zoom or in person); other times by 

appointment

Class 1 (January 14, 2025)

Course time & location: Tuesdays & Thursdays 12:30 – 1:50PM, TEP 1308 
https://www.andrew.cmu.edu/course/80-516/ 

mailto:kunz1@cmu.edu
https://cmu.zoom.us/j/8214572323
https://www.andrew.cmu.edu/course/80-516/


Causality and Machine Learning 
(80-816/516)

Classes 1 & 2 (Jan 14 & 16, 2025)

Introduction to Causality:  
Why, What, and How?

Instructor: 
Kun Zhang (kunz1@cmu.edu) 

Zoom link: https://cmu.zoom.us/j/8214572323) 
Office Hours: W 3:00–4:00PM (on Zoom or in person); other times by 

appointment

mailto:kunz1@cmu.edu
https://cmu.zoom.us/j/8214572323


Grading Policy
• Grading 

• Participation: 5%; in-class discussion: 10% 

• Critique me and each other, please (also, feel free to suggest 
papers to discuss) 

• 4 homework assignments questions (available on Canvas): 40% 

• Project/essay proposal for each individual or team of two students 
(due on 03/14, 11:59 pm): 10% 

• Project report/essay (due on 05/02, 11:59 pm): 35% 

• Decide on the topic by 02/28 

• We grade undergraduate students on a curve entirely separately from 
graduate students
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By Geospatial World (https://youtu.be/X-3Oq_82XNA?si=DuW7WRheBetK-OsK)

https://www.youtube.com/@geospatialmedia
https://youtu.be/X-3Oq_82XNA?si=DuW7WRheBetK-OsK


• Consider puerperal fever in the mid-19th century 

• Two clinics used almost the same techniques but had 
very different mortality rates 

• Semmelweis discovered the only major difference 
was the individuals who worked there 

• Hypothesis: Unknown “cadaverous material” 
caused puerperal fever 

• Proposed intervention: washing hands 

• Conflicted with the established scientific and 
medical opinions of  the time 

• Rejected by the medical community until years 
after his death, when Louis Pasteur confirmed the 
germ theory

(Automated) Scientific Discovery: A Story

https://amol-kulkarni.com/project/semmelweis/



Causality vs. Dependence
• Causality ➜ dependence ! Dependence ➜ causality 
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X is a cause of Y iff  

∃x1 ≠ x2 P(Y|do X=x1) ≠ P(Y|do X=x2) 
X and Y are associated iff  
∃x1 ≠ x2 P(Y|X=x1) ≠ P(Y|X=x2)

(http://imgs.xkcd.com/comics/correlation.png)

7
intervention

An intervention on X changes only the target variable X, 
leaving any other variable unchanged, at least for the moment.

http://imgs.xkcd.com/comics/correlation.png


Classic Ways to 
Find Causal 

Information (i.i.d. 
Case)

• What if  X and Y are dependent? 

• What if  you change X and see Y 
also changes? 

• A manipulation/
intervention directly changes 
only the target variable X

Timetable

* Definition of “interventions”

An intervention on X changes only the target variable X, 
leaving any other variable in the system unchanged, at 
least for the moment.



Course Objectives
As an outcome of this course, participants are expected to  

• Understand how causality is different from association and why it is 
useful 

• Get familiar with graphical models, causality-related concepts and 
principles, and emerging approaches to causal discovery or causal 
representation learning from observational data 

• Be acquainted with the state-of-the-art of causality research in different 
disciplines 

• Be able to develop suitable methods for causal representation learning or 
causal discovery to address problems in specific domains 

• Properly leverage causality in understanding and solving advanced 
machine learning and artificial intelligence problems 

• Identify and formulate causal problems in your respective fields, and be 
able to find potential solutions



Representing Causal Relations with 
Directed Graphs

• A directed graph represents a causally sufficient causal 
structure 

• Directed edge from A to B means A is a direct cause of  
B relative to the given variable set V

(adapted from “Causation, Prediction, and Search” by SGS, 1995)
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• Be able to develop suitable methods for causal representation learning or 
causal discovery to address problems in specific domains 

• Properly leverage causality in understanding and solving advanced 
machine learning and artificial intelligence problems 

• Identify and formulate causal problems in your respective fields, and be 
able to find potential solutions



Outline of Class 1 & 2

• What is causality?

• Why causality (and ML)? A broad picture

• Everyday life examples, generative AI, adaptive/
robust prediction, recommender systems, culture…

• Typical causal problems

• Identification of causal effects, correcting selection 
bias, counterfactual reasoning, causal discovery 
(causal representation learning)



Causality vs. Association



2/11/14, 1:24 AM

Does Sharing Housework Really Lead to Divorce? - The Wire

Page 1 of 14

http://www.thewire.com/global/2012/09/dont-believe-every-study-you-read/57388/

SEP 28, 2012 11:58AM ET / GLOBAL

Does Sharing Housework Really

Lead to Divorce?

JEN DOLL

FLICKR/ANTHONY PANG

There's a study in the news that's bound to get a bunch of

people talking (Drudge tweeted it this morning, for

instance, with more than 100 retweets). Whether those

people are for or against its pronouncements, it seems to

fly in the face of what we thought we knew about marriage,

gender equality, and the way modern, successful

relationships work. In a piece written by Henry Samuel for

the Telegraph, he explains, "In what appears to be a slap in
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Another Example



Find Causal Relations from 
Observational Data: An Example

• 8 variables of 250 skeletons collected from 
different locations

Thanks to collaborator Marlijn Noback



• Prompt: a 
peacock eating 
ice cream

Let’s Look at AI Image Generator



• Prompt: a 
peacock eating 
ice cream

By Stable Diffusion: One Year Ago



• Prompt: a 
peacock eating 
ice cream

By DALL·E 3: Three Months Ago



• Genes are often dependent—are they causally related? 

• Causal process behind music, text…

Understanding Dependence in 
Biology, Music, Text…



Autoregresstive Generation in Music, 
Text, etc.?



• English: Athens was an aggressive city-state that conquered 
and subdued as much of  the Greek peninsula and islands as 
it could, and the effort brought slaves to the city.  

• Translated to: 雅典是一个好战的城邦，尽可能地征服和
征服希腊半岛和岛屿，这一努力给城市带来了奴隶。

Translation by GPT-4o: An Example
Apologies!



Unsupervised Image-to-Image Translation

23

Images from the summer season domain.

Images from the winter season domain.

A simpler example:

 Domain 1:

 Domain 2: 
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Unaligned Image-to-Image Translation with Importance Reweighting

Shaoan Xie1, Mingming Gong2, Yanwu Xu3, and Kun Zhang1

1Carnegie Mellon University, 2 The University of Melbourne, 3 University of Pittsburgh

Abstract

Unsupervised image-to-image translation aims at learn-
ing the mapping from source to target domain without using
paired images for training. An essential yet restrictive as-
sumption for unsupervised image translation is that two do-
mains are aligned, e.g., for the selfie2anime task, the anime
(selfie) domain must contain only anime (selfie) face images
that can be translated to some images in the other domain.
Collecting aligned domains can be laborious and needs lots
of attention. In this paper, we consider the task of im-
age translation between two unaligned domains, which may
arise for many possible reasons. To solve this problem, we
propose to use importance reweighting to select images for
translation and develop a method to learn the weights and
perform translation simultaneously and automatically. We
compare the proposed method with state-of-the-art image
translation approaches and present qualitative and quan-
titative results on different tasks with unaligned domains.
Extensive empirical evidence demonstrates the usefulness
of the proposed problem formulation and the superiority of
our method.

1. Introduction
In recent years, Image-to-Image (I2I) translation has

been achieving remarkable success in transferring complex
appearance changes across domains [59, 33]. In addition,
many related tasks could also be formulated as I2I prob-
lems such as image super-resolution [56, 11] and domain
adaptation [23, 41].

In supervised image translation, we are given paired data
from source and target domains. Pix2pix [27] applies condi-
tional Generative Adversarial Network [17, 39] to map the
the source images to the target domain while enforcing a L1
distance loss between translated images and target images.
Pix2pix can generate a sharp target image with sufficient
paired training data. However, paired data are very difficult
to collect or even do not exist (e.g., Van Gogh’s painting to
real photos). In the absence of paired data, unsupervised I2I

, ,

Figure 1: Example of aligned and unaligned domains. Left:
selfie images as domain X and anime face images as do-
main Y . Images in two domains are carefully selected and
processed. Right: many unwanted anime images may ap-
pear in the domain Y for many possible reasons, e.g., lack
of human supervision.

translation methods have achieved impressive performance
by combining GAN with proper constraints, such as cycle
consistency [59] and shared latent space assumption [33].

An essential assumption of unsupervised image transla-
tion is then that the domains used for training are aligned,
which means that each image in one domain can be trans-
lated to some image in the other domain in a meaningful
manner; in other words, there is some underlying relation-
ship between the domains [59]. For example, each of the
two domains in the selfie2anime task include only female
face images (Figure 1, left) of a similar style.

However, collecting images for two domains which are
guaranteed to be aligned needs a lot of attention. For in-
stance, to collect the anime domain, Kim et al. [28] first
constructed an initial dataset consisting of 69,926 anime
character images. Then they applied pre-trained anime face
detector to extract 27,073 face images and then manually
selected 3500 female face images as the training set. To
collect the animal face dataset, Liu et al. [34] manually la-
beled bounding boxes of 10,000 carnivorous animal faces in
the images and selected images with high detection scores



Unsupervised Image-to-Image Translation
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Images from the summer season domain.

Images from the winter season domain.

Content
 

                                   Image

Style

Minimize the influence of  ‘Style’ on ‘Image’ 
during translation.

How?  A minimal number of changing 
components?



Multi-domain Image Generation & 
Translation with Identifiability Guarantees

• Example: Generating female & male images with the same “content”

Under review as a conference paper at ICLR 2023

It means that the mapping function F is trained to preserve the correspondence between images of
the generated tuples. Since we are able to recover the true joint distribution, Ltuple encourage the
mapping function to produce the true conditional distribution, i.e., P✓(x(u1)|x(u0)).

Our full objective for unpaired image translation is Ltranslation = Lstargan + �tupleLtuple, where �tuple is
the hyper-parameter to control the influence of our propose tuple regularization.

4 EXPERIMENTS

In this section, we first present results and analysis on multi-domain image generation task. Then we
provide the results on unpaired image translation.

4.1 MULTI-DOMAIN IMAGE GENERATION

4.1.1 EXPERIMENT SETUP

Implementation We build our method based on the official pytorch implementation of StyleGAN2-
ADA (Karras et al., 2020a) and the hyper-parameters are selected automatically by the code. We
choose the deep sigmoid flow (DSF) (Huang et al., 2018a) to implement the domain transformation
fu (Huang et al., 2018a) because DSF is designed to be component-wise strictly increasing. We use
the embedding of domain label to generate pseudo-parameters for the flow. We only introduce one
hyper-parameter: � to control the sparsity of the mask. We set � = 0.1 for all experiments.

StyleGAN2-ADA TGAN Ours (� = 0) Ours (� = 0.1)

Figure 4: Samples of multi-domain image generation on the CELEBA-HQ, AFHQ, ArtPhoto,
CelebA5 and MNIST7. We provide more samples and methods in appendix F.2. Each row of the
method shares the same input noise ✏. We observe that there are unnecessary changes between the
images (e.g., the added sun-glasses in the first row, the different poses of animals of StyleGAN2-ADA
in second row) without regularization.

Datasets We use five datasets to evaluate our method: CELEBA-HQ (Choi et al., 2020) contains
female and male faces domains; AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild
life; ArtPhoto contains 4 domains: Cezanne, Monet, Photo and Ukiyoe; CelebA5 contains 5 domains:
Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin; MNIST7 contains 7 domains: blue,
cyan, green, purple, red, white and yellow MNIST digits. More information are in the appendix F.1.

Evaluation Metrics. We evaluate our method using the Frechet inception distance (FID), which is a
widely used metric for distribution divergence between the generated images and the real images.
lower FID is better. As for the first four datasets, there is no pair data. So, we use the domain-
invariant perceptual distance (DIPD) to measure the semantic correspondence (Liu et al., 2019).
DIPD computes the distance between two instance-normalized Conv5 features of VGG network. As
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- Xie, Kong, Gong, Zhang, “Multi-domain image generation and translation with identifiability guarantees”, ICLR 2023
- Yan, Kong, Gui, Chi, Xing, He, Zhang, Counterfactual Generation with Identifiability Guarantee, NeurIPS 2023



Minimal Changes + Causal Modeling for Generation 
Corresponding to prompt:  

girl with mustache,  

girl with goatee,  

bald girl,  

male with mustache,  

male with goatee, and  

bald male 

- S. Xie, Y. Zheng, I. Ng, K. Zhang, Causal Compositional Image Generation with Minimal Change, under submission
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For Real Image Editing 
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Making Prediction in Nonstationary 
Environments

Understanding connections between different scenarios 
& modeling differences

5



Foreword to the I Ching 
by Carl Gustav Jung 

HTML Edition by Dan Baruth 



Causal Thinking Makes a 
Difference

• Active manipulation /control vs. passive prediction 

• Generalization / adaptation ability in new environments? 

• Integration of  causal information: what is the causal model for 
X, Y, and Z if  

• X→Y, Y→Z (expansion) or X→Z, Y→Z (refinement)... 

• Creativity  

• Thoughts consist of  the "What if ?" and the "If  I had 
only..." + knowledge integration + ...



Remember the Scientific Revolution?

• By Copernicus, Galilei, Newton, Bacon, Harvey…  

• Book production, observational data, the ability to do some 
experiments, basic inference rules… 

• Quantitative vs. qualitative view of  nature; new experimental, 
scientific method seeking definite answers; “how” instead of  
“why”… 

• This revolution in human thought changed the world



Causal ML Facilitates the Second Scientific 
Revolution (I Believe)

• Analogy to Scientific Revolution  

• By Copernicus, Galilei, Newton, Bacon, Harvey…  

• Book production, observational data, the ability to do some experiments, 
basic inference rules… 

• Quantitative vs. qualitative view of  nature; new experimental, scientific 
method seeking definite answers; “how” instead of  “why”…  

• Available: Internet, data, statistical tools, computational 
resources… 

• Goals? Learning paradigms? Methodology? 

• (Causal ML) will impact each scientific discipline, every 
industry, and human society 



Answering Why Questions: A View

34

https://www.youtube.com/watch?v=36GT2zI8lVA


Good Representations Are Needed…

(Goodfellow et al., 2014)

• Generalization/adaptation, decision making, fairness, 
recommendations, generative AI…

• Dealing with adversarial attacks?



Outline of Class 1 & 2

• What is causality?

• Why causality (and ML)? A broad picture

• Everyday life examples, generative AI, adaptive/
robust prediction, recommender systems, culture…

• Typical causal problems

• Identification of causal effects, correcting selection 
bias, counterfactual reasoning, causal discovery 
(causal representation learning)



• Causal discovery (Spirtes et al., 1993)/ causal representation learning 
(Schölkopf  et al., 2021): find such representations with identifiability guarantees 

• Causal system has “irrelevant” modules (Pearl, 2000; Spirtes et al., 1993) 

• Three dimensions of  the problem:

Uncover Causality from 
Observational Data: Task?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…

Footprint of  causality in data



Temporal Order? Assumptions are 
Needed…

38



• Causal discovery (Spirtes et al., 1993)/ causal representation learning 
(Schölkopf  et al., 2021): find such representations with identifiability guarantees 

• Causal system has “irrelevant” modules (Spirtes et al., 1993; Pearl, 2000) 

• Three dimensions of  the problem:

Uncover Causality from 
Observational Data: How?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…

Footprint of  causality in data
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Formulation: Three Types 
of Problems in Current AI

• Three questions: 

• Prediction: Would the person cough if we find he/she 
has yellow fingers? 

• Intervention: Would the person cough if we make sure 
that he/she has yellow fingers? 

• Counterfactual: Would George cough had he had 
yellow fingers, given that he does not have yellow 
fingers and coughs?

X1

X2 X3

Smoking

Yellow fingers Cough

P(X3 | X2=1)

P(X3 | do (X2=1))

P(X3 X2=1 | X2 = 0, X3 = 1)

X1	 X2	 X3 
1	 0	 0 
0	 0	 1 
0	 1	 1 
1	 1	 1 
0	 0	 0 
0	 1	 0 
1	 1	 1 
1	 1	 1 
0	 0	 0 
1	 0	 0 
...	 ...	 ...



Causal Thinking: Making Changes?

• Dependence vs. causality



• Dependence vs. causality 

• Simpson’s paradox

Causal Thinking: Why “Paradox”?

？



• Dependence vs. causality 

• Simpson’s paradox

Causal Thinking: Why “Paradox”?



Causal Thinking: Why “Paradox”?
• Dependence vs. causality 

• Simpson’s paradox

Prediction vs. causal effect



• Dependence vs. causality 

• Simpson’s paradox 

• “Strange” dependence 

• Go back 50 years; female college 
students were smarter than male 
ones on average. Why?

gender IQ

college

Causal Thinking: Sample vs. Population



• Dependence vs. causality 

• Simpson’s paradox 

• “Strange” dependence

Causal Thinking: Sample vs. Population



• Dependence vs. causality 

• Simpson’s paradox 

• “Stranger” dependence 

• Let’s go back 50 years; maybe you’ll find female college 
students are smarter than male ones on average. Why?

***

Being 
hit

Where

Survival

- Observe P(B,W | S=1) 
- Infer P(B,W | S=0)

Causal Thinking: Sample vs. Population
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Counterfactual Inference vs. Prediction

-2 -1 0 1 2
X

-3

-2

-1

0

1

2

Y
• Suppose X→Y with Y = log(X + E + 3). For an individual 

with (x,y), what would Y be if X had been x’ ?

attendance grade
U

-2 -1 0 1 2
X

-3

-2

-1

0

1

2

Y

U
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Counterfactual Inference vs. Prediction

-2 -1 0 1 2
X

-3

-2

-1

0

1

2
Y

• Suppose X→Y with Y = log(X + E + 3). For an individual 
with (x,y), what would Y be if X had been x’ ?
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Good Representations Are Needed…

(Goodfellow et al., 2014)

• Generalization/adaptation, decision making, fairness, 
recommendations, generative AI…

• Dealing with adversarial attacks?



• Causal discovery (Spirtes et al., 1993)/ causal representation learning 
(Schölkopf  et al., 2021): find such representations with identifiability guarantees 

• Causal system has “irrelevant” modules (Pearl, 2000; Spirtes et al., 1993) 

• Three dimensions of  the problem:

Uncover Causality from 
Observational Data: Task?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…

Footprint of  causality in data



Temporal Order? Assumptions are 
Needed…

53



• Causal discovery (Spirtes et al., 1993)/ causal representation learning 
(Schölkopf  et al., 2021): find such representations with identifiability guarantees 

• Causal system has “irrelevant” modules (Spirtes et al., 1993; Pearl, 2000) 

• Three dimensions of  the problem:

Uncover Causality from 
Observational Data: How?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…

Footprint of  causality in data



Causal Representation Learning: Recent Advances

i.i.d. data? Parametric 
constraints?

Latent 
confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
MEC (CD-NOD)

Yes May have unique 
identifiability

No
Yes

Changing subspace 
identifiable
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Causal Discovery in Archeology: An Example

• 8 variables of 250 skeletons collected from different locations

Thanks to Marlijn Nobacki.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes



(Typical) Constraint-Based Causal Discovery

• Conditional independence constraints between each variable pair 

• Illustration: the PC algorithm

• Extensions: the FCI algorithm…

X1⫫X5 | X3 

X2⫫X4 | X1 

X2⫫X5 | X3 

X4⫫X5 | X3 

X1⫫X3 |{X2, X4}

X2 X4

X3

X5

X1 X2 X3 X4 X5
-1.1 1 1.3 0.2 -0.7
2.1 2 3.1 -1.3 -1.6
3.1 4.2 -2.6 0.6 2.1
2.3 -0.6 -3.5 0.8 2.3
1.3 -1.7 0.9 2.4 -1.4
-1.8 0.9 -1.3 0.9 0.7

…  ...      ...       …   …

X1

- Spirtes, Glymour, and Scheines. Causation, Prediction, and Search. 1993.

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes



• By PC algorithm (Spirtes et al., 1993) + kernel-based conditional 
independence test (Zhang et al., 2011)

Result of PC on the Archeology Data
Thanks to collaborator Marlijn Noback

cranial size

diet

paramasticatory
behavior

climate

geodistance attrition

cranial shape differentiation

gender



• Linear non-Gaussian model (Shimizu et al., 2006): 
Y = aX + E 

• Post-nonlinear causal model (Zhang & Chan, 2006): 

• Additive noise model (Hoyer et al, 2009)

59

Y = f(X) +E

Y = f2 ( f1(X) +E )

Functional Causal Model-Based Causal 
Discovery

“Independent changes” renders causal direction 
identifiable

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes
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A Problem in Psychology: Finding Underlying 
Mental Conditions?

• 50 questions for big 5 personality test 

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes



Learning Hidden Variables & Their Relations

L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.

2

Latent variables &  
their causal structure

Discovery: How?

• Find latent variables Li and their causal relations from measured 
variables Xi ?

• Measured variables (e.g., answer scores in psychometric questionnaires) 
were generated by causally related latent variables

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

 - Linear-Gaussian case
 - Linear, non-Gaussian case
 - General nonlinear case
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Linear, Gaussian Case: With Rank Deficiency 
Constraints

- Huang, Low, Xie, Glymour, Zhang, “Latent Hierarchical Causal Structure Discovery with Rank Constraints,” NeurIPS 2022

• Can we find L6? 

•   

• Recovering the equivalence class 

• With rank deficiency of  cross-
covariance matrices  

• recursively and cleverly

Σ(X10,X11), X∖{X10,X11} = 1



64

Linear, Gaussian Case: With Rank Deficiency 
Constraints

• Can we find L6? 

•   

• Recovering the equivalence class 

• With rank deficiency of  cross-
covariance matrices  

• recursively and cleverly

Σ(X10,X11), X∖{X10,X11} = 1

- Conditional independence is a special case 
- rank(Σ(X1, X2), (X2, X3)) = 1 ⇔ X1  ||  X3 | X2 

- Unified causal discovery based on rank deficiency constraints
- Dong, Huang, Ng, Song, Zheng, Jin, Legaspi, Spirtes, Zhang, “A Versatile Causal Discovery Framework to Allow Causally-

Related Hidden Variables,” ICLR 2024
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Example: Big 5 Questions Are Well Designed but…
Big 5:  
openness; conscientiousness; extraversion; agreeableness; neuroticism

- Dong, Huang, Ng, Song, Zheng, Jin, Legaspi, Spirtes, Zhang, “A Versatile Causal Discovery Framework to Allow Causally-Related 
Hidden Variables,” ICLR 2024

https://en.wikipedia.org/wiki/Conscientiousness
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Example: Big 5 Questions Are Well Designed but…
Big 5:  
openness; conscientiousness; extraversion; agreeableness; neuroticism

https://en.wikipedia.org/wiki/Conscientiousness


Linear, Non-Gaussian Case: Generalized 
Independent Noise Condition

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian 
Latent Variable Causal Graphs," NeurIPS 2020 

- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurIPS 2019

X1
L1

L2

X2

X3 X4

• Find direction between latent variables L1 and L2?



Linear, Non-Gaussian Case: Generalized 
Independent Noise Condition

- Xie, et al., "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent Variable Causal Graphs," 
NeurIPS 2020 

X1
L1

L2

X2

X3 X4

X1
L1

L2

X2

X3

X1
L1

L2

X2

X3

X

a

b c

a

b
c

ƛ

c ·X2 � b ·X3

=c(bL1 + E2)� b(cL1 + E3)

=cE2 � bE3,

independent from L1 and from X1,

and we know
b

c
=

Cov(X2, X3)

Cov(X1, X3)

Nontrivial linear combination
of X2 and X3 will involve
the noise term in L1,
hence dependent on X1



Linear, Non-Gaussian Case: Generalized 
Independent Noise Condition

Let Z = {X1} and Y = {X2, X3}, GIN!

• GIN condition:  follows GIN  

• has graphical implications

(Z, Y) ⇔ w⊺Y Z  for nonzero w ||   



GIN for Estimating Linear, Non-
Gaussian LV Model

Step 1: find causal clusters

18

Step 2: determine causal structure 
of the latent variables

• A two-step algorithm to identify the latent variable graph
- By testing for GIN conditions over the input X1, ···, X8

satisfies GIN condition
satisfies GIN condition

Cluster 3 Cluster 1 & 3

L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.

2

Cluster 1

Cluster 2

Cluster 3
L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.

2

GIN Condition for Estimating Linear 
Non-Gaussian Latent Graphs



GIN-Based Method: Application to Teacher’s 
Burnout Data

• Contains 28 measured variables 

• Discovered clusters and causal order of  
the latent variables: 

• Consistent with the hypothesized model
Ref [Byrne, 2010]

(from root to leaf)

Hypothesized model by experts

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent 
Variable Causal Graphs," NeurIPS 2020 

- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurIPS 2019



Where Are We?
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Latent 
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Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 
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Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
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Learning Latent Causal Dynamics

- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

LEAP: Latent tEmporally cAusal Processes Estimation 

10

Time-series Inputs !! !"#$

Figure 1: Represent latent causal mechanisms from temporal data. By assuming the noise are spatially-temporally independent, we embed 
the conditional independence condition within functional causal model (FCM) in latent space,. Non-stationarity in noise distribution and 
functional or distributional form assumptions are exploited to identify latent causal graphs from temporal observation data.

Inference Module Learnable Causal Prior

Exploiting Nonstationarity OR Functional Form
• Nonparametric + Nonstationary condition

z%& = f'( PA%& , E&% )
• Linear + Laplacian Noise

z%& = A PA%& + E&%
• PNL + Gaussian Noise

z%& = f((f'( PA%& + E&%))

Temporal VAE with Causal Prior

Causal 
Skeleton 
Recovery

Unsupervised 
Representation 

Learning

xt = g(zt)
Latent processes

Recovered latent 
processes

Temporal VAE with causal prior

Latent temporal causal processes 
zit follow 

- completely nonparametric 
model; or furthermore, 

- non-stationary noise or 
causal influence, or  

- Parametric constraints 

LEAP: Latent tEmporally cAusal Processes Estimation 

10

Time-series Inputs !! !"#$

Figure 1: Represent latent causal mechanisms from temporal data. By assuming the noise are spatially-temporally independent, we embed 
the conditional independence condition within functional causal model (FCM) in latent space,. Non-stationarity in noise distribution and 
functional or distributional form assumptions are exploited to identify latent causal graphs from temporal observation data.

Inference Module Learnable Causal Prior

Exploiting Nonstationarity OR Functional Form
• Nonparametric + Nonstationary condition

z%& = f'( PA%& , E&% )
• Linear + Laplacian Noise

z%& = A PA%& + E&%
• PNL + Gaussian Noise

z%& = f((f'( PA%& + E&%))

Temporal VAE with Causal Prior

Causal 
Skeleton 
Recovery

Unsupervised 
Representation 

Learning

“Time-delayed” influence renders latent 
processes & their relations identifiable



Results on Simple Video Data 

• For easy interpretation, consider a simple video data set

Published as a conference paper at ICLR 2022

(Violation) Low-rank State Transition For this dataset, the transition matrix B⌧ in Eq. 4 is low-
rank instead of full-rank. The datasets are created following the steps in the VAR dataset, but we
restrict the rank of state transition matrix B⌧ to 4 and time lag L = 1. The full matrix rank is 8.

(Violation) Gaussian Noise Distribution For this dataset, the noise terms ✏it in Eq. 4 follow the
Gaussian distribution (↵i = 2) instead of Generalized Laplacian distribution (↵i < 2). In particular,
the noise terms ✏it are sampled from i.i.d. Gaussian distribution (� = 0.1).

(Violation) Regime-Variant Causal Relations For regime-variant causal relations, we generate
240,000 data points according to Eq. 55:

xt = g(zt), zt =
LX

⌧=1

Bu
⌧ zt�⌧ + ✏t with ✏it ⇠ p✏i . (55)

The noises ✏it are sampled from i.i.d. Laplace distribution (� = 0.1). In each regime u, the entries
of state transition matrices Bu

⌧ are uniformly distributed between [�0.5, 0.5].

(Violation) Instantaneous Causal Relations For instantaneous causal relations, we generate
45,000 data points according to Eq. 56:

xt = g(zt), zt = Azt +
LX

⌧=1

B⌧zt�⌧ + ✏t with ✏it ⇠ p✏i , (56)

where matrix A is a random Directed Acyclic Graph (DAG) which contains the coefficients of the
linear instantaneous relations. The noises ✏it are sampled from i.i.d. Laplacian distribution with
� = 0.1. The entries of state transition matrices B⌧ are uniformly distributed between [�0.5, 0.5].

B.2 REAL-WORLD DATASET

Three public datasets, including KiTTiMask, Mass-Spring System, and CMU MoCap database, are
used. The observations together with the true temporally causal latent processes are showcased in
Fig. B.1. For CMU MoCap, the true latent causal variables and time-delayed relations are unknown.

(a) (b) (c)

!!"## !!#

!!"#$ !!$

!!"#% !!%

!!&!!#

!!$ !!'
!!% !!"$$ !!$!!"#$

!!"$% !!%!!"#%

!!"$# !!#!!"##

Figure B.1: Real-world datasets: (a) KiTTiMask is a video dataset of binary pedestrian masks, (b)
Mass-Spring system is a video dataset with ball movement rendered in color and invisible springs,
and (c) CMU MoCap is a 3D point cloud dataset of skeleton-based signals.

KiTTiMask The KiTTiMask dataset consists of pedestrian segmentation masks sampled from the
autonomous driving vision benchmark KiTTi-MOTS. For each given frame, the position (vertical
and horizontal) and the scale of the pedestrian masks are set using measured values. The difference
in the sample time (e.g., �t = 0.15s) generates the sparse Laplacian innovations between frames.

Mass-Spring System The Mass-Spring system is a classical physical system that several objects
are connected by some visible/invisible spring, which follows Hooke’s law. In this work, we consid-
ered the system with five degrees of freedom and made linearization on the state without calculating
the Euclidian distance between objects. Thus, there are ten causal relations, six of which were
set connected, and the other four were disconnected. The rest length of the spring was uniformly
distributed between [1, 10], and the stiffness of the spring relation was set as 20. The action was
at = 300et, where et followed the Laplacian distribution with mean µ = 0 and variance � = 1.
We assumed there was no damping in the system and randomly assigned the objects in different
positions at the beginning of each episode.

24

• Mass-spring system: a video dataset with ball movement and 
invisible springs

Mass-spring 
Video

Learned  
latent processes Interpretation

(x- & y- coordinates
 of the 5 balls)



Extension: Four Categories of 
State Representations in RL

- Liu*,  Huang*, Zhu, Tian, Gong, Yu, Zhang. Learning world models with identifiable factorization. NeurIPS 2023

Each category is identifiable!
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• Consider puerperal fever in the mid-19th century 

• Two clinics used almost the same techniques but had 
very different mortality rates 

• Semmelweis discovered the only major difference 
was the individuals who worked there 

• Hypothesis: Unknown “cadaverous material” 
caused puerperal fever 

• Proposed intervention: washing hands 

• Conflicted with the established scientific and 
medical opinions of  the time 

• Rejected by the medical community until years 
after his death, when Louis Pasteur confirmed the 
germ theory

(Automated) Scientific Discovery: A Story

https://amol-kulkarni.com/project/semmelweis/



Finding Changing Hidden Variables for 
Transfer Learning

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

• Underlying components  may change across domains 

• Changing components  are identifiable; invariant part  is 
identifiable up to its subspace 

• Using invariant part  and transformed changing part  for 
transfer learning

ZS

ZS ZC

ZC Z̃S

- Kong, Xie, Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022

g
ZS

ZC
X



Image Translation: How to Learn ‘Style’?

79

Images from the summer season domain.

Images from the winter season domain.

A simpler example:

 Domain 1:

 Domain 2: 



Image Translation Based on Minimal Changes 

80

Images from the summer season domain.

Images from the winter season domain.

Content
 

                                   Image

Style

Minimize the influence of  ‘Style’ on ‘Image’ 
during translation.

How?  A minimal number of changing 
components?



Multi-domain Image Generation & 
Translation with Identifiability Guarantees

• Idea: Matching the distributions across domains with a minimal 
number of  changing components 

• Correspondence info (joint distribution) identifiable under mild 
assumptions 

• Example: Generating female & male images with the same “content”

Under review as a conference paper at ICLR 2023

It means that the mapping function F is trained to preserve the correspondence between images of
the generated tuples. Since we are able to recover the true joint distribution, Ltuple encourage the
mapping function to produce the true conditional distribution, i.e., P✓(x(u1)|x(u0)).

Our full objective for unpaired image translation is Ltranslation = Lstargan + �tupleLtuple, where �tuple is
the hyper-parameter to control the influence of our propose tuple regularization.

4 EXPERIMENTS

In this section, we first present results and analysis on multi-domain image generation task. Then we
provide the results on unpaired image translation.

4.1 MULTI-DOMAIN IMAGE GENERATION

4.1.1 EXPERIMENT SETUP

Implementation We build our method based on the official pytorch implementation of StyleGAN2-
ADA (Karras et al., 2020a) and the hyper-parameters are selected automatically by the code. We
choose the deep sigmoid flow (DSF) (Huang et al., 2018a) to implement the domain transformation
fu (Huang et al., 2018a) because DSF is designed to be component-wise strictly increasing. We use
the embedding of domain label to generate pseudo-parameters for the flow. We only introduce one
hyper-parameter: � to control the sparsity of the mask. We set � = 0.1 for all experiments.

StyleGAN2-ADA TGAN Ours (� = 0) Ours (� = 0.1)

Figure 4: Samples of multi-domain image generation on the CELEBA-HQ, AFHQ, ArtPhoto,
CelebA5 and MNIST7. We provide more samples and methods in appendix F.2. Each row of the
method shares the same input noise ✏. We observe that there are unnecessary changes between the
images (e.g., the added sun-glasses in the first row, the different poses of animals of StyleGAN2-ADA
in second row) without regularization.

Datasets We use five datasets to evaluate our method: CELEBA-HQ (Choi et al., 2020) contains
female and male faces domains; AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild
life; ArtPhoto contains 4 domains: Cezanne, Monet, Photo and Ukiyoe; CelebA5 contains 5 domains:
Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin; MNIST7 contains 7 domains: blue,
cyan, green, purple, red, white and yellow MNIST digits. More information are in the appendix F.1.

Evaluation Metrics. We evaluate our method using the Frechet inception distance (FID), which is a
widely used metric for distribution divergence between the generated images and the real images.
lower FID is better. As for the first four datasets, there is no pair data. So, we use the domain-
invariant perceptual distance (DIPD) to measure the semantic correspondence (Liu et al., 2019).
DIPD computes the distance between two instance-normalized Conv5 features of VGG network. As

7
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hyper-parameter: � to control the sparsity of the mask. We set � = 0.1 for all experiments.
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CelebA5 and MNIST7. We provide more samples and methods in appendix F.2. Each row of the
method shares the same input noise ✏. We observe that there are unnecessary changes between the
images (e.g., the added sun-glasses in the first row, the different poses of animals of StyleGAN2-ADA
in second row) without regularization.

Datasets We use five datasets to evaluate our method: CELEBA-HQ (Choi et al., 2020) contains
female and male faces domains; AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild
life; ArtPhoto contains 4 domains: Cezanne, Monet, Photo and Ukiyoe; CelebA5 contains 5 domains:
Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin; MNIST7 contains 7 domains: blue,
cyan, green, purple, red, white and yellow MNIST digits. More information are in the appendix F.1.

Evaluation Metrics. We evaluate our method using the Frechet inception distance (FID), which is a
widely used metric for distribution divergence between the generated images and the real images.
lower FID is better. As for the first four datasets, there is no pair data. So, we use the domain-
invariant perceptual distance (DIPD) to measure the semantic correspondence (Liu et al., 2019).
DIPD computes the distance between two instance-normalized Conv5 features of VGG network. As
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mapping function to produce the true conditional distribution, i.e., P✓(x(u1)|x(u0)).
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the hyper-parameter to control the influence of our propose tuple regularization.
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Implementation We build our method based on the official pytorch implementation of StyleGAN2-
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choose the deep sigmoid flow (DSF) (Huang et al., 2018a) to implement the domain transformation
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method shares the same input noise ✏. We observe that there are unnecessary changes between the
images (e.g., the added sun-glasses in the first row, the different poses of animals of StyleGAN2-ADA
in second row) without regularization.

Datasets We use five datasets to evaluate our method: CELEBA-HQ (Choi et al., 2020) contains
female and male faces domains; AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild
life; ArtPhoto contains 4 domains: Cezanne, Monet, Photo and Ukiyoe; CelebA5 contains 5 domains:
Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin; MNIST7 contains 7 domains: blue,
cyan, green, purple, red, white and yellow MNIST digits. More information are in the appendix F.1.

Evaluation Metrics. We evaluate our method using the Frechet inception distance (FID), which is a
widely used metric for distribution divergence between the generated images and the real images.
lower FID is better. As for the first four datasets, there is no pair data. So, we use the domain-
invariant perceptual distance (DIPD) to measure the semantic correspondence (Liu et al., 2019).
DIPD computes the distance between two instance-normalized Conv5 features of VGG network. As

7

Ours TGANStyleGAN2-ADA

- Xie, Kong, Gong, Zhang, “Multi-domain image generation and translation with identifiability guarantees”, ICLR 2023
- Yan, Kong, Gui, Chi, Xing, He, Zhang, Counterfactual Generation with Identifiability Guarantee, NeurIPS 2023
- Kong, Xie, Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022



Minimal Changes + Causal Modeling for Generation 
Corresponding to prompt:  

girl with mustache,  

girl with goatee,  

bald girl,  

male with mustache,  

male with goatee, and  

bald male 

- S. Xie, Y. Zheng, I. Ng, K. Zhang, Causal Compositional Image Generation with Minimal Change, under submission
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For Real Image Editing 

(S
O
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)



• Various tasks involve suitable (causal) representations of  data 

• Scientific discovery, domain generalization/adaptation, 
trustworthy AI, explainable AI, fairness… 

• Causal representations can be recovered under appropriate 
assumptions 

• Technically operational causal principles 

• Identifiability!  

• Strong identifiability results in non-IID cases 

• Benefit from parametric constraints in the IID case 

• In the era of  large models: Is causality essential?

Summary

HOW?


