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X1 ?? X3;

X1 ?? X4;

X2 ?? X3.

Are there confounders 
behind X2 and X4? X1 → X2          X4←X3

L

E.g., X1: I am not sick; X2: I am in this lecture room; X4: you 
are in this lecture room; X3: you are not sick.
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Distinguishing Cause from Effect: 
Examples (Tübingen Cause-Effect Pairs)
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Functional Causal Model

• Linear non-Gaussian acyclic causal model (Shimizu et 
al., ‘06)

• Additive noise model (Hoyer et al., ’09; Zhang & 
Hyvärinen, ‘09b)

• Post-nonlinear causal model (Zhang & Chan, ’06; Zhang 
& Hyvärinen, ‘09a)

Y = a·X +E

Y = f(X) +E

Y = f2 ( f1(X) +E )

• A functional causal model represents effect as a 
function of direct causes and noise: Y = f (X, E), with X⫫E



Functional Causal Models

• Effect generated from cause with independent noise (Pearl et al.):           

• A way to encode the intuition “the generating process for X is ‘independent’ 
from that generates Y from X”

• :-( Without constraints on f, one can find independent noise for both 
directions (Darmois, 1951; Zhang et al., 2015)  

• Given any X1 and X2, E’ := conditional CDF of X2 | X1 is always independent 
from X1 and X2 = f (X1, E’)

• :-) Structural constraints on f imply asymmetry

fX

E

Y

P(X) →X→
P(Y|X)

Y
→

⫫

Y = f (X, E)



A Way to Construct 
Independent Error Term

• CDF(Y) is a random variable uniformly distributed over [0,1]

• E’ ≜ Conditional CDF(Y | X=x) is uniformly distributed over [0,1], 
irrelevant to the value of x

• E’ ⫫ X

• Y can be written as Y = f (X, E’), i.e., the transformation from (X, Y) to 
(X, E’) is invertible

• Why? The Jacobin !
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Zhang et al.(2015), On Estimation of Functional Causal Models: General Results and Application to Post-
Nonlinear Causal Model, ACM Transactions on Intelligent Systems and Technology, Forthcoming
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(Conditional) Independence
• X⫫Y iff  p(X,Y) = p(X)p(Y) 

• or p(X|Y) = P(X): Y not informative to X 

• X⫫Y | Z iff  p(X,Y|Z) = p(X|Z)p(Y|Z) 

• or, p(X|Y,Z) = p(X|Z): given Z, Y not 
informative to X 

• Divide & conquer, remove irrelevant info...  

• By construction, regression residual is 
uncorrelated (but not necessarily 
independent !) from the predictor
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Gaussian vs. Non-Gaussian 
Distributions
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Causal Asymmetry the Linear 
Case: Illustration
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Super-Gaussian Case
Data generated by Y = aX + E (X →Y):
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More Generally, LiNGAM Model
• Linear, non-Gaussian, acyclic causal model (LiNGAM) 
(Shimizu et al., 2006):

• Disturbances (errors) Ei are non-Gaussian (or at most 
one is Gaussian) and mutually independent

• Example:
X2 X3

X1

0.5

-0.2 0.3
E2 E3

E1

X2 = E2,

X3 = 0.5X2 + E3,

X1 = �0.2X2 + 0.3X3 + E1.

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning 
Research, 7:2003–2030.
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Intuition: Why ICA works?
• (After preprocessing) ICA aims to find a 

rotation transformation Y = W·X to making 
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• By maximum likelihood log p(X|A), 
mutual information MI(Y1,...,Ym) 
minimization, infomax...
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LiNGAM Analysis by ICA 
• LiNGAM:   

• B has special structure: acyclic relations

• ICA: Y = WX 

• B can be seen from W by permutation 
and re-scaling

• Faithfulness assumption avoided

• E.g., 2
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bijXj + Ei or X = BX+E ⇒  E = (I-B)X
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W =

2

664

0.6 �0.4 2 0
1.5 0 0 0
0 0.2 0 0.5
1.5 3 0 0

3

775



Can You See Causal Relations 
fromW? Example

• ICA gives Y = WX and

• Can we find the causal model?

1. First permute the rows of W 
to make all diagonal entries 
non-zero, yielding Ẅ. 
2. Then divide each row of Ẅ 
by its diagonal entry, giving Ẅ’. 
3. B̂ = I� Ẅ0 .
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Faithfulness Assumption Needed?

health 
condition

• One might find independence between health condition & risk of 
mortality. Why?

mortality 
risk

healthy 
lifestyle

-

- -

• E.g., if a=-bc, then health_condition ⫫ mortality_risk, which 
cannot by seen from the graph!

• No faithfulness assumption is needed in LiNGAM

• Minimality (a zero coefficient corresponds to edge absence) is 
sufficient

a
b c X

Y Z

Possible to have 
Y ⫫ Z | X ?



Step-by-Step Demo & Application

• Galton family height data

• Result of PC?

• Linear, non-Gaussian methods: 
let’s do causal discovery step by 
step with 
‘illust_LiNGAM_Galton.m’

Galton’s height data
family father mother Gender Height

1 78.5 67 0 73.2
1 78.5 67 1 69.2
1 78.5 67 1 69
1 78.5 67 1 69
2 75.5 66.5 0 73.5
2 75.5 66.5 0 72.5
2 75.5 66.5 1 65.5
2 75.5 66.5 1 65.5
3 75 64 0 71
3 75 64 1 68
4 75 64 0 70.5
4 75 64 0 68.5
4 75 64 1 67
4 75 64 1 64.5
… … … … …



Some Estimation Methods 
for LiNGAM

• ICA-LiNGAM

• ICA with Sparse Connections 

• DirectLiNGAM...

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning 
Research, 7:2003–2030.

Zhang et al. (2006) ICA with sparse connections: Revisited. Lecture Notes in Computer Science, 5441:195–
202, 2009

Shimizu, et al. (2011). DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation 
model. Journal of Machine Learning Research, 12:1225–1248.

*
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Application: Causal diagram in HK 
Stock Market (Zhang & Chan, 2006)

1. Ownership relation: 
x5 owns 60% of x8; 

x1 holds 50% of x10.

2. Stocks belonging to 
the same subindex 

tend to be 
connected.

3. Large bank 
companies (x5 and 
x8) are the cause of 

many stocks.

4. Stocks in Property 
Index (x1, x9, x11) 
depend on many 
stocks, while they 
hardly influence 

others.



Independent Noise (IN) Condition

• (Z, ) follows the IN condition iff  regression residual  is 
independent from Z 

• Estimate the Linear, Non-Gaussian Acyclic Causal model 
(LiNGAM), because (Z, ) satisfies the IN condition iff   

• All variables in Z are causally earlier than & 

• the common cause for  and each variable in Z, if  there is any, is in Z. 

• Can then estimate the LiNGAM (the DirectLiNGAM algorithm)

Y Y � w̃|Z
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Why Gaussianity Was Widely 
Used?

• Central limit theorem: An illustration

• “Simplicity” of the form; completely characterized by mean 
and covariance

• Marginal and conditionals are also Gaussian

• Has maximum entropy, given values of the mean and the 
covariance matrix

E. T. Jaynes. Probability Theory: The Logic of Science. 1994. Chapter 7.
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Gaussianity or Non-Gaussianity?

• Non-Gaussianity is actually ubiquitous

• Linear closure property of Gaussian distribution: If the 
sum of any finite independent variables is Gaussian, then 
all summands must be Gaussian (Cramér, 1936)

• Gaussian distribution is “special” in the linear case

• Practical issue: How non-Gaussian they are?

29



Practical Issues in Causal Discovery…
• Cycles (Richardson 1996; Lacerda et al., 2008)

• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & Hyvärinen, UAI’09; Huang 
et al., KDD’18) 

• Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19; Xie et al., 
NeurIPS’20); latent causal representation learning (Xie et al., NeurIPS’20; Cai et al., NeurIPS’19)

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Spirtes 1995; Zhang et al., UAI’16) 

• Missing values (Tu et al., AISTATS’19)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18)

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., ECML’09; 
Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., ICML’15 & 
UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, Ghassami et al., 
NIPS’18; Huang et al., ICML’19 & NIPS’19; Huang et al., JMLR’20) 



Issue I: Feedback
• Causal relations may have cycles; Consider an example

X1 → X2

Lacerda, Spirtes, Ramsey and Hoyer (2008). Discovering cyclic causal models by independent component 
analysis. In Proc. UAI.

X2

X3

X1

1.E1

E3
X5

X4

3

2
-1

-0.3

E2

E5

E4

X1 = E1

X2 = 1.2X1 � 0.3X4 + E2

X3 = 2X2 + E3

X4 = �X3 + E4

X5 = 3X2 + E5

Or in matrix form, X = BX+E, where

B =

2

66664

0 0 0 0 0

1.2 0 0 �0.3 0

0 2 0 0 0

0 0 �1 0 0

0 3 0 0 0

3

77775

A conditional-independence-based method is given in T. Richardson (1996) - A Polynomial-Time Algorithm for 
Deciding Markov Equivalence of Directed Cyclic Graphical Models. Proc. UAI



Why Feedbacks?
• Some situations where we can recover cycles with ICA:

• Each process reaches its equilibrium state & we observe the 
equilibrium states of multiple processes

• On temporally aggregated data

X1 → X2

X1,t-1

X2,t-1

X1,t

X2,t

X1,t+1

X2,t+1

...

... ...

...

B B

Xt = BXt�1 + Et.

At convergence we have Xt = Xt�1 for each
dynamical process, so

Xt = BXt + Et, or Et = (I�B)Xt.

Suppose the underlying process is X̃t = BX̃t�1 + Ẽt, but we just observe
Xt =

1
L

PL
k=1 X̃t+k. Since

1

L

LX

k=1

X̃t+k = B
1

L

LX

k=1

X̃t+k�1 +
1

L

LX

k=1

Ẽt+k.

We have Xt = BXt +Et as L ! 1.



Why Feedbacks?
• Some situations where we can recover cycles with ICA:

• Each process reaches its equilibrium state & we observe the 
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X1 → X2

X1,t-1

X2,t-1

X1,t

X2,t

X1,t+1

X2,t+1

...

... ...

...

B B

Xt = BXt�1 + Et.

At convergence we have Xt = Xt�1 for each
dynamical process, so

Xt = BXt + Et, or Et = (I�B)Xt.

Suppose the underlying process is X̃t = BX̃t�1 + Ẽt, but we just observe
Xt =

1
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k=1 X̃t+k. Since
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L

LX

k=1
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1

L
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X̃t+k�1 +
1

L

LX
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We have Xt = BXt +Et as L ! 1.

✗ ✗
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Examples
• Some situations where we can recover cycles with ICA:

• Each process reaches its equilibrium state & we observe the 
equilibrium states of multiple processes

• On temporally aggregated data

X1 → X2

X1,t-1

X2,t-1

X1,t

X2,t

X1,t+1

X2,t+1

...

... ...

...

B B
Consider the price and demand of the same

product in di↵erent states:

pricet = b1 · pricet�1 + b2 · demandt�1 + E1

demandt = b3 · pricet�1 + b4 · demandt�1 + E2

Suppose the underlying process is X̃t = BX̃t�1 + Ẽt, but we just observe
Xt =

1
L

PL
k=1 X̃t+k.

Consider the causal relation between two stocks: the causal influence takes
place very quickly (⇠ 1-2 minutes) but we only have daily returns.



Cyclic Model: Global or Local 
Markov Condition?

• Local Markov condition?

•  Global Markov condition?

• Linear case?

• General nonlinear case?

P. Spirtes, Directed Cyclic Graphical Representations of Feedback Models, UAI 1995

X2

X3

X1

1.2E1

E3

X5

X4

3

2
-1

-0.3

E2

E5

E4



Can We Recover Cyclic Relations?

• E = (I-B)X; ICA gives Y = WX 

• Without cycles: unique solution to B

• With cycles: solutions to B not 
unique any more; why?               :-(

• A 2-D example?

• Only one solution is stable (assuming 
no self-loops), i.e., s.t. |product of 
coefficients over the cycle| < 1      :-)

X2

X1

a
E2

E1 b

Suppose we have the process

Xt =


0 b
a 0

�

| {z }
B

Xt + Et.

That is,

(I�B)X = E, or


1 �b
�a 1

�
Xt = Et

)

�a 1
1 �b

�
Xt =


0 1
1 0

�
· Et

)


1 �1/a
�1/b 1

�
Xt =


0 �1/a

�1/b 0

�
· Et

)Xt =


0 1/a
1/b 0

�

| {z }
B0

Xt +


0 �1/a

�1/b 0

�
· Et.

W

W’
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• E = (I-B)X; ICA gives Y = WX 

• Without cycles: unique solution to B

• With cycles: solutions to B not 
unique any more; why?               :-(

• A 2-D example?

• Only one solution is stable (assuming 
no self-loops), i.e., s.t. |product of 
coefficients over the cycle| < 1      :-)

Summary:
1. Still m independent components;
2. W cannot be permuted to be 
lower-triangular
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Summary: LiNGAM

• We started making use of  additional (plausible?) 
assumptions about causal mechanisms 

• Linear models with non-Gaussian noise 

• Methods for estimating linear non-Gaussian causal models  

• Difference between Linear, non-Gaussian and linear-
Gaussian models 

• Next: Interpretation and estimation of  cyclic models 


