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Practical Issues in Causal Discovery...

Confounding (SGS 1993; ,
); causal representation learning

Cycles (Richardson 1996; Lacerda et al., 2008)

Nonlinearities ( Hoyer et al., NIPS’08;
)
Categorical variables or mixed cases ( )
Measurement error ( )
Selection bias (Spirtes 1995; )
Missing values ( )

Causality in time series

® Time-delayed + instantaneous relations (Hyvarinen ICMLo8;
)

® Subsampling / temporally aggregation (Danks & Plis, NIPS WS'14;
)

® From partially observable time series ( )

Nonstationary/heterogeneous data (



With Confounders

® Confounders cause trouble in causal discovery
® Assuming independent confounders:

® Possible solutions I: Overcomplete ICA for
Linear-Non-Gaussian case
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FCI Allows Confounders

Example I A N =
A1 L Ao Possible to have confounders X3

X1 1L X4 | Xs; behind X3 and X4? ol l .
Xy I X4 | Xs. T, -)

E.g., X;: Raming; X3: wet ground; X4: slippery.

Example 11

A1 L As; Are there confounders v L\

A1 L Ay behind X> and X4? X1 — X Xg—X3
Xo 1L X3,

E.g., Xi: I am not sick; X>: I am 1n this lecture room; X4: you
are 1n this lecture room; X3: you are not sick.




Identifiability of A

X
Overcomplete ICA g |
mdependent observed
_ sources signals
................................................................... -

unknown mixing system
® More independent sources than observed variables, i.e., n>m

XI5 3 11 —03 .1 [rmme |22 070 s
S 4 I RO O R (S
Holl® =T 35 S £ 2 S (I

Theorem: Suppose the random vector X = (Xy,...,X,,)T is
cenerated by X = AS, where the components of S, 51,...,.5,, are
statistically independent. Even when n > m, the columns of A are
still 1dentifiable up to a scale transformation if

e all S; are non-Gaussian, or

e A is of full column rank and at most one of S, is Gaussian.

Kagan et al., Characterization Problems in Mathematical Statistics. New York:Wiley, 1973

Eriksson and Koivunen (2004). Identifiability, Separability and Uliiqueness of Linear ICA Models, IEEE
Signal Processing Lett.:vol. | 1, no. 7, pp. GOI-604, Jul. 2004.



Overcomplete ICA: Illustration
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Discussions I: Confounders

EI/ Ezj
X1 [1 0 a1 [P 1o R I
X2 - as 1 a103 + a9 . E2 - as 1 as + az | E2
<4 i - L / ] - a1 - ap Z_
® (Can we see the causal direction ?
® (Can we determine a3 ? a; and a2 ?
® Observationally equivalent model:
az+az/a; _ LT .
1/ “ax/a X, 1 0 1 =
X} ~ | (as + “—2) + == 1 (a + %) |
@ . C 2 (a3 4 - stTa)] ez
ol [l

aj]/

Hoyer et al. (2008). Estimation of causal effects using linear nonGaussian causal models with hidden variables. /AR,
Salehkaleybar, Ghassami, Kiyavash, Zhang (2020), Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables, JMLR



Two Examples: Causal Eftect Identifiable?

aj

a2

X)——>Xa

1 a1as + a9

EJ/ E2/
Example 1
Example 1: X1 L0
X2| a3
' X 1.0 0
Example 2: | X; 0 1 0
_X2_ _O as 1

aq

dg~ d]

a2

S

Example 2
o 1 0 1
F as 1 as+ 22|
7 as 3T o,
Two possible solutions
T
Eq
Eo
_Z_

as identifiable!
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Confounders: Example

o
EI/ Egj
X [1 0 a £y 1 0 1 £
Xo|  a 1aa+a'E2:a 1CL—|—%.E2
A2 a3 143 2 | _Z_ | ¢3 3T a1 _alZ_
<0
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Some Simulation Result I <

® Simulate 2500 data points with non-
(Gaussian noise using this model:

® Qutput of the algorithm:

Hoyer et al. (2008). Estimation of causal effects using linear nonGaussian causal models with hidden variables.
International Journal of Abproximate Reasoning, 49(2):362— 378.
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Some Simulation Result IT /...

/

® Simulate 2500 data points with non-
(Gaussian noise using this model:

® Qutput of the algorithm:
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With Cycles

® [nterpretation of cyclic causal relations

® [CA-based approach to estimating cyclic causal
models



Discussion II: Feedback x% X

® (ausal relations may have cycles; Consider an example

X, =1.2X; — 0.3X, + Es @
X3 =2Xo+ L3
Er 1.0
X4 =—X3+ by '
X5 = 3Xs + F; vV 013 T E,
Or in matrix form, X = BX + E, where 1@\2 -
0 0 0 0 O L2 3 ®V
1.2 0 0 —-03 0 v Es
B=|0 2 0 0 0 @
0 0 —1 0 0 -
0 3 0 0 0 Es

Lacerda, Spirtes, Ramsey and Hoyer (2008). Discovering cyclic causal models by independent component
analysis. In Proc. UAI.
A conditional-independence-based method is given in T. Richardson (1996) - A Polynomial-Time Algorithm for
Deciding Markov Equivalence of Directed Cyclic Graphical Models. Proc. UAI



Why Feedbacks? x5

® Some situations where we can recover cycles with ICA:

® Each process reaches its equilibrium state & we observe the
equilibrium states of multiple processes

Xt — BXt—l —I— Et-
- ALl ALt ALeel | A convergence we have X; = X,_; for each
dynamical process, so
X1 X X2, 441 -
S Ity I X, =BX,+E, or E,=(I-B)X,.

® On temporally aggregated data

Suppose the underlying process is X; = BX;_; + E;, but we just observe
Xt = T Zk 1Xt—|—k Since

1 < < 1 < < 1 o~ -
17 ZXt—I—k — BZ ZXt—l—k—l + T ZEHko
k=1 k=1

k=1

We have Xt = BXt —|—Et as L. — oo.




Examples x5

® Some situations where we can recover cycles with ICA:

® Each process reaches its equilibrium state & we observe the
equilibrium states of multiple processes

Consider the price and demand of the same

v X1l —— X1t ——> X1,0+1 - product in different states:

o X211 :Xz,z 1

—_— A2 ——

X241 -+ price, = by - price; ; + by - demand; | + F;

demand; = b3 - price,_; + b4 - demand;_; + E5

® On temporally aggregated data

Suppose the underlying process is X, = BX;_; + E;, but we just observe
-
Xt = 7D g Xtk

Consider the causal relation between two stocks: the causal influence takes
place very quickly (~ 1-2 minutes) but we only have daily returns.




59 Can We Recover Cyclic Relations?

Era b Fs ® E =(I-B)X; ICA can give Y = WX
v
@ w” ® Without cycles: unique solution to B
Suppose we have the process ® With CYCICS: solutions to B not
' . / -
X, [2 8] X B unique any more; why: -(
= ® A2-D example’?
Fhats, ® Only one solution is stable (assuming
(I-B)X=E, or [fa _1[)] X, = E, no self-loops), i.e., s.t. |product of
T 0 1 coefficients over the cycle\ <] :-)
“ 1 —b]Xt_ [1 o] e
N —1/a,] <. _ [ 0 —1/a] - Summary:
-1/6 1 [T =1/ 0 | |'1.Still m independent components;

X, = [ y 1/&] X, + [_0 —1/61 E,| |2. W cannot be permuted to be
lower-triangular




Can You Find the Alternative
Causal Model ?

® For this example...

X1 =E4

Xo=1.2X7 —0.3X4 + E>
X3 =2X7+ E3

Xy =—Xz+ Ly

X5 = 3Xo + L5

Or in matrix form, X = BX + E., where

"0 0 0 0 0]
1.2 0 0 —03 0
B=|(0 2 0 0 0
0 0 -1 0 0
0 3 0 0 0

X —= X0
1 0 0 0 O
4 .2 1 0 03 0
I-B= —2 1 0 0
Er 1 0
6(4 01
@ a
"= |0 @' . That is,
Ealys
0 v B3
'6(5 0 0O 0 O]
V0T 0 05 000
B =10 o0 0 —1 0
4 -33 0 0 0
0 3 0 0 0
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Some Simulation Result
Peo

® Simulate 15000 data points with non- 11 9
(Gaussian noise using this model: @% 1T TE,

® QOutput of the algorithm: 13 \2)®
TE;

(#1) (#2)
| o) X

E5

Fig. 3: The output of LING-D: Candidate #1 and Candi-
date #2

Lacerda, Spirtes, Ramsey and Hoyer (2008). Discovering cyclic causal models by independent component
analysis. In Proc. UAI.



Summary of the Two Situations

® (Can you distinguish between the following situations from ICA

— ’
result ¥ = WX : |. Y still has m independent components;

® cycles: 2. W cannot be permuted to be lower-triangular

{Xl} B {1 0 1 } | gl Y produced
Xo| ~las 1 ag+ 2 a12Z by ordinary
- 7 [ ICA does
not have
independent

® confounders:

® Lither of them makes causal discovery more difficult | €©MPONeNts

® They happen very often, even in the same problem



Take-Home Message

Constraint-based causal discovery makes use of conditional
independence relationships

® Asymptotically correct, but behavior on finite samples not
guaranteed

® Wide applicability! Worth trying on complex problems
® Equivalence class!

Linear non-Gaussian case: Causal model fully identifiable
® Based on ICA or its variants

How to tackle practical issues, e.g., confounders, cycles, and
, related to identifiability of the mixing procedure

Nonlinearities?



