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Issue 3: Causal Discovery 1n the
Presence of Missing Data

X1 X2 X3 X4 X5 X6

-9.4653403e-01 6.6703495e-01 8.2886922e-01 -1.3695521e+00 -3.2675465e-02 1.8634806e-01

-9.4895568e-01 -4.6381657e-01 -1.8280031e+00
5.1435422e-01 6.7338326e-01 4.3403559%e-01 9.4535076e-01 7.5164028e-01
7.2489037e-01 5.1325341e-01 8.3567780e-01 2.9825903e-01 7.7796018e-02
-1.3440612e+00 -7.3325009e-01
1.3261794e+00 -6.1971037e-01 -1.0498756e-01 1.4171149%e+00 1.6251026e+00 3.7478050e-01
-2.1128404e+00 1.3359744e-02 -2.0209600e+00 -1.7172659e+00 -2.474679%e+00 -2.8026586e+00
1.5453163e+00 -5.3986972e-01 4.5157367e-01 1.5566262e+00 9.3882105e-01 -4.3382982e-01
6.5974086e-02 5.5826895e-01 6.5247930e-01 -5.7895322e-01 5.0062743e-01 1.0183537e+00
8.9772858e-01 2.6752870e-01 -4.9204975e-01 7.7933358e-02 8.3467624e-01 9.2744311e-01
1T 12A0NTTA L AN 2 E104A0797%A AN E ENET1E8aNA AN A O02IELN0OA AN N 2TATAAAA AN D WTEININIA MDD

(a) An MCAR graph (b) An MAR graph (c) An MNAR graph

® (Conditional independence relations in the data are sensitive to
the missingness mechanism

® Key issue: Recover conditional independence relations in the
original population from incomplete data

R.Tu, C. Zhang, P.Ackermann, K. Mohan, H. Kjellstrom, C. Glymour, K. Zhang, “Causal discovery in the presence
of missing data,” AISTATS 2019



Causal Discovery 1n the Presence of

Missing Data

X1 X2 X3 X4 X5 X6
-9.4653403e-01 6.6703495e-01 8.2886922e-01 -1.3695521e+00 -3.2675465e-02 1.8634806e-01

-9.4895568e-01 -4.6381657e-01 -1.8280031e+00
5.1435422e-01 6.7338326e-01 4.3403559%e-01 9.4535076e-01 7.5164028e-01
7.2489037e-01 5.1325341e-01 8.3567780e-01 2.9825903e-01 7.7796018e-02
-1.3440612e+00 -7.3325009e-01
1.3261794e+00 -6.1971037e-01 -1.0498756e-01 1.4171149%e+00 1.6251026e+00 3.7478050e-01
-2.1128404e+00 1.3359744e-02 -2.0209600e+00 -1.7172659e+00 -2.4746799%e+00 -2.8026586e+00
1.5453163e+00 -5.3986972e-01 4.5157367e-01 1.5566262e+00 9.3882105e-01 -4.3382982e-01
6.5974086e-02 5.5826895e-01 6.5247930e-01 -5.7895322e-01 5.0062743e-01 1.0183537e+00
8.9772858e-01 2.6752870e-01 -4.9204975e-01 7.7933358e-02 8.3467624e-01 9.2744311e-01
1T 12A0NTTA L AN 2 E104A0797%A AN E ENET1E8aNA AN A O02IELN0OA AN N PTATAAAA AN D WTEININIA MDD
(a) An MCAR graph (b) An MAR graph (c) An MNAR graph

® R i1s the set of missingness indicators that represent the status of
missingness

® [f Rxis 1, the corresponding value of X 1s missing; if 1t 1s O, 1t 1s
observed

® Missingness graph



Cat | f Missing Data Mechana
(d) Self-masking
(a) A MCAR graph (b) A MAR graph (¢) A MNAR graph missingness
Figure 1: Exemplar missingness graphs in MCAR, MAR, MNAR, and self-masking missingness.
X.Y.,Z, and W are random variables. In missingness graphs, gray nodes are partially observed vari-

ables, and white nodes are fully observed variables. Ry, Ry, and R,, are the missingness indicators
of X, Y, and W.

e All missing data mechanisms fall into one of the following three
categories (Rubin, 1976):

® Data are Missing Missing Completely At Random (MCAR) 1f the
cause of missingness 1s purely random.

® Data are Missing At Random (MAR) when the direct cause of
missingness 1s fully observed.

® Data that are neither MAR nor MCAR fall under the Missing Not
At Random (MNAR) category.



Assumptions for the Method

Assumption 1 (Missingness indicators are not causes): No
missingness indicator can be a cause of any substantive
(observed) variable.

Assumption 2 (Faithful observability): Any conditional
independence relation 1n the observed data also holds in the
unobserved data.

Assumption 3 (No deterministic relation between missingness
indicators): No missingness indicator can be a deterministic
function of any other missingness indicators.

Assumption 4 (No self-masking missingness): Self-masking
missingness refers to missingness in a variable that 1s caused by
itself.



Observations

Ho o oo

(a) An MCAR graph (b) An MAR graph (c) An MNAR graph

® Trust the testwise deletion conditional independence relations for
causal discovery?

® (Given Assumptions 1-4, we can prove:

o [f X Il Y|Z in the testwise-deleted data, then X 1Y | Z 1n the full
data.

o I[f testwise deletion gives extra dependence X4Y | Z, compared to
the population, then for at least one variable in {X}U{Y}UZ, its

missingness indicator is either the direct common effect or a
descendant of the direct common effect of X and Y.



Missing-Value PG (M VPC)

@ @
&0 9

Add missingness variables R to the dataset with measured variables V

Create knowledge that R variables do not cause V variables

Run PC adjacency search over VUR

Identify adjacencies over V 1n triangles over VUR-—these might be
false positives!

Try to remove these extra adjacencies using correction...

Finally, do collider orientation and apply the Meek rules to graph G
over V



Essential Step in Missing Value PC
(-
o7

® Goal: see whether X 1Y | Z by analyzing data with missing values

® (Can we recover p(X,Y, Z) when Y has missing values?
P(X.Y,Z) = / P(X.Y,Z | W)P(W)dW
%4

_ / P(X,Y*,Z | W,R, = 0)P(W)dW
%4
® In the linear-Gaussian or discrete case, permutation test:

)/(\ = (X]WS + €], i; = (XQWS-{- &, 2 = (X_zWS - £3,



Issue 4: Causality in Time Series

. o . oo X1l > X1t — X1,1+1
® Functional causal models in time series : '

\4 \4

® Time-delayed causality + instantaneous A2 ] —— X2t ——— X2 141
relations
Xit-1 Xi1+1
® (Causal discovery from subsampled or oee ooe
temporally aggregated data Xori Xoros

® From partially observable time series

Zhang & Hyvdrinen, ECML 2009;

Hyvdrinen , Zhang et al., IMLR 2010;

Gong, Zhang, Scholkopf, Tao, Geigere, ICML 2015; UAI 2017;
Geiger, Zhang, Gong, Janzing, Scholkopf, ICML 2015
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GGranger Causality:
Motivation
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Granger Causality: Original Definition &
Practical Constraints

® Two principles (Granger, ‘80)
® Future cannot cause past

® No redundant info: Cause contains unique information about effect

| ¥ Xt —->Xt+|
® Xcauses Yif P(Yiq1 € A| Q) #P(Yi1 € A Q) Y -—’;Yt+|

® Completely nonparametric; Yr+; X X; given all the remaining
information until time t

® In practice: causality in mean; linear Granger causality

- C.WJ. Granger, Testing for causality: A personal viewpoint. Journal of Economic Dynamics &
Control 2: 329-352, 1980



Conditional Independence-Based Method
for Causal Discovery from Time Series

® Two principles (Granger, ‘80)
® KFuture cannot cause past

® No redundant info: Cause contains unique information about effect

| ¥ Xt —->Xt+|
® Xcauses Yif P(Yiq1 € A| Q) #P(Yi1 € A Q) Y -—’;Yt+|

® Completely nonparametric; Yr+; X X; given all the remaining
information until time t

® In practice: causality in mean; linear Granger causality

- The PC algorithm still applies; additional temporal
constraints!



Extension of PC for Causal Analysis of
Time series

® Unroll the processes
® Apply PC + temporal constraints

® Has been applied to climate analysis

Chu and Glymour, Search for nonlinear time series causal models, JMLR 2008



Application: Ocean Climate Analysis

SOI Southern Oscillation Index: Sea Level Pressure (SLP) anomalies between Darwin and Tahiti

WP Western Pacific: Low frequency temporal function of the ‘zonal dipole’” SLP spatial pattern
over the North Pacific.

AO Arctic Oscillation: First principal component of SLP poleward of 20° N

NAO North Atlantic Oscillation: Normalized SLP differences between Ponta Delgada, Azores and
Stykkisholmur, Iceland

NAO
S()Il 21
S()ll i
SOI NAO
WP SOI AO NAO
\ v LI
WP = SOI “AO = NAO -

-

Figure 7: Causal connections among 4 ocean chimate indices, using the additive non-hnear algo-
rithm



Practical Granger Causality

] XI N
o |
J! J] | bR ' \‘I‘[ :
A | il 1| M oad " {) i I\ [’”{ PR A VRN L PR
- ! ] [ ] ‘ \[ A A :Fl VoAl Y \] ]‘[ LY YA \[ !
= o

o X,:{Xid Granger causes X,: {X5¢ if it contains information helping
predict X, .1 (h>0) contained nowhere else (Granger, 1969)

* Temporal constraint: causes must precede eftects + linear causal
relations

* Vector autoregression (VAR) estimated by multivariate least squares

(MLS) p
X;=) B:Xi,+E

=1



An Example

* Analyze cheese price (X7), butter price (X2), and milk price
(X3);recorded monthly from January 1986 to April 2014

* http://future.aae. wisc.edu/tab/prices.html

Xlt Xl,t—l Elt
: Xot| =B1 - | Xos—1| + | Eot

e LEstimate )
X3t X3t-1 Esi

X 0.8381 0.0810  0.0375
. B1 = 0.0184 0.9592 —0.0473
0.2318 0.05022 0.7446


http://future.aae

Granger Causality with Instantaneous
Relations

p
=) B Xi, +E

T=1
e Are Ei; independent? = instantaneous effects between
Xit Reale, Wilson et al., 2001)

* (Granger causality with instantaneous effects:

D p
=Y B Xi; +BX; +E;, or X;=)» B, X; . +E
=1 7=0

X],t-] _)Xl,t _)X],H]

v
X2z1—>X2r—>X2t+1



What Happens If We Ignore Instantaneous
Effects (Hyvirinen et al., ICML 2008)

e Time-delayed “causal relations” will be changed

p
X = Z B X+ E;

7=0
p

=X; =% (I-By) "B, -Xy_,+(I-By) 'E

T=1

* Example

00 0 09 0 0O
B, |1 00!.B.~|0 09 0 [:
010 o0 0 09

00 0O 0
‘T-B) 'By— {09 09 0 |:

0.9 09 09




IdentlﬁC ation (Zhang & Hyvirinen,
ECML 2009)

 [F;independent for different 7 and
t, i.e., spatially & temporally

oo Xjp] —m——3 Xt ————5 X+ -+

\4

independent
c X211 _)XZt —— X417 -
e Jf at most one of E;; is Gaussian, it m m
can be solved by multichannel blind
deconvolution (MBD) with causal
FIR filters X, = Z B.X;, . +E,
e MBD estimates W to make Ej; TO p
spatially and temporally =E; = (I-B¢)X; — Z B, X; .
independent T=1
* B: can be found from W5, by =) WX,

extending LINGAM analysis



Experiment on Financial Data

e Extended Granger causality analysis (Granger causality
with instantaneous effects) of daily returns of stock indices
DJI, N225, HSI, and SSEC, with k =1 lag (Zhang &
Hyvarinen, ECML 2009)

DJli (N225:-1 HSIe-1 | SSECi
_ 0.05\, /0.0

J-151 035
Y

0.12 P D e SSECt)

‘\ 0.11 /




T
wo Schemes of Temporal Aggregation

Assume X; = AX,_1 + E; I

® Subsampling (sys#
samphng) \)$‘a\ X1,t-1 X1,t+1
) Qﬁe co .
. oV et V. < Al -
C‘&‘Q W 3 006 ‘(Q‘A)ﬁx Antl Xn.’t“
_’1 Xﬁﬁ\06 96{3&0{6 - inan{ver OfOO dsappear
St O s
_ €$ S&QO\( 6,3 ‘w;;c;l info tends to be
e a
% — o dave gN\Y\X-" o T
I Xt%AXt—FEt




Causal Discovery from Subsampled
Data: Linear Case

ICML 2015

Discovering Temporal Causal Relations from Subsampled Data

Mingming Gong*! MINGMING.GONG @ STUDENT.UTS.EDU.AU
Kun Zhang*?:3 KZHANG @ TUEBINGEN.MPG.DE
Bernhard Scholkopf? BS@TUEBINGEN.MPG.DE
Dacheng Tao! DACHENG.TAO@UTS.EDU.AU
Philipp Geiger? PGEIGER @ TUEBINGEN.MPG.DE

! Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology, Sydney, NSW, Australia
2 Max Plank Institute for Intelligent Systems, Tiibingen 72076, Germany
3 Information Sciences Institute, University of Southern California

Abstract

Granger causal analysis has been an important
tool for causal analysis for time series in various
fields, including neuroscience and economics,
and recently it has been extended to include in-

1. Introduction

Granger causal analysis (Granger, 1980) has been widely
used to find the temporal causal relations from time se-
ries. Time series xq 1s said to cause times series xo in the
Granger’s sense, if and only if the past and current values of
x1 contain useful information to predict the future values of



Causal Discovery from Temporally

Aggregated Time Series

UAI 2017

Causal Discovery from Temporally Aggregated Time Series

Mingming Gong*', Kun Zhang', Bernhard Schélkopf*, Clark Glymour', Dacheng Tao*
*Centre for Artificial Intelligence, FEIT, University of Technology Sydney, NSW, Australia
"Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA
tMax Plank Institute for Intelligent Systems, Tiibingen, Germany
#School of Information Technologies, FEIT, University of Sydney, NSW, Australia

Abstract underlying physical process. However, since the true causal
frequency is usually unknown, the time series data are often
measured at the frequency lower than the causal frequency.
For example, some econometric indicators such as GDP
and non-farm payroll are usually recorded at quarterly and
monthly scales. Causal interactions between the processes,
however, may take place at the weekly or fortnightly scales
(Ghysels et al., 2016). In neuroscience, imaging technolo-
gies have relatively low temporal resolutions, while many
high frequency neuronal interactions are important for un-
derstanding neuronal dynamics (Zhou et al., 2014). In these
situations, the available observations have a lower resolution

+1 41 1 _ 1_.°* 1

Discovering causal structure of a dynamical sys-
tem from observed time series is a traditional
and important problem. In many practical ap-
plications, observed data are obtained by apply-
ing subsampling or temporally aggregation to the
original causal processes, making it difficult to
discover the underlying causal relations. Subsam-
pling refers to the procedure that for every £ con-
secutive observations, one is kept, the rest being
skipped, and recently some advances have been



Confounding Eftect

® What if Z; is not observable? A

>
x,] [B C][Xi
Z| = |p E| |z .| T

® Discovered causal relations sensitive to confounders:

Example

0.5
0.08 0.6

0.9 0
A=1 0.1 0.1

0 0

0.8 ) By = E(X: X, ) E(X: X, )" = (

0.89 0.35 )
0.9

® (Can we identify B (as well as C) from X; ?

- G. Philipp, K. Zhang, M. Gong, D. Janzing, B. Scholkopf. Causal inference by identification of vector
autoregressive processes with hidden components, ICML 2015



We tried to find causal relations among
the measured time series; what if
causal processes are hidden?

Causal representation learning from
temporal data (Next week!)

25



Idea of Identifiability establishment:

A Linear, Non-Gaussian Case
(see the notes in PDF)

26



Identifiability of Parameters in
Statistical Models

® Jdentifiability, in simple words, means that different values of a
parameter must produce different probability distributions.

® Mathematically, a parameter O is said to be identifiable if and

only
0+#60=>P,#P,, or equivalently P,=P,=>0=10

® Js the mean of a Gaussian distribution identifiable?



z2 = fa(f1(z1) + e2), (2)

where z; and es are independent, function f; is non-
constant, and fs5 is invertible. If the other causal di-
rection, o — 27 is true, the data generating process
given by the PNL causal model is

z1 = g2(g1(z2) + €1), (3)

where z5 and e; are independent, g; is non-constant,
and go is invertible.

Notation. The following notations are used hereafter.
Suppose that both (2) and (3) hold. Random variables
t1 and z9 and functions h and h; defined as follows:

t1 2 g5 (z1), 222 f; Y (z2),
h £ fi0go, hi = g1 0 fo.

That is, A(ty) = fi1(g2(t1)) = fi(z1), and similarly,
hi is a function of z,. Moreover, we let 7,(¢;) £
log p;, (t1), and n2(ez) 2 logpe,(e2).! The following
theorem gives the constraint that p; , pe,, and A must

satisfy to make both (2) and (3) hold.

Theorem 1 Assume that (z1,22) can be described by
both of the causal relations given in (2) and in (3).
Further suppose that involved densities and nonlinear
functions py,, De,, f1, f2, 91, and go are third-order
differentiable, and that p., is positive on (—oo,+00).
We then have the following equation for every (z1,z2)
satisfying nyh’ # 0:

"p! 1A "
nllu _ 771h, — <7727I7,2 _ 277%) . hlh// _ 77% . h/nlll
2 2
h//2
+ 15 - (hm - 7)’ (4)

and h, depends on 1y, n2, and h in the following way:

1 n + nyh'? — k"

ny mh' ®

Example 1: On the Identifiability of the Post-
Nonlinear Causal Model (https://arxiv.org/pdf/1204.2599)

Proof of Theorem 1: We prove this theorem us-
ing the linear separability of the logarithm of the joint
density of independent variables, which states the fact
that for a set of independent random variables whose
joint density is twice differentiable, the Hessian of the
logarithm of their density is diagonal everywhere (Lin,
1998). Since g, is invertible, the independence be-
tween z; and ey is equivalent to that between £; and
eo. Similarly, the independence between z5 and e; is
equivalent to that between 25 and e;. Combining the
two causal models (2) and (3), one can see that the
transformation from (z9,e1) to (¢1,€2) is

1 = h,1(22)+(31, (6)
€y = zz—h(tl). (7)

Denote by J the Jacobian matrix of this transforma-
tion. One can see that |J| = 1. Denote by D(zz,e1)
the joint density of (22,e1). We then have p;, - p., =
p(ZQ.el)/|J| = P(z2,e1)s SO, logp(zz,el) =M (tl) + 772(6'2)'
One can find the (1,2)-th entry of the Hessian matrix

0108 P(zy 1) "ot
of logp(.y.e;) Wort. (22,€1): ) = S

de ot :
nyh' 52 —moh" 5t = nihy — ik +ng k' 2h} — nLh" Ry,

Tghe independence between 2o and e; implies
%’—‘J—) = 0 for every possible (z2,e;). That
is, ik} — nih' + W2k} — n4h"hy = 0. From this
equation one can see that A} = 0 implies njh’ = 0.
Consequently, the points which satisfy n5h’ # 0 also
make h} # 0. For such points, dividing both sides
of this equation by hinyh’ finally leads to (5). Fur-
thermore, since h; is a functions of z; and does not

depend on e;, we have 8(,%,) / Oe; = 0. According
1
" 112 7/ " .
to (5), we have 6(%)/361 = 0, which
2
gives 2ny2h2R" — nhn WK + nin"h' — nhnl K2R +
nyny b2 +ni'ny h'? — nnyh"” = 0. For the points sat-
isfying n5h’ # 0, we divide both sides of the above
equation by nyh’. After some simplifications, (4) is

obtained. W


https://arxiv.org/pdf/1205.2599

Example 2: Causal Representation Learning from Multiple
Distributions: A General Setting (https://arxiv.org/abs/2402.05052)

| i.i.d. data?

Yes
No

Parametric Latent
constraints? confounders?
No No
Yes Yes

Goal: Uncovering hidden variables Z; with
changing causal relations from X 1n
nonparametric settings

® Markov network of Z

® Fach estimated variable Z; is a function of

® What is identifiable?

Z; and 1t intimate neighbors

® In this example, each Z; (:#4) can be recovered
up to component-wise transformation

01 0> 03 04 0
\ {( \\ \

SR TR
B—BH—=O—®

00D oo

(a) Gz, the DAG over true latent (b) The corresponding Markov
variables Z;. network M .


https://arxiv.org/abs/2402.05052

Example 2: Causal Representation Learning from Multiple
Distributions: A General Setting (https://arxiv.org/abs/2402.05052)

A key ingredient of our results is the Markov network that
represents conditional dependencies among random vari-
ables via an undirected graph. Let M z be the Markov net-
work over variables Z, i.e., with vertices {Z;}*_; and edges
{Z;,Z;} € E(Mz)ifand only if Z; Y Z; | Z[n]\{i,j}?
Also, we denote by | M z| the number of undirected edges
in the Markov network. In Section 3.1, apart from showing
how to estimate the underlying latent causal variables up
to certain indeterminacies, we also show that such latent
Markov network M 7 can be recovered up to isomorphism.
To achieve so, we make use of the following property (as-
suming that pz is twice differentiable):

0% logp(Z;0)
072,07,
Such a connection between pairwise conditional indepen-
dence and cross derivatives of the density function has been
noted by Lin (1997) and utilized in Markov network learn-
ing for observed variables (Zheng et al., 2023). With the
recovered latent Markov network structure, we provide re-
sults in Section 3.2 to show how it relates to the moralized
graph of true latent causal DAG G, by exploiting a spe-
cific type of faithfulness assumption that is considerably
weaker than the standard faithfulness assumption used in

the literature of causal discovery (Spirtes et al., 2001).

Zi L Z; | Zinp\(ijy <=

=0. 3)

Proof. Denote by vol A the volume of matrix A, which is the product of its singular values. Note that vol A = vV det AAT
when A is of full row rank. In the change-of-variable formula, when the Jacobian is a rectangular matrix, the absolute determi-
nant of the Jacobian can be replaced with the matrix volume (Ben-Israel, 1999; Gemici et al., 2016; Khemakhem et al., 2020a).

Since X = g(Z) and X = §(Z ), by Eq. (2) and the change-of-variable formula, we have

Px =PX == Pyz) =Pe(z) = pg_log(z)\’()l.]g—l=sz01Jg—l == DPy(z) = Pz

1 1

where J,-1 is the Jacobian matrix of g~ and v := g~ " o g is a composition of diffeomorphisms (and hence also a
diffeomorphism). Let J, be the Jacobian matrix of v. The change-of-variable formula implies
p(Z;0)|det J,—1| = p(Z;0)
log p(Z;6) = log p(Z; ) + log | det J,|. 8)

Suppose 7y, and Z; are conditionally independent given Z (n]\{k,!} 1-€., they are not adjacent in the Markov network over
Z. For each é, by Lin (1997), we have
8% log p(Z; 0)
82,02,
To see what it implies, we find the first-order derivative of Eq. (8):

®

dlogp(Z; é) B i: O0logp(Z;0) 0Z; 810g|detJv|
8Zk aZi 8Zk 8Zk

i=1

Let

Odlogp(Z;0) 0% logp(Z;0) 0Z; 0%Z;
) :=logp(Z;0), n.(0):=-—-""2, ni0)=—>"""2  hi,:=-—%, and h! —.
n(0) = logp(Z;0), n;(6) 97, 1i3(6) 92,07 1 5 Yy

We then derive the second-order derivative w.r.t. Z and Z; and apply Eq. (9):

0=228 logp(Z;6) 0Z; 8Z; analogp(Z; 9) ‘?ZZ’; 02 logAIdeAt Jy|
0Z0Z; 87 dZ P 07, RYARHA 02,02,
Z 0%logp(Z;0) 8Z; 0Z; Zn: Z 0%logp(Z;0) 07, 8Z;
e 07} 82, 07 71 (2, 2. eE (M) 0Z,;0Z; 97, 87y,
N i Blog‘p(Z; 0) (?QZZA 0? IO%I deAt |
P 0Z; 072,07, 02,07,

= = 82 log | det J,,
= Zm’-é(@ il Z Z iy (O)h5 I g, + Zm((? ikl + # (1D
i=1 i=1id7Z. ZVYeE(M ) 02,02,

(10)


https://arxiv.org/abs/2402.05052

See the notes in PDF
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Summary

® Practical issues in causal discovery to be considered: T'hey
are part of the data-generating process

® Sclection bias 1s ubiquitous

® Where 15 1t? Finding correct causal model 1n the
presence of selection bias?

® (onnection between measurement error and confounders
® Missingness 1s a causal problem!
® Missingness graph; causal discovery under missing values

® Basic but general 1dea of 1dentifiability establishment in
causal representation learning



