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Uncover Causality from
Observational Data: How?
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® (ausal discovery (Spirtes et al., 1993)/ causal representation learning
(Scholkopf et al., 2021): find such representations with 1dentifiability guarantees

® (ausal system has “irrelevant” modules (Spirtes et al., 1993; Pearl, 2000)

rain E\ - conditional independence among variables;
4.—>X Y - independent noise condition;
slippery - minimal (and independent) changes...

wet ground
Footprint of causality in data

® '|'hree dimensions of the problem:

. Parametric Latent
9
I.1.d. data constraints? confounders?
Yes No No
| No Yes Yes
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We Mainly Focused on the 11D Case: Recent

Advances in Causal Representation Learning

.. Parametric Latent
2 2
HECSCEIEN constraints? confounders? DL BT e (e

Yes
No Unique identifiability | - LINGAM
Yes (under structural
Yes conditions) - Rank-based,

GIN...




CRL in IID Case: How to achieve 1t?

.. Parametric Latent
HHes LT constraints? | confounders? BT EE A R
® |.inear-Gaussian case
Yes
No Unique identifiability
s Yes (under structural
® '|etrad conditions Yes e

® Rank deficiency-based method
® [inear, non-Gaussian case

® ‘['heoretical results

® (GIN-based method
® Nonlinear case

® Sparsity
® Summary: Why 1s it possible?




Finding Underlying

A Problem in Psychology

Mental Conditions?

9.
7))
| -
- O
c O
g s
©
a0
c
o
o
-
2 0
- C
e.m
&
at
C n
S5
Pc
9.
©
)
©
o)
o

No

No

Yes

Yes

Yes

No

e 50 questions for big 5 personality test
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Learning Hidden Variables & 'T'heir Relations

Parametric Latent
constraints? confounders?

No No

w v v

® Measured variables (e.g., answer scores in psychometric questionnaires)
were generated by causally related latent variables

Latent variables &

X1 X2 X3 X4 X5 X6 X7 X8 their causal structure
4.2 | 3.6 6.5 6.8 | 96| 76| 2.7 |4.8
3.8 1.9 6.5 .81 8.9:1:69 1.1 146
4.2 | 3.4 6.5 69 |95]| 74| 25 | 4.6 m
.2 2.2 6.2 6.9 | 96| 72|19 |48

3.9 1.9 6.5 6.8 190|681 1.7 | 4.4
40 | 2.0 6.4 il

38 |17 | 6.4 | 7.3 | Linear'GaUSSian Ccasc

41 | 28 | 6.5 | 6.9

I.I.d. data?

- Linear, non-Gaussian case

® Find latent vaniables L; and their causal relations from measured
variables X;? 6



CRL in IID Case: How to achieve 1t?

® [.inear-Gaussian case

® '|etrad conditions

i.i.d. data?

Yes

Parametric

constraints? confounders?

Yes

Latent

No

Yes

What can we get?

Unique identifiability
(under structural
conditions)




Tetrad Constraints

X{%X 4



Tetrad Constraints

X1 = 7L1L—— €1
X = 7L2L—— )
X3 = 7L3L—— €3
X4 = 7L4L—— &4
X1 X2 Xz Xy
Ox,%.0xx;, = (MAo7)(MAg07) = (MA307)(MA407) = Ox,x:0%X
= (MA02)(A3Mh407) = (MA07)(MA302) = Ox,x.0xx;

(Intuition! Same for correlation coefficients)



Tetrad Constraints

X = 7L1L——81
X = ML+¢
X3 = 7»3L——83
X4 = 7L4L——€4
X1 X2 X3 Xy
Ox,%.0x0x. = (MAo?)(MAg0?) = (MA307)(MA407) = Ox,x,0%X
= (MA07)(A3h407) = (MAo?)(MA307) = Ox,x,0x.x;

Charles Spearman (1904)

Statistical Constraints = Measurement Model Structure



Tetrad Constraints

X1 = 7L1L——81
X = 7L2L——82
X3 = 7L3L——83
X4 = 7L4L——84
X1 X2 X3 Xy
Ox,%.0x0x. = (MAo?)(MAg0?) = (MA307)(MA407) = Ox,x,0%X
= (MA07)(A3M407) = (AMA407)(MA367) = Ox,x,0xx;

® [dentify the structure from the constraint?
® Assumptions (LMC, faithfulness, linearity)

® |n this case we can recover the structure if X, are correlated



An illustration of Tetrad Conditions

Dep,

& De
St, P,

e Tetrad condition [Spearman 1904,
Anderson & Rubin 1956] Dep,,

Sty

Ny

L
/ \ / \ ,/,/ \,\‘ Xi: measured variables
X X X5 Xy A Xa X

(a) (b)

L;: latent variables

Tetrad condition:

P12P34 F P23P14 P12P34 = P23014 Indicates rank deficiency
P13P24 = P23P14 P13P24 = P23P14 of 2 x 2 off-diagonal
P12034 F P13P24 P12P34 = P13P24 covariance matrices

pij denotes the correlation coeflicient between x; and x;
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Applications of Tetrad Conditions

® One-factor measurement model [Silva et al., 2006, Kummerfeld et al., 2016]

® ‘[ree structure [Pearl, 1988, Choi et al., 2011]

One-factor measurement model

[Choi et al., 2011]

13



CRL in IID Case: How to achieve 1t?

® [.inear-Gaussian case

® Rank deficiency-based method

i.i.d. data?

Yes

Parametric

constraints? confounders?

Yes

Latent

No

Yes

What can we get?

Unique identifiability
(under structural
conditions)




t-separation

® Trek-separation

Definition 10.2 (Treks (Sullivant et al., 2010)). In a DAG G, a trek from node X to
node Y is an ordered pair of directed paths (P;,P>) where P; has a sink X, P, has
a sink Y, and both P; and P, have the same source (the source of a directed path 1s
the starting node from which the path originates).

Definition 10.3 (t-separation (Sullivant et al., 2010)). Let A, B, C,, and Cg be
four subsets of V in graph G (not necessarily disjoint). (Ca,Cp) t-separates A from
B if for every trek (P;,P,) from a vertex in A to a vertex in B, either P; contains a
vertex in C, or P, contains a vertex in Cg.

- From the draft of “Causal Representation Learning” (distributed in class)
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Why t-separation?

® t-separation and rank constraints:

Theorem 10.4 (Rank and t-separation (Sullivant et al., 2010)). Given two sets of
variables A and B from a linear model with graph G, we have:

rank(Xa B) < min{|Ca |+ |Cg| : (Ca,Cp) t-separates A from B in G}, (10.2)

where XA B is the cross-covariance over A and B, and equality generically holds.

® Under the so-called rank faithfulness, the inequality relation in Theorem 10 .4
becomes equality.

® Check the rank of sub-matrices of the covariance matrix and infer the minimal size
of |Cal+ICgl for A and B to be t-separated, and infer relations

16



Connection to d-separation

Theorem 10.5 (t- and d-sep (D1, 2009)). For disjoint sets A, B and C, C d-
separates A and B in graph G, iff there is a partition C = C, U Cg such that

(Ca,Cg) t-separates AU C from BU C.

® But it can be more informative than d-separation:

EXAMPLE 2.13 (Spiders). Consider the graph in Figure 2 which we call
a spider.

Clearly, we have that ({c}, {c}) t-separates A from B, so that the subma-
trix X 4 g has rank at most 2. Although this rank condition must be implied
by CI rank constraints on X and the fact that X is positive definite, it does
not appear to be easily derivable from these constraints.

- S. Sullivant K. Talaska, and J. Draisma, “Trek
separation for Gaussian graphical models”,
Annals of Statistics, 2008

17



[Linear, Gaussian Case: With Rank

Deficiency Constraints

® Can we find Lg?

X L 1:2(4 /":3(10 33 =1
X6 ~__ L, ) 6<‘X1L Xi0:X11)s X\ {X10X11}
L ;<L = §0 X;, ® Recovering the equivalence class
XS L% ~_ Y 1/X3 . h k ﬁ . f
Xo L ~ L, ::X ® Wit ran de ciency of cross-
X < covarlance matrices

® recursively and cleverly

- Huang, Low, Xie, Glymour, Zhang, “Latent Hierarchical Causal Structure Discovery with Rank Constraints,” NeurlPS 2022
|8



Linear, Gaussian Case: With Rank

Deficiency Constraints

® Can we find Lg?

X6 g L o 112 —{Lg *Xl 1.':5 ¢ z:(X109X11), X\ {X;0.X11} — 1
X7 )<L1 - §0 X,;, ® Recovering the equivalence class
1
A

® With rank deficiency of cross-

- Dong, Huang, Ng, Song, Zheng, |in, Legaspi, Spirtes, Zhang, “A Versatile Causal Discovery Framework to Allow Causally-

Related Hidden Variables,” ICLR 2024
19



Example: Big 5 Questions Are Well Designed but...

Big 5: openness; conscientiousness; extraversion; agreeableness; neuroticism

[E10 I am quiet [Egl I don't mind being

[06! 1 do not h around strangers.  the center of attention. Ext ravers io n

a good imagination. o pe nness [EZ] I don't talk a lot.
073 [05] I have [E7] 1talk to a lot of <

ideas. different people at parties.
[010] I am full of

ideas.
+0.83

[07] 1am quick to

A
-0.67 +0.59 [E8 1don't like to draw
attention to myself.

-0.46
-0.61 [EG] I have little to say.

[03] I have a

vivid imagination.

[E3] | feel comfortable

around people. LZ 18567 [El] | am the life of the party.

derstand things.
tindertand things o7 Agreeableness
lEﬂ I keep in the "'0'73
ackground.
[ES] I start conversations. [A]'] | feel little . .
[08] | use difficult _ +0.62 [01] I have a concern for others. [AZ] | am interested in people.
words. rich vocabulary. +0.39 4
[A]_O] +0.61 [Agt] I feel others’
I make -0.42 emotions.
+0.72
[04] I am not [02] I have difficulty pesple feel st case. £0.45 [A8] | take time
interested in understanding abstract +0.60 out for others.
abstract ideas. 2deas 09 .
. I spend t ) -0.34 A7]. t reall
r[eﬂec ané‘c’,‘i,"tm.'\';‘f [A3] 1insult people. L3 0.69 .[nterjst:ﬂnngn::?s.v
-0.13
- H +0.26 +0.10 +0.56 [AG] 1 have a soft heart.
Conscientiousness ' [N6] 1 get 077|068
[N5] 1am upset easily. 012 [A5] 1am not interested in
c5 casily dishnbed . other people's problems.
[C5] Jget chores ’ [A4] | sympathize with
done right away. +0.31 +0.43 others’ feelings.
[C8] | shirk my duties. +0.40 [N4] I seldom feel blue.
l[ncei]o; W\?ﬁgesa <& R N 10]. . [NZ]fI t:;‘m relaxed
- T \often feel blue most of the time. - =
[C7] | like order. [C3] | pay attention to details. +0.40 +0.42 [Nl] et Neur0t|C|Sm
e
+042| +049 stressedgout easily.

+0.59
el [N3 1 worry

[Cl] I am always about things. [N9] I get £N8] 1 have

prepared. [C9] I follow a schedule. \ ) equent mood
irritated easily. wings.
[C].O] lam ECG] | often forget to put things
exacting in my work. chl l leave my ack in their proper place. +0.79
elongings around.
[N7] I change

my mood a lot.

- Dong, Huang, Ng, Song, Zheng, |in, Legaspi, Spirtes, Zhang, “A Versatile Causal Discovery Framework to Allow Causally-Related
Hidden Variab8s,” ICLR 2024


https://en.wikipedia.org/wiki/Conscientiousness

Example: Big 5 Questions Are Well Designed but...

- Dong, Huan

06! | do not have
!goo imagination. open ness [EZ]
0.73  [O5] 1 have [E7] 1talk to
excellent ideas. different peop
[0d3] | have a +0.74 @ [010] I am full of
vivid imagination. ideas.
s 48,33 .734»0 8; = [E3] | feel com
around people.
07 I am quick to
understand things.
+0.23
+0.58 | +0.66
[08] | use difficult  +0.62 [01] | have a +0.51
words. rich vocabulary.
-0.54 g
[04] lamnot . ., [02] 1 have difficulty .
interested in understanding abstract
abstract ideas. ideas. [09 I spend time
reflecting on things. 0.09
C — t —~ +0.26
onscientiousness +0.21
[CS] | get chores
done right away.
Y .neca |




CRL in IID Case: How to achieve 1t?

A Parametric Latent n
i.i.d. data? traints? f lers? What can we get?

Yes
No Unique identifiability
Yes (under structural
Yes conditions)

® |.inear, non-Gaussian case

® '|heoretical results




Necessary & Sutfhcient Conditions on the
Structure: Linear, non-Gaussian case

iid. data?  Parametric Latent o Q\
" constraints? confounders? - @L> O/
No No i (i) (iv)

No __/\Q/L\/Q\/Q\

oS O @) O &—O S

(vi) (vii) (viii)
- Allow a large number of /Q\ /Q\ /\ /Q\
: —o © o & © ©
latent variables o LA S (9) ~ *
- Minimality has to be @_D/z\g o_>/0\o_>o @/z\o @/fx
ASSUINC d (xiii) (xiv) (xv) (xvi)

- Estimation 1s generally
e AATAAT AT

(xvii) (xviii) (xix) (xx)

iV ANA

O—O OO<—<> O

(xx1) (xxi1)

- Adams, Hansen, Zhang, “Identification of Partially Observed Linear Causal Models: Graphical Conditions for the Non-
Gaussian and Heterogeneous Cases,” NeurlPS 2021

Identifiable graphs with only 3 measured variables



CRL in IID Case: How to achieve 1t?

A Parametric Latent n
i.i.d. data? traints? f lers? What can we get?

Yes
No Unique identifiability
Yes (under structural
Yes conditions)

® |.inear, non-Gaussian case

® (GIN-based method




Linear, Non-Gaussian Case: Generalized
Independent Noise Condition

),
o

L

L,
X
&

® F'ind direction between latent variables L; and L»?

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian
Latent Variable Causal Graphs," NeurlPS 2020
- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,” NeurlPS 2019



Linear, Non-Gaussian Case: Generalized
Independent Noise Condition

K @:Lf X

@ @(LJ 7
c|L:

c-Xo—0b-X3 @ @

:C(bLl -+ Eg) — b(CLl -+ Eg)

Nontrivial linear combination

=cls — bEs3, of X, and X3 will involve
independent from L; and from X7, the noise term in L1,
b Cov(Xa, X3) hence dependent on X,

d k - =
and we know ¢ = Cou(X,, Xs)

- Xie, et al, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent Variable Causal Graphs,"
NeurlPS 2020



Linear, Non-Gaussian Case: Generalized
Independent Noise Condition

X))@ Lz X))

_ @1 @%@C

=c(bL1 + E3) — b(CLl + E3) Nontrivial linear combination
=cE9 — bE3, of X5 and X3 will involve
independent from L; and from X, the noise term in L1,

b Cov(Xs,X3) hence dependent on X3
and we know - =

c Cov(Xy,X3)

® GIN condition: (Z,Y) follows GIN & w'Y || Z for nonzero w

® has graphical implications



Linear, Non-Gaussian Case: Generalized
Independent Noise Condition

e Generalized Independent Noise (GIN) Condition:
(Z.,Y) follows the GIN condition <—> w'Y I Z :
where w' Cov(Y,Z) =0 and w # 0

! N D)
® Graphical criterion Ls
Y
(Z,Y) follows the GIN condition iff ) A
there is an exogenous set S of PA(Y) /@
that blocks all paths between Y and Z, | L
where 0<=ISl<=min(ZI, [Y-1) .

X;: observed variables
L:: latent variables

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian
Latent Variable Causal Graphs," NeurlPS 2020

- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,” NeurlPS 2019



GIN for Estimating Linear, Non-
Gaussian LV Model

e A two-step algorithm to identify the latent variable graph

- By testing for GIN conditions over the input X1, -, Xgs

Step 2: determine causal structure

Step 1: find causal clusters ,
of the latent variables

Cluster 1
1 /\ /@

g L Ly X
Cluster 3 Q@/ \\ </\ Ly

\M‘D AN

L ()
o
Z Y Z Y
7 -\ N /7 -\ ™\ /_M'\ Ve -\ N
({Xla o 7X47 X77X8}3 {X57 XG}) ({X?n X4}7 {X17 X27 XS})

Cluster3 Cluster 1 & 3
satisfies GIN condition

satisfies GIN condition



(GIN-Based Method: Application to leacher’s

Burnout Data

® (Contains 28 measured variables

® Discovered clusters and causal order of Hypothesized model by experts

the latent variables:

w02 [wo1] [RC2] [RC1 ]
4

13 4
Causal Clusters Observed variables Eﬁ“lkﬁé iﬂé
S, (D RC,.RCy. WO,. WO,
DM,, DM,
S (D CC,. CCL.00H.00, |
S, () PS,. PS, |
S; (1) FLC,, ELC,FLCy,ELCY,
ELC
32 SE,.SE,.SE.. EE,.
FFE, FE5, DP,, PA4
3.0 DP,. PA,. PA,

L(S)) > L(Sy) » L(S3) » L(S3) > L(S,) > L(Sy).
(from root to leaf)

® (onsistent with the hypothesized model

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent
Variable Causal Graphs," NeurlPS 2020
- Cai, Xie, Glymour, Hao, Zhang, “ITriad Constraints for Learning Causal Structure of Latent Variables, NeurlPS 2019



CRL in IID Case: How to achieve 1t?

A Parametric Latent n
i.i.d. data? traints? f lers? What can we get?

Yes
No Unique identifiability
Yes (under structural
Yes conditions)

® Nonlinear case

® Sparsity




Nonlinear CGases Generally Non-

Identifiable

. . Parametric Latent
i.i.d. data? ]
constraints? confounders?
Yes No No
No Yes Yes

® Nonlinear ICA:

® Generative model: X = f(S), where S has independent components

® De-mixing procedure: Y = g(X), where Y components are as
independent as possible

® Solutions always exist and are highly non-unique: Why?

- Zheng, Ng, Zhang, On the Ildentifiability of Nonlinear ICA: Sparsity and Beyond, NeurlPS 2022



Identifiability of Nonlinear [CA:
Structural Sparsity

o Parametric Latent
I.i.d. data?
constraints? confounders?
No No S
(Structural Sparsity) For all k € {1, ..., n}, there exists Cy, such that  y
() supp(Je(s)i,:) = {k}.
o 1€C
S11 S2 S3 S4 Ss
X |e | e e| @ Graphically, for every latent variable S,
X[ 1| e e there exists a set of observed variable(s) such
| 1 . . . . .
x|l ele ° that the intersection of their/its parent(s) 1s S;
ler Tel T ,
cal®L % L ' e Example: for S|, there exists X; and X, such
Xs o | @ ° that the intersection of their parents is S,
| |

- Zheng, Ng, Zhang, On the Ildentifiability of Nonlinear ICA: Sparsity and Beyond, NeurlPS 2022



Further Generalization of Nonlinear ICA

® Undercompleteness

® More observed variables than latent variables

Percentage

® Partial sparsity

® Sparsity 1s violated for some variables 5 ; ; 4 .5
: Figure 4: Percentage of random structures sat-
¢ Partlal SOUrce dependence isfying Structural Sparsity w.r.t. different de-

gree of undercompleteness (i.e., m/n).

® Source independence violated for some variables

® Flexible grouping structures
® Dependence within each group, independence
across groups o)

Percentage

0
0
6

Number of sources

Applied to real-world e f ..
igure 5: Percentage of sources satisfying

datasets <EMN IST> Structural Sparsity w.r.t. different numbers
of sources in the bijective setting (m/n = 1).

- Zheng and Zhang, Generalizing Nonlinear ICA beyond Structural Sparsity, NeurlPS 2023 (oral)



|dentifiability of nonlinear ICA: real-world images

Line thickness

Angle
Upper width

Height

|dentification results on EMNIST

Each row represents an identified source with its value varying

35



Summary: GRL i 1D Case

® ‘|raditional causal discovery 1s a special case
® Why possible?
® Sparsity! Stronger or weaker...
® [inear-Gaussian case: strong

® Nonparametric case (weak parametric constraints):
strong

® [inear, non-Gaussian case (additional parametric
constraints): weaker

® How to leverage non-1DD features of the data



Where Are We?

I.I.d. data?

Yes

Non-|, but I.D.

|., but non-1.D.

Parametric Latent

9
constraint?  confounders? ' natcan we get:

No
NG (Different types of)
equivalence class
Yes
No Unique identifiability
Yes (under structural
Yes conditions)
No
No/Yes
Yes
No
No fr)
Yes O
No
Yes

Yes




