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• Causal discovery (Spirtes et al., 1993)/ causal representation learning 
(Schölkopf  et al., 2021): find such representations with identifiability guarantees 

• Causal system has “irrelevant” modules (Spirtes et al., 1993; Pearl, 2000) 

• Three dimensions of  the problem:

Uncover Causality from 
Observational Data: How?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…

Footprint of  causality in data
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We Mainly Focused on the IID Case: Recent 
Advances in Causal Representation Learning

i.i.d. data? Parametric 
constraints?

Latent 
confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
MEC (CD-NOD)

Yes May have unique 
identifiability

No
Yes

Changing subspace 
identifiable

Yes Variables in changing 
relations identifiable

- PC, FCI, etc.

- LiNGAM
- Rank-based, 
GIN…



• Linear-Gaussian case 

• Tetrad conditions 

• Rank deficiency-based method 

• Linear, non-Gaussian case 

• Theoretical results 

• GIN-based method 

• Nonlinear case 

• Sparsity 

• Summary: Why is it possible?

CRL in IID Case: How to achieve it?
i.i.d. data? Parametric 

constraints?
Latent 

confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes



A Problem in Psychology: Finding Underlying 
Mental Conditions?

• 50 questions for big 5 personality test 

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes
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Learning Hidden Variables & Their Relations

L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.

2

Latent variables &  
their causal structure

Discovery: How?

• Find latent variables Li and their causal relations from measured 
variables Xi ?

• Measured variables (e.g., answer scores in psychometric questionnaires) 
were generated by causally related latent variables

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

 - Linear-Gaussian case
 - Linear, non-Gaussian case
 - General nonlinear case
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• Linear-Gaussian case 

• Tetrad conditions 

• Rank deficiency-based method 

• Linear, non-Gaussian case 

• Theoretical results 

• GIN-based method 

• Nonlinear case 

• Sparsity 

• Summary: Why is it possible?

CRL in IID Case: How to achieve it?
i.i.d. data? Parametric 

constraints?
Latent 

confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes



Tetrad Constraints
LEARNING THE STRUCTURE OF LINEAR LATENT VARIABLE MODELS

YX 2X 3X 11 3Y1X Y1 Y2

L

3Y2X2X3 Y1X1 Y

(a) (b) (c)

Figure 5: If sets {X1,X2,X3,Y1} and {X1,Y1,Y2,Y3} are each d-separated by some node (e.g., as in
Figures (a) and (b) above), the existence of a common parent L for X1 and Y1 implies a
common node d-separating {X1,Y1} from {X2,Y2}, for instance (as exemplified in Figure
(c)).

5.2 Algorithms for Finding Equivalence Classes of Latent Variable Graphs

We start with one of the most basic lemmas, used as a building block for later results. We dis-
cover a measurement pattern as an intermediate step before learning a pure measurement model.
FINDPATTERN, given in Table 1, is an algorithm to learn a measurement pattern from an oracle for
vanishing partial correlations and vanishing tetrad differences. The algorithm uses three rules, CS1,
CS2, CS3, based on Lemmas that follow, for determining graphical structure from constraints on
the correlation matrix of observed variables.

Let C be a set of linearly entailed constraints satisfied in the observed covariance matrix. The
first stage of FINDPATTERN searches for subsets ofC that will guarantee that two observed variables
do not have any latent parent in common. Let G be the latent variable graph for a linear latent
variable model with a set of observed variablesO. LetO′ = {X1,X2,X3,Y1,Y2,Y3}⊂O such that for
all triplets {A,B,C}, {A,B} ⊂ O′ and C ∈ O, we have ρAB ̸= 0,ρAB.C ̸= 0. Let τIJKL represent the
tetrad constraint σIJσKL−σIKσJL = 0 and ¬τIJKL represent the complementary constraint σIJσKL−
σIKσJL ̸= 0. The following Lemma is a formal description of the example given earlier:

Lemma 10 (CS1 Test) If constraints {τX1Y1X2X3 ,τX1Y1X3X2 , τY1X1Y2Y3 , τY1X1Y3Y2 , ¬τX1X2Y2Y1} all hold,
then X1 and Y1 do not have a common parent in G.

“CS” here stands for “constraint set,” the premises of a rule that can be used to test if two nodes
do not share a common parent. Figure 6(a) illustrates one situation where X1 and Y1 can be iden-
tified to not measure a same latent. In that Figure, some variables are specified with unexplained
correlations represented as bidirected edges between the variables (such edges could be due to in-
dependent hidden common causes, for instance). This illustrates that connections between elements
of {X2,X3,Y2,Y3} can occur.

Other sets of observable constraints can be used to reach the same conclusion. We call them
CS2 and CS3. To see one of the limitations of CS1, consider Figure 6(b). There is no single latent
that d-separates X1,Y1 and two other variables, as in CS1 cases. In Figure 6(c), there are no tetrad
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Figure 4: A linear latent variable model with any of the graphical structures above entails all possi-
ble tetrad constraints in the marginal covariance matrix of X1−X4.

5. Procedures for Finding Pure Measurement Models

Our goal is to find pure measurement models whenever possible, and use them to estimate the struc-
tural model. To do so, we first use properties relating graphical structure and covariance constraints
to identify a measurement pattern, and then turn the measurement pattern into a pure measurement
model.

The key to solving this problem is a graphical characterization of tetrad constraints. Consider
Figure 4(a). A single latent d-separates four observed variables. When this graphical model is
linearly parameterized as

X1 = λ1L+ ε1
X2 = λ2L+ ε2
X3 = λ3L+ ε3
X4 = λ4L+ ε4

it entails all three tetrad constraints among the observed variables. That is, any choice of values for
coefficients {λ1,λ2,λ3,λ4} and error variances implies

σX1X2σX3X4 = (λ1λ2σ2L)(λ3λ4σ2L) = (λ1λ3σ2L)(λ2λ4σ2L) = σX1X3σX2X4
= (λ1λ2σ2L)(λ3λ4σ2L) = (λ1λ4σ2L)(λ2λ3σ2L) = σX1X4σX2X3

where σ2L is the variance of latent variable L.
While this result is straightforward, the relevant result for a structure learning algorithm is the

converse, i.e., establishing equivalence classes from observable tetrad constraints. For instance,
Figure 4(b) and (c) are different structures with the same entailed tetrad constraints that should
be accounted for. The main contribution of this paper is to provide several of such identification
results, and sound algorithms for learning causal structure based on them. Such results require
elaborate proofs that are left to the Appendix. What follows are descriptions of the most significant
lemmas and theorems, and illustrative examples. This is the core section of the paper. Section 6
complements the approach by describing an algorithm for learning structural models.
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where σ2L is the variance of latent variable L.
While this result is straightforward, the relevant result for a structure learning algorithm is the

converse, i.e., establishing equivalence classes from observable tetrad constraints. For instance,
Figure 4(b) and (c) are different structures with the same entailed tetrad constraints that should
be accounted for. The main contribution of this paper is to provide several of such identification
results, and sound algorithms for learning causal structure based on them. Such results require
elaborate proofs that are left to the Appendix. What follows are descriptions of the most significant
lemmas and theorems, and illustrative examples. This is the core section of the paper. Section 6
complements the approach by describing an algorithm for learning structural models.
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Figure 4(b) and (c) are different structures with the same entailed tetrad constraints that should
be accounted for. The main contribution of this paper is to provide several of such identification
results, and sound algorithms for learning causal structure based on them. Such results require
elaborate proofs that are left to the Appendix. What follows are descriptions of the most significant
lemmas and theorems, and illustrative examples. This is the core section of the paper. Section 6
complements the approach by describing an algorithm for learning structural models.
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• Identify the structure from the constraint?

• Assumptions (LMC, faithfulness, linearity)

• In this case we can recover the structure if Xi are correlated



• Tetrad condition [Spearman 1904, 
Anderson & Rubin 1956]

12

Xi: measured variables
Li: latent variables

Tetrad condition: 
Indicates rank deficiency 
of 2 x 2 off-diagonal 
covariance matrices

An illustration of Tetrad Conditions
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One-factor measurement model
Tree

• One-factor measurement model [Silva et al., 2006, Kummerfeld et al., 2016]

• Tree structure [Pearl, 1988, Choi et al., 2011]

[Choi et al., 2011]

Applications of Tetrad Conditions



• Linear-Gaussian case 

• Tetrad conditions 

• Rank deficiency-based method 

• Linear, non-Gaussian case 

• Theoretical results 

• GIN-based method 

• Nonlinear case 

• Sparsity 

• Summary: Why is it possible?

CRL in IID Case: How to achieve it?
i.i.d. data? Parametric 

constraints?
Latent 

confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes
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• Trek-separation

t-separation

- From the draft of “Causal Representation Learning” (distributed in class)



16

• t-separation and rank constraints:

Why t-separation?

• Under the so-called rank faithfulness, the inequality relation in Theorem 10.4 
becomes equality.

• Check the rank of sub-matrices of the covariance matrix and infer the minimal size 
of |CA|+|CB| for A and B to be t-separated, and infer relations
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Connection to d-separation

• But it can be more informative than d-separation:

- S. Sullivant K. Talaska, and J. Draisma, “Trek 
separation for Gaussian graphical models”, 
Annals of Statistics, 2008
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Linear, Gaussian Case: With Rank 
Deficiency Constraints

- Huang, Low, Xie, Glymour, Zhang, “Latent Hierarchical Causal Structure Discovery with Rank Constraints,” NeurIPS 2022

• Can we find L6? 

•   

• Recovering the equivalence class 

• With rank deficiency of  cross-
covariance matrices  

• recursively and cleverly

Σ(X10,X11), X∖{X10,X11} = 1
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Linear, Gaussian Case: With Rank 
Deficiency Constraints

• Can we find L6? 

•   

• Recovering the equivalence class 

• With rank deficiency of  cross-
covariance matrices  

• recursively and cleverly

Σ(X10,X11), X∖{X10,X11} = 1

- Conditional independence is a special case 
- rank(Σ(X1, X2), (X2, X3)) = 1 ⇔ X1  ||  X3 | X2 

- Unified causal discovery based on rank deficiency constraints
- Dong, Huang, Ng, Song, Zheng, Jin, Legaspi, Spirtes, Zhang, “A Versatile Causal Discovery Framework to Allow Causally-

Related Hidden Variables,” ICLR 2024



Example: Big 5 Questions Are Well Designed but…
Big 5: openness; conscientiousness; extraversion; agreeableness; neuroticism

- Dong, Huang, Ng, Song, Zheng, Jin, Legaspi, Spirtes, Zhang, “A Versatile Causal Discovery Framework to Allow Causally-Related 
Hidden Variables,” ICLR 202420

https://en.wikipedia.org/wiki/Conscientiousness


Example: Big 5 Questions Are Well Designed but…

- Dong, Huang, Ng, Song, Zheng, Jin, Legaspi, Spirtes, Zhang, “A Versatile Causal Discovery Framework to Allow Causally-Related 
Hidden Variables,” ICLR 202421



• Linear-Gaussian case 

• Tetrad conditions 

• Rank deficiency-based method 

• Linear, non-Gaussian case 

• Theoretical results 

• GIN-based method 

• Nonlinear case 

• Sparsity 

• Summary: Why is it possible?

CRL in IID Case: How to achieve it?
i.i.d. data? Parametric 

constraints?
Latent 

confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes



Necessary & Sufficient Conditions on the 
Structure: Linear, non-Gaussian case

- Allow a large number of  
latent variables 

- Minimality has to be 
assumed 

- Estimation is generally 
difficult

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi)

(xvii) (xviii) (xix) (xx)

(xxi) (xxii)

Identifiable graphs with only 3 measured variables

- Adams, Hansen, Zhang, “Identification of Partially Observed Linear Causal Models: Graphical Conditions for the Non-
Gaussian and Heterogeneous Cases,” NeurIPS 2021

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes



• Linear-Gaussian case 

• Tetrad conditions 

• Rank deficiency-based method 

• Linear, non-Gaussian case 

• Theoretical results 

• GIN-based method 

• Nonlinear case 

• Sparsity 

• Summary: Why is it possible?

CRL in IID Case: How to achieve it?
i.i.d. data? Parametric 

constraints?
Latent 

confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes



Linear, Non-Gaussian Case: Generalized 
Independent Noise Condition

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian 
Latent Variable Causal Graphs," NeurIPS 2020 

- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurIPS 2019

X1
L1

L2

X2

X3 X4

• Find direction between latent variables L1 and L2?



Linear, Non-Gaussian Case: Generalized 
Independent Noise Condition

- Xie, et al., "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent Variable Causal Graphs," 
NeurIPS 2020 

X1
L1

L2

X2

X3 X4

X1
L1

L2

X2

X3

X1
L1

L2

X2

X3

X

a

b c

a

b
c

ƛ

c ·X2 � b ·X3

=c(bL1 + E2)� b(cL1 + E3)

=cE2 � bE3,

independent from L1 and from X1,

and we know
b

c
=

Cov(X2, X3)

Cov(X1, X3)

Nontrivial linear combination
of X2 and X3 will involve
the noise term in L1,
hence dependent on X1



Linear, Non-Gaussian Case: Generalized 
Independent Noise Condition

Let Z = {X1} and Y = {X2, X3}, GIN!

• GIN condition:  follows GIN  

• has graphical implications

(Z, Y) ⇔ w⊺Y Z  for nonzero w ||   



Linear, Non-Gaussian Case: Generalized 
Independent Noise Condition

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian 
Latent Variable Causal Graphs," NeurIPS 2020 

- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurIPS 2019
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• Generalized Independent Noise (GIN) Condition:

,

• Graphical criterion

follows the GIN condition iff
there is an exogenous set S of PA(Y) 
that blocks all paths between Y and Z, 
where 0<=|S|<=min(|Z|, |Y|-1)      

where

follows the GIN condition

  Xi: observed variables
  Li: latent variables

GIN Condition for Estimating Linear 
Non-Gaussian Latent Graphs



GIN for Estimating Linear, Non-
Gaussian LV Model

Step 1: find causal clusters

18

Step 2: determine causal structure 
of the latent variables

• A two-step algorithm to identify the latent variable graph
- By testing for GIN conditions over the input X1, ···, X8

satisfies GIN condition
satisfies GIN condition

Cluster 3 Cluster 1 & 3

L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.

2

Cluster 1

Cluster 2

Cluster 3
L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.

2

GIN Condition for Estimating Linear 
Non-Gaussian Latent Graphs



GIN-Based Method: Application to Teacher’s 
Burnout Data

• Contains 28 measured variables 

• Discovered clusters and causal order of  
the latent variables: 

• Consistent with the hypothesized model
Ref [Byrne, 2010]

(from root to leaf)

Hypothesized model by experts

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent 
Variable Causal Graphs," NeurIPS 2020 

- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurIPS 2019



• Linear-Gaussian case 

• Tetrad conditions 

• Rank deficiency-based method 

• Linear, non-Gaussian case 

• Theoretical results 

• GIN-based method 

• Nonlinear case 

• Sparsity 

• Summary: Why is it possible?

CRL in IID Case: How to achieve it?
i.i.d. data? Parametric 

constraints?
Latent 

confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes



Nonlinear Cases Generally Non-
Identifiable

- Zheng, Ng, Zhang, On the Identifiability of Nonlinear ICA: Sparsity and Beyond, NeurIPS 2022 

• Nonlinear ICA: 

• Generative model: X = f(S), where S has independent components 

• De-mixing procedure: Y = g(X), where Y components are as 
independent as possible 

• Solutions always exist and are highly non-unique: Why?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes



Identifiability of  Nonlinear ICA: 
Structural Sparsity 

- Zheng, Ng, Zhang, On the Identifiability of Nonlinear ICA: Sparsity and Beyond, NeurIPS 2022 

• Graphically, for every latent variable , 
there exists a set of  observed variable(s) such 
that the intersection of  their/its parent(s) is 

• Example: for , there exists  and  such 
that the intersection of  their parents is 

Si

Si

S1 X1 X4
S1

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes



Further Generalization of  Nonlinear ICA 

- Zheng and Zhang, Generalizing Nonlinear ICA beyond Structural Sparsity, NeurIPS 2023 (oral)

• Undercompleteness

• More observed variables than latent variables

• Partial sparsity

• Sparsity is violated for some variables

• Partial source dependence

• Source independence violated for some variables

• Flexible grouping structures

• Dependence within each group, independence 
across groups

Applied to real-world 
datasets (EMNIST)
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Identification results on EMNIST

Each row represents an identified source with its value varying

Line thickness

Angle

Upper width

Height

Identifiability of nonlinear ICA: real-world images



Summary: CRL in IID Case

• Traditional causal discovery is a special case 

• Why possible? 

• Sparsity!  Stronger or weaker… 

• Linear-Gaussian case: strong 

• Nonparametric case (weak parametric constraints): 
strong 

• Linear, non-Gaussian case (additional parametric 
constraints): weaker 

• How to leverage non-IDD features of  the data



Where Are We?
i.i.d. data? Parametric 

constraint?
Latent 

confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
MEC (CD-NOD)

Yes May have unique 
identifiability

No
Yes

Changing subspace 
identifiable

Yes Variables in changing 
relations identifiable

?


