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We Mainly Focused on the 11D Case: Recent

Advances in Causal Representation Learning

I.I.d. data?

Yes

|., but non-1.D.

Parametric

constraints? confounders?

Yes

No

Yes

No

Yes

Latent

No

Yes

No

Yes

What can we get?

Unique identifiability
(under structural
conditions)

0

More informative than
MEC (CD-NOD)

May have unique
identifiability
Changing subspace
identifiable

Variables in changing
relations identifiable

- CD-NOD

- CRL from multiple
distributions

- Causal GenAl



CRL from
Changes: Outline

|., but non-1.D.

No

Yes

No

Yes

No

Yes

More informative than
MEC (CD-NOD)
May have unique

identifiability

Changing subspace

identifiable

Variables in changing
relations identifiable

e (CD-NOD (Causal Discovery from Nonstationary/Heterogenuous

data)

® Nonlinear ICA with partial changes across domains

® Partial disentanglement

® Domain adaptation, image translation, and multi-domain data

generation
® [.earning from text-image pairs

® A general setting

® (onnection to the IID case: Synergy between minimal changes and

sparsity




Nonstationary/Heterogeneous Data and

Causal Modeling

® Ubiquity of nonstationary/heterogeneous data

® Nonstationary time series (brain signals,
climate data...)

® Multiple data sets under different o m e e @ 1w
observational or experimental conditions

® (Causal modeling & distribution shift heavily

Huang, Zhang,
Nonstationary Data," JMLR, 2020

Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018

iscovery from Heterogeneous/



Causal Discovery from Nonstationary/
Heterogeneous Data

| . . Parametric Latent
i.i.d. data? ]
l constraints? confounders?
Yes No No
‘ No Yes Yes
e Jask:

® Determine changing causal modules &
estimate skeleton

® (lausal orientation determination benefits
from independent changes in Pcause) and
Pleftect | cause), including invariant
mechanism/ cause as special cases

® Visualization of changing modules over time/ K(?r I.lel nonstathnary
across data sets? driving force estimation

- Huang et al, "Causal Discovery from Heterogeneous/Nonstationary Data," JMLR, 2020
- Tian, Pearl,“Causal discovery from changes,” UAI 2001

- Hoover,“The logic of causal inference” Economics and Philosophy, 6:207-234, 1990.



Causal Analysis of Major Stocks in
NYSE (07/05/2006 - 12/16/2009)

Energy

Basic Industry
Finance
Consumer Service
Health Care
Utility
Technology

Capital Goods
Consumer Nondurable Goods
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- Huang, Zhang, Zhang, Romero, Glymour, Schélkopf, Behind Distribution Shift: Mining Driving Forces
of Changes and Causal Arrows,” ICDM 2017 6



CRL from
Changes: Outline

|., but non-1.D.

No

Yes

No

Yes

More informative than
MEC (CD-NOD)

No :
May have unique
identifiability
Changing subspace
identifiable
Yes

Variables in changing
relations identifiable

® Nonlinear ICA with partial changes across domains

® Partial disentanglement

® Domain adaptation, image translation, and multi-domain data

generation

® [.carning from text-image pairs




Nonlinear CGases Generally Non-

Identifiable

. . Parametric Latent
i.i.d. data? ]
l constraints? confounders?
Yes No No
| No Yes Yes

® Nonlinear ICA:

® Generative model: X = f(S), where S has independent components

® De-mixing procedure: Y = g(X), where Y components are as
independent as possible

® Solutions always exist and are highly non-unique: Why?

- Aapo Hyvdrinen, Petteri Pajunen, Nonlinear independent component analysis: Existence and uniqueness results, Neural
Networks, 1999



Nonlinear ICA with Multiple Domains

. . Parametric Latent
i.i.d. data? ]
constraints? confounders?
Yes No NoO
NoO Yes Yes

® Nonlinear ICA: observed variables follow X = g(Z), in which Z; are

mutually independent
® Solutions to nonlinear IGA high non-unique

® If p(Zi) change across multiple domains, generally their are
1dentifiable (up to component-wise transformations)

o Why? Or=sbZ —3 X, oy, O EIRA TR X
X R

- Hyvdrinen, Pajunen, Nonlinear independent component analysis: Existence and uniqueness results. Neural networks,

1999.
- Hoyvarinen, Sasaki, Turner, “Nonlinear ICA using auxiliary variables and generalized contrastive learning,” In The 22nd

International Conference on Artificial Intelligence and Satistics, 2019.



Nonlinear ICA with Multiple Domains:

Intuition
. Parametric Latent
2
HHeD CEIEN constraints? confounders?
Yes No No
No Yes Yes

® (eneral principle: Fach new domain brings more constraints than
additional degrees of freedom

® Shared by many problems, such as multi-domain linear Gaussian
source separation (X = A-S, but §; are Gaussian with changing
variances)

® [.et’ssee why...



Remember this Story?

Consider puerperal fever in the mid-19th century

'Two clinics used almost the same techniques but had
very different mortality rates

Semmelweis: Why?

® Hypothesis: Unknown “cadaverous material” &= T= & [

https://ahb[—kﬁikarni.c_<->|%1/|;|:<.>ject/semmelweis/
caused puerperal fever

® Proposed wtervention: washing hands Ignaz Semmelweis

® (onflicted with the established scientific and
medical opinions of the time

® Rejected by the medical community until years
after his death, when Louis Pasteur confirmed the
germ theory

Semmelweis, aged 42 in 1860, photograph by
Borsos and Doctor



Partial Identifiability for Domain Adaptation

Lingjing Kong! Shaoan Xie !

Weiran Yao

1

Yujia Zheng! Guangyi Chen?! Petar Stojanov

3

Victor Akinwande'! Kun Zhang?!

Abstract

Unsupervised domain adaptation is critical to
many real-world applications where label informa-
tion is unavailable in the target domain. In general,
without further assumptions, the joint distribution
of the features and the label is not identifiable
in the target domain. To address this issue, we
rely on a property of minimal changes of causal
mechanisms across domains to minimize unnec-
essary influences of domain shift. To encode this
property, we first formulate the data generating
process using a latent variable model with two par-
titioned latent subspaces: invariant components
whose distributions stay the same across domains,
and sparse changing components that vary across
domains. We further constrain the domain shift to
have a restrictive influence on the changing com-
ponents. Under mild conditions, we show that
the latent variables are partially identifiable, from

domain indices u, the training (source domain) data follows
multiple joint distributions Py yiu,» Px.y|uss - Px,ylun>
and the test (target domain) data follows the joint distri-
bution py |7, Where py |, may vary across uj, Uy, ...,
u)s. During training, for each ¢-th source domain, we are
given labeled observations (xgj), y,(:) )it from py vy, and
target domain unlabeled instances (x] )35, from py y(u-
The main goal of domain adaptation is to make use of the
available observed information, to construct a predictor that

will have optimal performance in the target domain.

It is apparent that without further assumptions, this objective
is ill-posed. Namely, since the only available observations in
the target domain are from the marginal distribution py,7,
the data may correspond to infinitely many joint distribu-
tions py y|,7- This mandates making additional assump-
tions on the relationship between the source and the target
domain distributions, with the hope to be able to reconstruct
(identify) the joint distribution in the target domain py y|,,7-
Tvpicallv. these assumptions entail some measure of sim-



Finding Changing Hidden Variables for

Iransfer Learning

A simpler example:

DHE2BSEGENMNERN

BNESEHE0EEAEERS

. . Parametric Latent
i.i.d. data? -
constraints? confounders?
Yes NoO

® Underlying components Z¢ may change across domains

® (hanging components Zg are 1dentifiable; invariant part Z, 1s
1dentifiable up to 1ts subspace

e Using Z and transformed changing part Zg for transfer learning

- Kong, Xie,Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022



J

hs.i(zs,;). For ease of exposition, we as-

I d€ n tiﬁ ab ility T h 6 O ry ::ircx?e-: tt}lllz.:ltt fliej zjand z, correspond to components in z with

l i.i.d. data?

Yes
‘ No

Parametric Latent
constraints? confounders?
No NoO
Yes Yes

indices {1,...,n.} and {n. + 1,...,n} respectively, that
is, z. = (2;);=; and zg = (2;)i—,, 11

Theorem 4.1. We follow the data generation process in
Equation 1 and make the following assumptions:

o Al (Smooth and Positive Density): The probability den-
sity function of latent variables is smooth and positive,
l.e. Py|u IS smooth and p,,, > 0 over Z and U.

e A2 (Conditional independence): Conditioned on u,
each z; is independent of any other z; for i,j € [n],
i # J, ie logpyu(zlu) = Y7 qi(2,u) where g;
is the log density of the conditional distribution, i.e.,
i :=10g P, |u-

e A3 (Linear independence): For any z; € Z; C R"s,
there exist 2ng + 1 values of u, i.e., u; with j =
0,1,...,2ns, such that the 2n vectors w(zs,u;) —
w(zs,up) with j = 1,...,2ng, are linearly indepen-
dent, where vector w(zs, ) is defined as follows:

W(ZS, U.) _ (aqnc+1 (znc—{—l) u) 8(177, (Z,n, u)

Oznvr 0 0z,
82an+1 (znc+17 U.) azqn (zTu u) ) (3)
0zp 4 U 022

By learning (g, ps., Pz.|u) to achieve Equation 2, z, is
component-wise identifiable.



Implementation with Modified VAE

Figure 1. The generating process: The gray shade
of nodes indicates that the variable is observable.

neural network neural network

encoder decoder

loss = [|x-%|12 = [[x-d() [ = [|x-d(eC) |

Autoencoder

X
;
fu fs
Voo
Ut 25 =~ g |~z
..... :
fu
........... S
------- Zc Zs | fas | 9
N(O,1)

Figure 2. Diagram of our proposed method, IMSDA. We first apply
the VAE encoder (f,., fs) to encode x into (Z., zs), which is
further fed into the decoder g for reconstruction. In parallel, the
changing part Z; is passed through the flow model fu to recover the
high-level invariant variable z;. We use (Z., zs) for classification
with the classifier fus and for matching AV (0, I) with a KL loss.



Partial Disentanglement tor Domain

Adaptation

- o Parametric Latent
l l.1.d. data constraints? confounders?

Yes No No

‘ No Yes Yes
Models — Art — Clipart — Product — Realworld | Avg
Source Only (He et al., 2016) 64.58+0.68 52.32+0.63 77.63+0.23  80.70+£0.81 | 68.81
DANN (Ganin et al., 2016) 64.26+0.59 58.01£1.55 76.44+0.47 78.80+£0.49 | 69.38
DANN+BSP (Chen et al., 2019) | 66.10£0.27 61.03+0.39 78.134+0.31 79.92+0.13 | 71.29
DAN (Long et al., 2015) 68.28+0.45 57.92+0.65 78.454+0.05 81.93£0.35 | 71.64
MCD (Saito et al., 2018) 67.84+£0.38 59.91+0.55 79.21+0.61  80.93+0.18 | 71.97
M3SDA (Peng et al., 2019) 66.224+0.52 58.55+£0.62 79.45+0.52  81.354£0.19 | 71.39
DCTN (Xu et al., 2018) 66.924+0.60 61.82+0.46 79.204+0.58  77.78£0.59 | 71.43
MIAN (Park & Lee, 2021) 69.39+0.50 63.05+£0.61 79.62+0.16 80.44+0.24 | 73.12
MIAN-~ (Park & Lee, 2021) 69.88+0.35 64.20+£0.68 80.87+0.37 81.49+£0.24 | 74.11
iIMSDA (Ours) 75.77£0.21 60.83+0.73 84.13+0.09 84.83+0.12 | 76.39

Table 2. Classification results on Office-Home. Backbone: Resnet-50. Baseline results are taken from (Park & Lee, 2021).

- Xie, Kong, Gong, Zhang, “Multi-domain image generation and ¢ranslation with identifiability guarantees”, ICLR 2023



A Weaker One:

Subspace 2 2oy | Parametric

constraints?

Id€ Iltlﬁablhty fOr Yes No

Latent
confounders?

No

Yes

Domain Adaptation — -

Subspace Identification for Multi-Source Domain
Adaptation

Zijian Li%?, Ruichu Cai; Guangyi Chen®'!, Boyang Sun?®, Zhifeng Hao*, Kun Zhang>'*
1 Carnegie Mellon University
2 School of Computer Science, Guangdong University of Technology
3 Mohamed bin Zayed University of Artificial Intelligence
4 Shantou University

Abstract

Multi-source domain adaptation (MSDA) methods aim to transfer knowledge from
multiple labeled source domains to an unlabeled target domain. Although cur-
rent methods achieve target joint distribution identifiability by enforcing minimal
changes across domains, they often necessitate stringent conditions, such as an
adequate number of domains, monotonic transformation of latent variables, and
invariant label distributions. These requirements are challenging to satisfy in
real-world applications. To mitigate the need for these strict assumptions, we

a1 1

|7




Sub SPacCe l iid.data?  Parametric  Latent

constraints? confounders?

Identifiability: 'Theory ‘ Yes No No

No Yes Yes

7, and an invertible function h; : R — R, such that z, ; = h;(2s).

Theorem 1. (Subspace Identification of z,.) We follow the data generation process in Figure 2 and
make the following assumptions:

» Al (Smooth and Positive Density): The probability density function of latent variables is smooth
and positive, i.e., Pzju > 0 over Zand U.

* A2 (Conditional independent): Conditioned on u, each z; is independent of any other z; for
i, € {1,--- ,n},i # j, i.e. logpyu(zlu) = Y. ¢i(2i, u) where q;(2;, 1) is the log density of
the conditional distribution, i.e., q; : 10g D, |u.

* A3 (Linear independence): For any z, € Z; C R"¢, there exist ng + 1 values of u, i.e., u; with
j=0,1,--- ,ng, such that these ng vectors w(z,u;) — w(z,up) with j = 1,--- ,n, are linearly
independent, where vector w(z,u;) is defined as follows:

_ (9q1(z1,u)  Oqi(zi,u)  Ogn,(2ns, 1)
W(Z’U) - ( 821 ’ , Bzi ’ 8Zns ’

2)

By modeling the aforementioned data generation process, z is subspace identifiable.



Finding Changing Hidden Variables for
Iranster Learning: Munimal Change Principle

ii.d. data? Param(::trlc Latent ,g
constraints? confounders? g —
Yes No No
ZC_>
No Yes Yes

® (hanging components Zg are 1dentifiable; invariant part Z, 1s
1dentifiable up to its subspace

® Minimal Change Principle
® What if we have more dimensions of Z¢ than needed?
® What if we have fewer dimensions of Z than needed?

® (o with the right one!



Image Iranslation: How to L.earn ‘Style’?

w‘ Wrc

"t'-'b-c_,

A simpler example:

HAHAESEGEENMEEN

zmnuaunmnmsn

Images from the winter season domain.

20



Minimal Changes Enables Identifiability

B W WVGRA T r

‘l
‘ .
o r
~ LI

Im 11N

Minimize the influence of ‘Style’ on ‘Image” ‘%
during translation. A

How? A minimal number of changing
components?

Images from the winter season domain.

21



Published as a conference paper at ICLR 2023

MULTI-DOMAIN IMAGE GENERATION AND TRANSLA-
TION WITH IDENTIFIABILITY GUARANTEES

Shaoan Xie!, Lingjing Kong', Mingming Gong*?, and Kun Zhang'-

I Carnegie Mellon University
Mohamed bin Zayed University of Artificial Intelligence
3The University of Melbourne
shaocan@cmu.edu, lingjingkong@cmu.edu,
mingming.gong@unimelb.edu.au, kunzl@cmu.edu

ABSTRACT

Multi-domain image generation and unpaired image-to-to-image translation are
two important and related computer vision problems. The common technique
for the two tasks is the learning of a joint distribution from multiple marginal
distributions. However, it is well known that there can be infinitely many joint
distributions that can derive the same marginals. Hence, it is necessary to formulate
suitable constraints to address this highly ill-posed problem. Inspired by the recent
advances in nonlinear Independent Component Analysis (ICA) theory, we propose
a new method to learn the joint distribution from the marginals by enforcing

a specific type of minimal change across domains. We report one of the first
recnlte connectino multi-donmain cenerative mndele tn identifiahilitv and chnwe

22



Sample Images Generated by
Generative Adversarial Networks (GANs)

Images generated by a GAN created by NVIDIA.

23


https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf

Generative Adversarial Networks

(GANS)

Training set

Random

Generator

Discriminator

l{/Fake image Image credit: Thalles Silva

v

h {Fa ke

Minimax game which G wants to minimize V while D wants to
maximize it:
min max V (D, G) = Egrpya(@) 108 D()] + Ep, (2)[log(l — D(G(2)))].

G D

24


https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

2

2N

Random
noise €

GAN-Based e W

E == ke
Implementations

Generator & | /Fake image

(1)
€

»model the data distribution in
u-th domain

o —

Generator

_ Match the data distribution across domains, while the dimensionality of eéu)

is as small as possible (minimal changes across domains controlled by A; no
penalty when A=0)

- Correspondence relations among domains are identifiable
25



Multi-domain Image Generation &
Translation with Identihiability Guarantees

® [dea: Matching the distributions across domains with a minimal
number of changing components

® (orrespondence info (joint distribution) identifiable under mild
assumptions

® [xample: Generating female & males images with the same “content”

Ours (A=0.1) StyleGAN2-ADA

- Xie, Kong, Gong, Zhang, “Multi-domain image generation an@%ranslation with identifiability guarantees”, ICLR 2023



More

results...

Figure 10: CelebA-HQ. Without the sparsity regularization, i.e., A\ = 0, we observe some unnecessary
changes between the image tuples in each row. For example, e.g.,the added sun-glasses and skin color
change in the first row. TGAN changes the background (first row of third panel). CoOGAN changes
the skin color (second row, second paiel).



StyleGAN2-ADA

@
™
.

More

results. ..

Alternative strategy:
learning hidden
representations from
IID data.

lalk to Yujia about
it. ;)

Figure 11: AFHQ. StyleGAN2-ADA changes animal poses in many examples, e.g., second and third
row of first panel. Our base (A = 0) also changes the poses, e.g., first and third row of second panel.
CoGAN and TGAN are slightly better in preserving poses but we can observe that some generated
images are unrealistic. For example, thggvolf (first row, third panel of TGAN) and the dog (third row,

third panel of CoGAN).



No More informative than

No MEC (CD-NOD)
C RL fro l I I Yes May have unigque

| but non-1.D identifiability
o i - No Changing subspace
C h . O 1 Yoo identifiable
an e S ° Ut 1n€ Variables in changing
Yes

relations identifiable

® [.carning from text-image pairs




Motivation: Controllability for Image
Generation / Editing

® lixisting text-to-image (121) models are not controllable:
editing a specific feature through text often causes
unwanted changes




Prevailing generative Al tools: not
controllable

[Genera're a feM [ Panda eating bamboo l [ A smiling girl in\gar'/de_n]
! | | TN : 4
e I\ Rlad K3 ‘

[Can you add mus‘r\acﬁﬂ]

Examplel: Add Mustache Example2: Change the style Example3: Change facial expression.

31



Our Causal GenAl Enables Precise Control
& Refinement

Example 3: Change facial expression

inrl in garden J

L) B
..........
.......
........
.....
.......
.........
......

Example1: Add Mustache

M/a female face ]

i
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’J ’7 ’ :,
Mdd mustache ?]
2
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Our Causal GenAl Enables Precise Control
& Refinement

Example1: Add Mustache

Ma female face }

|

Example 3: Change facial expression

mgirl in garden ]

Ours

J,, ' / ‘/ ”
Mdd mustache ?] *
2




From "lext to Images: T'’he Process

l I text

”~ ”~ ”~

T zl.T . atomic textual concepts
AT \1‘\\\1&\ I
1 *2 A3  *4 ?5

Z]-I: atomic visual concepts

l I: images
|

 Jext and images have atomic concepts

 Textual atomic concepts determine their visual counterparts: why?

- Xie, Kong, Zheng, Tang, Xing, Chen, and Zhang, under submission



L.earning ldentifiable Concepts for
Controllability

l - text

”~ ”~ ”~

2 zo zd z) z.l: atomic textual concepts
1 2 3 4 j
1} ) I" \I&\\I&\ I
<1 *2 R3 <4 ~5

Z]-I: atomic visual concepts

l I: images

Certain sparsity constraints on the cross links + conditional independence of
Image concepts = identifiable concepts:

1. Learning disentangled, atomic concepts z,,,T1 and z}l.

2. Aligning them.

35



Results: Controllable Generation

Surprised Golden Diamond Flower

SD3.5-L

~ FIUX-D

SANA

"DALLE3

7]
—
OL’ . I - | - — y 3 a ._—r—‘ - ‘ -J . .
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEETRN

Our method can make only necessary ghanges without affecting other attributes!

E I I NN NN EEEEEE,



[llustration: Importance ot Sparsity

Without sparse
Interaction

With sparse
Interaction

“An astronaut is ridinga = “An astronaut isridinga = “An astronaut is riding a

horse.” = zebra” " unicorn.”
| | 37 | |



Remember these results?




"a realistic image of a peacock eating ice cream"”

{ Designer Powered by DALL-E 3



[.et Peacock Eat Ice Cream,
Controllably

® Prompt: a peacock eating ® Prompt: a peacock eating
1ce cream white ice cream

40



CRL from
Changes: Outline

® A general setting

|., but non-1.D.

No

Yes

No

Yes

No

Yes

More informative than
MEC (CD-NOD)
May have unigque
identifiability
Changing subspace
identifiable

Variables in changing
relations identifiable




Causal Representation Learning from Multiple
Distributions: A General Setting

. Parametric Latent
I.i.d. data?
constraints? confounders? 61 92 93 94 95
Yes No No
No Yes Yes @%@%@
® Goal: Uncovering hidden variables Z; with
changing causal relations from X in
nonparametric settings X

® What is identifiable?

® Markov network of Z

® FEach estimated variable Z; is a function of
Z; and 1t intimate neighbors
@) @ {) @

® Inthis exampl€> each Zi <Z¢4‘> can be recovered (a) Gz, the DAG over true latent (b) The corresponding Markov
I 1 . i k :
up to component-wise transformation variables Z. network M z

- Zhang, Xie, Ng, Zheng, “Causal Representation Learning from Multiple Distributions:A General Setting,” ICML 2024
42



CRL from
Changes: Outline

|., but non-1.D.

No

Yes

No

Yes

No

Yes

More informative than
MEC (CD-NOD)
May have unigque
identifiability
Changing subspace
identifiable

Variables in changing
relations identifiable

® (onnection to the IID case: Synergy between minimal changes and

sparsity




Published as a conference paper at ICLR 2025

SYNERGY BETWEEN SUFFICIENT CHANGES AND
SPARSE MIXING PROCEDURE FOR DISENTANGLED
REPRESENTATION LEARNING

Zijian Li’** Shunxing Fan®** Yujia Zheng' Ignavier Ng' Shaoan Xie! Guangyi Chen'®
Xinshuai Dong’ Ruichu Cai* Kun Zhang'®

TCarnegie Mellon University, Pittsburgh PA, USA
*Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
*Guangdong University of Technology, Guangzhou, China

ABSTRACT

Disentangled representation learning aims to uncover latent variables underlying
the observed data, and generally speaking, rather strong assumptions are needed

2

?

procedure assumption provides structural constraints on the mapping from esti-
mated to true latent variables and hence compensates for potentially insufficient
distribution changes. Building on this insight, we propose an identifiability theory
with less restrictive constraints regarding distribution changes and the sparse mix-

‘;ﬂﬂ ﬂfﬂf‘nflllfﬂ nnhonr\;nn or\n“r\ok;“fv tn fnl)]_‘tlt\f]fl CI‘\D‘I‘\OI‘;I‘\(‘ AAA;f;f\ﬂO]]‘I XIres
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Published as a conference paper at ICLR 2025

SYNERGY BETWEEN SUFFICIENT CHANGES AND
SPARSE MIXING PROCEDURE FOR DISENTANGLED
REPRESENTATION LEARNING

Zijian Li'** Shunxing Fan®* Yujia Zheng' Ignavier Ng' Shaoan Xie' Guangyi Chen'®
Xinshuai Dong’ Ruichu Cai* Kun Zhang'®

Icarnegie Mellor ¥ T=isrnmains Pietalanecnle DA _TTC A
*Mohamed bin Z

*Guangdong Uni Q
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to ensure @ @ @ 1e distri-
bution of - indices,
but acaquit (a) Ground-truth data (b) Estimated data s exploit
Structl(llra] generation process. generation process. aintg are
usually (1 /0 seem-

ingly unr¢ £igure I: Example. for Theorem 1 wﬁth e identi-
fiability. . ground-truth and estimated data generation : mixing
procedur¢  processes. The red dashed lines denote the re- om esti-

mated 0 dyunpdant estimated mixing edges. ufficient
distributic y theory

with less restrictive constraints regarding distribution changes and the sparse mix-
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Summary

® Remember Semmelweis?
® [.earning hidden causal factor from different distributions
® How can CRL benefit from distribution shift?
e (lonstraints on the changes!
® .o onlyp(S;) change
® Minimal changes for “concept” 1dentifiability
® [.earning atomic textual and visual concepts and connections

® Unification: the benefit from sparse mixing procedure &
minimal changes
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