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We Mainly Focused on the 1ID Case: Recent

Advances 1n Gausal Representation Learning
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CRL with 'Temporal Constraints
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No

Yes
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Latent temporal causal
processes identifiable!

® Discovering causal relations among the measured time series

® (Granger causality (but be aware of temporal resolution)

® ‘|emporally disentangled representation learning

® With invertible or non-invertible mixing functions

® With instantaneous relations




Granger Causality: Original Definition &
Practical Constraints

® Two principles (Granger, ‘80)
® Future cannot cause past

® No redundant info: Cause contains unique information about effect

| ¥ Xt —->Xt+|
® Xcauses Yif P(Yiq1 € A| Q) #P(Yi1 € A Q) Y -—’;Yt+|

® Completely nonparametric; Yr+; X X; given all the remaining
information until time t

® In practice: causality in mean; linear Granger causality

- C.WJ. Granger, Testing for causality: A personal viewpoint. Journal of Economic Dynamics &
Control 2: 329-352, 1980



Conditional Independence-Based Method
for Causal Discovery from Time Series

® Two principles (Granger, ‘80)
® KFuture cannot cause past

® No redundant info: Cause contains unique information about effect

| ¥ Xt —->Xt+|
® Xcauses Yif P(Yiq1 € A| Q) #P(Yi1 € A Q) Y -—’;Yt+|

® Completely nonparametric; Yr+; X X; given all the remaining
information until time t

® In practice: causality in mean; linear Granger causality

- The PC algorithm still applies; additional temporal
constraints!



T
wo Schemes of Temporal Aggregation
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CRL with 'Temporal Constraints

Non-I, but |.D.

No/Yes

No

Yes

® ‘|emporally disentangled representation learning

® With invertible or non-invertible mixing functions

(Extended) regression

Latent temporal causal
processes identifiable!




L.earning Latent Causal Dynamics
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- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,” NeurlPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022

Chen et al.,

“CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process,” ICML 2024



L.earning Latent Causal Dynamics
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- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,” NeurlPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022
- Chen et al., “CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process,” ICML 2024




Remember the Multi-Domain Case?

A simpler example:
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Temporally Disentangled Representation Learning

Weiran Yao Guangyi Chen Kun Zhang
CMU CMU & MBZUAI CMU & MBZUAI
weliran@cmu.edu guangyichenl994@gmail.com kunzl@cmu.edu
Abstract

Recently in the field of unsupervised representation learning, strong identifiability
results for disentanglement of causally-related latent variables have been estab-
lished by exploiting certain side information, such as class labels, in addition to
independence. However, most existing work is constrained by functional form
assumptions such as independent sources or further with linear transitions, and
distribution assumptions such as stationary, exponential family distribution. It is
unknown whether the underlying latent variables and their causal relations are
identifiable if they have arbitrary, nonparametric causal influences in between. In
this work, we establish the identifiability theories of nonparametric latent causal
processes from their nonlinear mixtures under fixed temporal causal influences
and analyze how distribution changes can further benefit the disentanglement. We
propose TDRL, a principled framework to recover time-delayed latent causal vari-
ables and identify their relations from measured sequential data under stationary
environments and under different distribution shifts. Specifically, the framework
can factorize unknown distribution shifts into transition distribution changes under
fixed and time-varying latent causal relations, and under observation changes in ob-
servation. Through experiments, we show that time-delayed latent causal influences
are reliably identified and that our approach considerably outperforms existing
baselines that do not correctly exploit this modular representation of changes. Our
code is available at: https://github.com/weirayao/tdrl.



Why? Let’s Derive 1it...

® Multi-domain case:

® ‘|emporal case:
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Comparison ot the Identifiability Result

® Multi-domain case:

Theorem 1 (Identifiablity under a Fixed Temporal Causal Model). Suppose there exists invertible
function g that maps X; to 7, i.e.,

2y = §(x¢) (3)
such that the components of z,; are mutually independent conditional on z;—1. Let
Vi, 2 O* Mt et O s Vi, A > Mt 9® ks 0% Ny T
k,t O0z,1021 417 02k 4022,4—17 """ Ozk,102n t—1 » Vhit 0z} 0z1,4-1" 02f Oz24—-17 """ 02F ,Ozne-1) °
4)

If for each value of Zi, V1 +,V1,t,V2t,V2t, .oy Vi t, Vi t, S 20 Vector functions in z1 41, 22, t—1, -
Zn,t—1, are linearly independent, then z; must be an invertible, component-wise transformation of a
permuted version of z;.

® ‘|emporal case:

such that Z; ; = h, ;(2s,;). For ease of exposition, we as-
sume that the z. and z; correspond to components in z with
indices {1,...,n.} and {n. + 1,...,n} respectively, that
is, z. = (2;);<; and z;, = (z,-)?:ncH.

Theorem 4.1. We follow the data generation process in
Equation 1 and make the following assumptions:

e Al (Smooth and Positive Density): The probability den-
sity function of latent variables is smooth and positive,
L.e. Py|y IS sSmooth and p,,, > 0 over Z and U.

e A2 (Conditional independence): Conditioned on u,
each z; is independent of any other z; for i,j € [n],
i # J, i.e. logpyu(zlu) = Y7 qi(2i, n) where g;
is the log density of the conditional distribution, i.e.,
gi = logp.,|u-

e A3 (Linear independence): For any z, € Z, C R"s,
there exist 2ns + 1 values of u, i.e., u; with j =
0,1,...,2n,, such that the 2ns vectors w(zs,u;) —
w(zs,ug) with j = 1,...,2ng, are linearly indepen-
dent, where vector w(zs, 1) is defined as follows:

0¢y, (2n, 1)
0z,
82 n n»

2
022

g0 ey

0
w(zs,u) = ( qnct‘;z(z?rjl’u)

2
%G, +1 (ch+1,u)
2
aznc+1

g o s ey

By learning (§, p;., Pz.|u) to achieve Equation 2, z, is
component-wise identifiable.



Results on Simple Video Data

® lor easy interpretation, consider a simple video data set

® Mass-spring system: a video dataset with ball movement and
invisible springs

- Learncd Interpretation
Mass-spring  Jatent processes P
Video
5
T (x- & y- coordinates
s ©® of the 5 balls)
3



A Causal Perspective on Reinforcement
Learning

® Potential issues in deep RL algorithms

® Lack interpretability
® Not generalize well

® Data hungry

e Mitigate such issues through causal representations
and graph structures




A Causal Perspective on Reinforcement
Learning

® Potential issues in deep RL algorithms

® Lack interpretability
® Not generalize well

® Data hungry

e Mitigate such issues through causal representations
and graph structures




Four Categories of State Representations in
RL

Controllable Uncontrollable

e D
Reward- | Speed, position, Surrounding

Relevant and direction vehicles
& 3

r w
Reward- Music and [ Remote ]

Irrelevant | air conditioner scenery
\ J

e 57" : controllable and reward-
relevant state variables

° S?r : reward-relevant state variables
that are beyond our control

° S?F . controllable but reward-
1rrelevant factors

® S?? : uncontrollable and reward-
irrelevant latent variables

Liu*, Huang®*, Zhu, Tian, Gong, Yu, Zhang. Learning world models with identifiable factorization. Arxiv, 2023.



Four Categories of State
Representations in RLL

Controllable Uncontrollable
S?r ar

\)
4
Reward- | Speed, position, Surrounding
Relevant and direction vehicles
Reward- Music and Remote
Irrelevant | air conditioner scenery
ar a7

A S?

® Each category 1s identifiable!

- Liu*, Huang*, Zhu, Tian, Gong,Yu, Zhang. Learning world models with identifiable factorization. Neur|PS 2023
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CaRiNG: Learning Temporal Causal Representation under
Non-Invertible Generation Process

Guangyi Chen " !? Yifan Shen”"! Zhenhao Chen”! Xiangchen Song?
Yuewen Sun! Weiran Yao® Xiao Liu! Kun Zhang '?

Abstract 1. Introduction

Sequential data, including video, stock, and climate obser-

Identifying the ndelymg time- delaed latent vations, are integral to our daily lives. Gaining an under-

arasping tem{ VAV EPT go further: mixing function g can be RN

stream reaso acted con-
robustly idernt nonparam etric and noisy fentify the
rely on strict aSSERPAGHS Ao ’ underlying causal dynamics 1n the

eration process from latent varlables to observed

data. However, these assumptions are often hard Towards this goal, we focus on Independent Component
to satisfy in real-world applications containing in- Analysis (ICA) (Hyvérinen & Oja, 2000), which is a classi-

formation loss. For instance, the visual perception cal method for decomposing the latent signals from mixed



CRL with 'Temporal Constraints

Non-I, but |.D.

® With instantaneous relations

No/Yes

No

Yes

(Extended) regression

Latent temporal causal
processes identifiable!




Published as a conference paper at ICLR 2025

ON THE IDENTIFICATION OF TEMPORALLY CAUSAL
REPRESENTATION WITH INSTANTANEOUS DEPEN-
DENCE

Zijian Lit** Yifan Shen** Kaitao Zheng' Ruichu Cai' Xiangchen Song’ Mingming Gong*
Guangyi Chen'® Kun Zhang'®

fCarnegie Mellon University, Pittsburgh PA, USA

*Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

*Guangdong University of Technology, Guangzhou, China

*The University of Melbourne

ABSTRACT

Temporally causal representation learning aims to identify the latent causal process
from time series observations, but most methods require the assumption that the
latent causal processes do not have instantaneous relations. Although some recent
methods achieve identifiability in the instantaneous causality case, they require
either interventions on the latent variables or grouping of the observations, which
are in general difficult to obtain in real-world scenarios. To fill this gap, we pro-
pose an IDentification framework for instantaneQus Latent dynamics (IDOL) by
imposing a sparse influence constraint that the latent causal processes have sparse
time-delayed and instantaneous relations. Specifically, we establish identifiability
results of the latent causal process up to a Markov equivalence class based on
sufficient variability and the sparse influence constraint by employing contextual
information. We further explore under what conditions the identification can be
extended to the causal esranh. Based on these theoretical results. we incornorate a



Published as a conference paper at ICLR 2025

Comparison

ON THE IDENTIFICATION OF TEMPORALLY CAUSAL
REPRESENTATION WITH INSTANTANEOUS DEPEN-
DENCE

Zijian Lit** Yifan Shen** Kaitao Zheng' Ruichu Cai' Xiangchen Song’ Mingming Gong*
Guangyi Chen'® Kun Zhang'®

TCarnegie Mellon University, Pittsburgh PA, USA

*Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

tGuangdong University of Technology, Guangzhou, China
*The University of Melbourne

Table 1: The summary of related work of causal representation learning.
No Intervention No Grouping Stationarity Instantaneous Effect Temporal Data

IDOL

Yao et al.|(2022)
Morioka & Hyvirinen (2023)
Lippe et al. (2023)
Zhang et al. |(2024)

NX NSNS
NAX NN
X NSNSS
NN X S
NN NN

W W, ¢ N v W ) L

results of the latent causal process up to a Markov equivalence class based on
sufficient variability and the sparse influence constraint by employing contextual
information. We further explore under what conditions the identification can be
extended to the causal esranh. Based on these theoretical results. we incornorate a




Published as a conference paper at ICLR 2025

Empirical Results

ON THE IDENTIFICATION OF TEMPORALLY CAUSAL
REPRESENTATION WITH INSTANTANEOUS DEPEN-
DENCE

Zijian Lit** Yifan Shen** Kaitao Zheng' Ruichu Cai' Xiangchen Song’ Mingming Gong*
Guangyi Chen'®* Kun Zhang'®

TCarnegie Mellon University, Pittsburgh PA, USA

*Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
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Figure 4: Visualization results of directed acyclic graphs of latent variables of different methods. The
first and second rows denote time-delayed and instantaneous causal relationships of latent variables.




Sounds New. But You can See the Connection

® Multi-domain case: ® ‘|emporal case:
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Remember? Causal Representation Learning from
Multiple Distributions: A General Setting

Parametric Latent

i.i.d. data? ]
constraints? confounders? 92 93

Yes

. @%@@

® Goal: Uncovering hidden variables Z; with
changing causal relations from X in

nonparametric settings X
* Whatisidenufi We exploit the changes in causal
e Markov net mechanisms along with domain!

® FEach estimated variable Z; is a function of (25)(2) (25)—(2s)
Z. and 1t intimate neighbors 4:% /l\
@ 2)~2)2) @~z

® [n this example, each Zi (2?54‘) can be recovered (a) Gz, the DAG over true latent (b) The corresponding Markov
variables Z;. network M 7.

up to component-wise transformation

- Zhang, Xie, Ng, Zheng, “Causal Representation Learning from Multiple Distributions:A General Setting,” ICML 2024
26



Summary: GRL from Temporal Data

® Discovering causal relations among the measured time series
® ‘|emporally disentangled representation learning

® With instantaneous relations

® Unification—connection with the multi-domain case!

27



