Causality and Machine Learning

(80-816/516)

Classes 21 (April 1, 2025)

Causal Representation Learning 3:

Real Problems to Address

Instructor:

Kun Zhang (kunzl@cmu.edu)
Z.oom link: https://cmu.zoom.us/]/8214572323)
Office Hours: W 3:00—4:00PM (on Zoom or in person); other times by appointment



mailto:kunz1@cmu.edu
https://cmu.zoom.us/j/8214572323

In Addition, Causal Abstraction...
What is

‘temperature’?




Real Problems Addressed with CRL.

In neuroscience

® [.ocalization & causal analysis from EEG/MEG data
® linding regions of interest from tMRI data
Psychometric studies

Deep reinforcement learning

Multi-model CRL 1in healthcare

Generative Al: Image generation and refinement



From MEG/EEG

® In both Magnetoencephalography (MEG) and
Electroencephalography (EEG), source localization involves
inferring the location of brain activity from the measured magnetic
or electrical fields

® Which CRL setting/formulation can we use?

Forward L Inverse
problem problem
(well-posed) s ¢ (ill-posed)

Estimated
sources

True MEG
sources measurements



Causal Representation Learning from Multiple
Distributions: A General Setting

. Parametric Latent
I.i.d. data?
constraints? confounders? 51 92 93 94 95
Yes No No
No Yes Yes @%@%@
® Goal: Uncovering hidden variables Z; with
changing causal relations from X in
nonparametric settings X

® What is identifiable?
® Markov network of Z

® FEach estimated variable Z; is a function of
Z. and 1t intimate neighbors
@) @ {) @

® In this exampl€> cach Zi <Z¢4‘> can be recovered (a) Gz, the DAG over true latent (b) The corresponding Markov
I 1 lables Z;. twork .
up to component-wise transtormation variables network Mz

- Zhang, Xie, Ng, Zheng, “Causal Representation Learning from Multiple Distributions:A General Setting,” ICML 2024
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From tMRI

Functional magnetic resonance
imaging
Functional Magnetic Resonance Imaging
(fMRI) measures brain activity by detecting

changes associated with blood flow

The primary form of fMRI uses the blood-
oxygen-level dependent (BOLD) contrast

A voxel 1s a three-dimensional rectangular
cuboid, whose dimensions are set by the slice
thickness, the area of a slice, and the grid

An fMRI image with yellow areas showing

imposed on the slice by the scanning process. | increased activity compared with a control

condition

Purpose Measures brain activity detecting
changes due to blood flow.

Voxel data can be very noisy. Going to

. : 3
TCZIONS5 of nterest: https://en.wikipedia.org/wiki/

Functional magnetic_resonance imaging



https://en.wikipedia.org/wiki/Blood_flow
https://en.wikipedia.org/wiki/Blood-oxygen-level_dependent
https://en.wikipedia.org/wiki/Blood-oxygen-level_dependent
https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
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Abstracting Causal Models

Sander Beckers Joseph Y. Halpern
Dept. of Philosophy and Religious Studies Dept. of Computer Science
Utrecht University Cornell University
Utrecht, Netherlands Ithaca, NY 14853
srekcebrednas @gmail.com halpern@cs.cornell.edu
Abstract Rubenstein et al. (2017) (RW™ from now on) provided an ar-

: : - guably more general approach to abstraction. They defined a
We consider a sequence of successively more restrictive defi- notion of an exact transformation between two causal mod
nitions of abstraction for causal models, starting with a notion rma

introduced by Rubenstein et al. (2017) called exact transfor— els. They suggest that if there is an exact transformatlon T
mation that applies to probabilistic causal models, mo

a notion of uniform transformation that applies to dete )
tic causal models and does not allow differences to be Wh at I S te m P S ratu re ¢ 7
by the “right” choice of distribution, and then to abstra

where the interventions of interest are determined by th:
from low-level states to high-level states, and strong ab

tion, which takes more seriously all potential interventi Te m Pe rature as a M easure Of

a model, not just the allowed interventions. We show th
cedures for combining micro-variables into macro-va

are instances of our notion of strong abstraction, as are M Oti on. Te m P (S I"atu e I”eﬂ eCtS th (S
examples considered by Rubenstein et al. 1
average speed and motion of

1 Introduction

particles within a substance.



Be Aware of Causal Abstraction

® '|'he Mpemba effect 1s a counterintuitive phenomenon where,
under certain conditions, 1nitially hot water can freeze faster than
mnitially cold water.

® "When a warm sample of water 1s placed 1n a cold environment,
the part of 1t next to the walls of the container gets cooled quickly
while the mner part remains 1ts temperature. A temperature
oradient 1s thereby induced inside of the sample which causes
convective heat transport. 1'he greater heat gradient gets, the
convection 18 more expressed, and the overall cooling of the
sample 1s faster, since the heat gradient on the container walls 1s
maintained."

Mpemba effect from a viewpoint of an
experimental physical chemist

by Nikola Bregovié¢



Real Problems Addressed with CRL.

® Psychometric studies



Finding Underlying

A Problem in Psychology

Mental Conditions?
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Example: Big 5 Questions Are Well Designed but...

Big 5: openness; conscientiousness; extraversion; agreeableness; neuroticism

[E10 I am quiet [Egl I don't mind being

[06! 1 do not h around strangers.  the center of attention. Ext ravers io n

a good imagination. o pe nness [EZ] I don't talk a lot.
073 [05] I have [E7] 1talk to a lot of <

ideas. different people at parties.
[010] I am full of

ideas.
+0.83

[07] 1am quick to

A
-0.67 +0.59 [E8 1don't like to draw
attention to myself.

-0.46
-0.61 [EG] I have little to say.

[03] I have a

vivid imagination.

[E3] | feel comfortable

around people. LZ 18567 [El] | am the life of the party.

derstand things.
tindertand things o7 Agreeableness
lEﬂ I keep in the "'0'73
ackground.
[ES] I start conversations. [A]'] | feel little . .
[08] | use difficult _ +0.62 [01] I have a concern for others. [AZ] | am interested in people.
words. rich vocabulary. +0.39 4
[A]_O] +0.61 [Agt] I feel others’
I make -0.42 emotions.
+0.72
[04] I am not [02] I have difficulty pesple feel st case. £0.45 [A8] | take time
interested in understanding abstract +0.60 out for others.
abstract ideas. 2deas 09 .
. I spend t ) -0.34 A7]. t reall
r[eﬂec ané‘c’,‘i,"tm.'\';‘f [A3] 1insult people. L3 0.69 .[nterjst:ﬂnngn::?s.v
-0.13
- H +0.26 +0.10 +0.56 [AG] 1 have a soft heart.
Conscientiousness ' [N6] 1 get 077|068
[N5] 1am upset easily. 012 [A5] 1am not interested in
c5 casily dishnbed . other people's problems.
[C5] Jget chores ’ [A4] | sympathize with
done right away. +0.31 +0.43 others’ feelings.
[C8] | shirk my duties. +0.40 [N4] I seldom feel blue.
l[ncei]o; W\?ﬁgesa <& R N 10]. . [NZ]fI t:;‘m relaxed
- T \often feel blue most of the time. - =
[C7] | like order. [C3] | pay attention to details. +0.40 +0.42 [Nl] et Neur0t|C|Sm
e
+042| +049 stressedgout easily.

+0.59
el [N3 1 worry

[Cl] I am always about things. [N9] I get £N8] 1 have

prepared. [C9] I follow a schedule. \ ) equent mood
irritated easily. wings.
[C].O] lam ECG] | often forget to put things
exacting in my work. chl l leave my ack in their proper place. +0.79
elongings around.
[N7] I change

my mood a lot.

- Dong, Huang, Ng, Song, Zheng, |in, Legaspi, Spirtes, Zhang, “A Versatile Causal Discovery Framework to Allow Causally-Related
Hidden Variablés,” ICLR 2024


https://en.wikipedia.org/wiki/Conscientiousness

Example: Big 5 Questions Are Well Designed but...

- Dong, Huan

06! | do not have
!goo imagination. open ness [EZ]
0.73  [O5] 1 have [E7] 1talk to
excellent ideas. different peop
[0d3] | have a +0.74 @ [010] I am full of
vivid imagination. ideas.
s 48,33 .734»0 8; = [E3] | feel com
around people.
07 I am quick to
understand things.
+0.23
+0.58 | +0.66
[08] | use difficult  +0.62 [01] | have a +0.51
words. rich vocabulary.
-0.54 g
[04] lamnot . ., [02] 1 have difficulty .
interested in understanding abstract
abstract ideas. ideas. [09 I spend time
reflecting on things. 0.09
C — t —~ +0.26
onscientiousness +0.21
[CS] | get chores
done riglst away.
Y .neca |




Real Problems Addressed with CRL.

® Deep reinforcement learning



A Causal Perspective on Reinforcement
Learning

® Potential issues in deep RL algorithms

® Lack interpretability
® Not generalize well

® Data hungry

e Mitigate such issues through causal representations
and graph structures




Four Categories of State Representations in
RL

Controllable Uncontrollable

e D
Reward- | Speed, position, Surrounding

Relevant and direction vehicles
& 3

r w
Reward- Music and [ Remote ]

Irrelevant | air conditioner scenery
\ J

e 57" : controllable and reward-
relevant state variables

° S?r : reward-relevant state variables
that are beyond our control

° S?F . controllable but reward-
1rrelevant factors

® S?? : uncontrollable and reward-
irrelevant latent variables

Liu*, Huang®*, Zhu, Tian, Gong, Yu, Zhang. Learning world models with identifiable factorization. Arxiv, 2023.



Four Categories of State
Representations in RLL

Controllable Uncontrollable
S?r ar

\)
4
Reward- | Speed, position, Surrounding
Relevant and direction vehicles
Reward- Music and Remote
Irrelevant | air conditioner scenery
ar a7

A S?

® Each category 1s identifiable!

- Liu*, Huang*, Zhu, Tian, Gong,Yu, Zhang. Learning world models with identifiable factorization. Neur|PS 2023



Estimated latents

~ar
St

car
t

Experimental Results on Latent States
Recovery

0.98

0.03

sgr

R?=0.9839

0.15 0.01

0.02 0.03

ar ar
St St

True latents

(a)

1.0

0.8

0.6

0.4

0.2

0.0

Average R?: s; to S¢

IFactor (ours)

R2 =0.9850
0.03 5 0.13 0.03 0.06
m |-
- g,
C
b o
L, ©
. >
2
.- 0.02 0.02 0.12
sé g Ed Ed B
Estimated latents
L -_— = — — I — I —
| ¥ | [ %] | ¥ | na
L L L L
: & o o
SRR T L M s S D e R s S

—— DenoisedMDP 1.0
BetaVAE
- FactorVAE
- PCL
—— SlowVAE 0.8
TDRL
o 0.6
=
)
= 04
i 0.2
0.0
0 1 2 3 4 5 6 8
Training Steps o
(c)
| ~ | [ * ]
4 us
s | & ]
- wa:- - -» Cart position
e L=
:|:---» Pole angle
- -
| —
B ik
— ==..__» (reeness
i ' wa % Distractor
| = | | = |
e m—

Average R?: $; to s;

0 1 2 3 4 5 6 7 8
Training Steps =

(d)

Modified Cartpole
with two distractors



Experimental Results on Policy Learning

700 — o
i zf+st ‘ /‘ w w

C 600 — s 1‘ Q‘M\, 4,’.7\\('\‘. w‘\ y }(‘M V‘/‘ /

% “\ MM’“ , ( f‘" “A"‘VK‘JV “Q\

i | M '

® 500 "'

2

3400 ‘l\‘:,'j‘,' V

0.0 0.2 04 0.6 0.8 1.0
Environment Steps -

Episode return with different state representations



Real Problems Addressed with CRL.

® Multi-model CRL in healthcare



06518v3 [cs.LG] 16 Mar 2025

Published as a conference paper at ICLR 2025

CAUSAL REPRESENTATION LEARNING FROM MULTI-
MODAL BIOMEDICAL OBSERVATIONS

Yuewen Sun' 2} Lingjing Kong?*, Guangyi Chen'2, Loka Li', Gongxu Luo!, Zijian Li,
Yixuan Zhang', Yujia Zheng?, Mengyue Yang?>, Petar Stojanov?, Eran Segal',

Eric P. Xing!?, Kun Zhang'-2

Mohamed bin Zayed University of Artificial Intelligence, ?Carnegie Mellon University,
3University of Bristol, Broad Institute of MIT and Harvard

ABSTRACT

Prevalent in biomedical applications (e.g., human phenotype research), multi-
modal datasets can provide valuable insights into the underlying physiological
mechanisms. However, current machine learning (ML) models designed to ana-
lyze these datasets often lack interpretability and identifiability guarantees, which
are essential for biomedical research. Recent advances in causal representation
learning have shown promise in identifying interpretable latent causal variables
with formal theoretical guarantees. Unfortunately, most current work on multi-
modal distributions either relies on restrictive parametric assumptions or yields
only coarse identification results, limiting their applicability to biomedical re-
search that favors a detailed understanding of the mechanisms.

In this work, we aim to develop flexible identification conditions for multimodal
data and principled methods to facilitate the understanding of biomedical datasets.
Theoretically, we consider a nonparametric latent distribution (c.f., parametric as-
sumptions in previous work) that allows for causal relationships across potentially
different modalities. We establish identifiability guarantees for each latent com-
ponent, extending the subspace identification results from previous work. Our key
theoretical contribution is the structural sparsity of causal connections between
modalities, which, as we will discuss, is natural for a large collection of biomed-
ical systems. Empirically, we present a practical framework to instantiate our
theoretical insights. We demonstrate the effectiveness of our approach through



CRL from Multi-Modal Data?
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Figure 1: Multimodal data with causa



Part of the Result on Human Phenotype
Data

sleep monitoring Fundus imaging data for
data both right and left eyes
p (FRight and FLeft)
A: Hand grip l‘l [23] FRight3 '/' B: Medical Condition
[A1] Left hand's grip strength © : »O [B1] Cataract
[A2] Right hand's grip strength o \ [Z3] FRight1 O [B2] Glaucoma
[A3] Dominant hand © ) [1] Sleep 3

O [B3] Retinal detachment

[Z1] Sleep 1

C: Sleep D: Anthropometries
[Z3] FRight2

[C1] Oxygen saturation ©

[z1] Sleep 2 o [D1] Sex
[C2] Sleep efficiency O [D2] Age
[C3] Snore dB O (2] Fleft 3 [Z2] FLeft 1 O [D3] BMI

[22] FLeft 2

Figure 6: Causal analysis results across different modalities, including hand grip, medical conditions, sleep, and

anthropometries. We ran the causal algorithm on all variables but reported only the causal relations that have direct
connections to the estimated latent variables for clarity.



Real Problems Addressed with CRL.

® (Generative Al: Image generation and refinement



Dealing with Age vs. Eyeglasses

® '|'hey are dependent in the data

® Whatif we treat them as features that we can manipulate
independently/separately?

ZZage

eyeglasse

€c

Generator . D'J

® 50, changing one of them may lead to change in the
perception of the other

24



Causal Asymmetry

® Age — Liyeglasses: interventions on Age may change
Eyeglasses, but not the other way around

® lunctional causal model: Eyeglasses = f{Age, €pyeoiasses)> Where

€Eyeglasses J_|_ Ag€

e Intervention on Eyeglasses via changing ez, o5es !

/

age
€Eyeglasse

€c

Generator . D—J

e Moreover, minimal changes for both Z 100 and €Eyeglasses

- Xie, Zheng, and Zhang, under submission



Causal Graph Among Labels in the Data

e [IFHQ dataset
(Karras et al.,

2019)

® Pre-trained
classifier to

obtain 37

attributes

® (ausal graph
learned by
causal-learn (PC)

® '|'hen perform
1mage
generation or
editing

ssssssssss



Comparisons: Generation with Ditterent Conditions

GPT- Meta Al Stable 3  FaceDiffusion ru Corresponding to:

girl with mustache,

girl with goatee,

bald girl,

male with mustache,

male with goatee, and

bald male



CLIP doesn’t Have a Generative View

® Going beyond CLIP

(Contrastive Language-Image R |

Pretraining) model e
® We developed SmartCLIP to A

deal with mussing text into and — W

unparred data — EE]

® Better alignment T

® (Lausal/generative view?

- Xie, Kong, Zheng,Yao, Tang, Xing, Chen, and Zhang, under subnission



Motivation: Controllability for Image
Generation / Editing

® lixisting text-to-image (121) models are not controllable:
editing a specific feature through text often causes
unwanted changes




From "lext to Images: T'’he Process

l I text

”~ ”~ ”~

T zl.T . atomic textual concepts
AT \1‘\\\1&\ I
1 *2 A3  *4 ?5

Z]-I: atomic visual concepts

l I: images
|

 Jext and images have atomic concepts

 Textual atomic concepts determine their visual counterparts: why?

- Xie, Kong, Zheng, Tang, Xing, Chen, and Zhang, under submission



L.earning ldentifiable Concepts for
Controllability

l - text

”~ ”~ ”~

2 zo zd z) z.l: atomic textual concepts
1 2 3 4 j
1} ) I" \I&\\I&\ I
<1 *2 R3 <4 ~5

7!

i atomic visual concepts

l I: images

Certain sparsity constraints on the cross links + conditional independence of
Image concepts = identifiable concepts:

1. Learning disentangled, atomic concepts z,,,T1 and z}l.

2. Aligning them. 3



Prevailing generative Al tools: not
controllable

[Genera're a feM [ Panda eating bamboo l [ A smiling girl in\gar'/de_n]
! | | TN : 4
e I\ Rlad K3 ‘

[Can you add mus‘r\acﬁﬂ]

Examplel: Add Mustache Example2: Change the style Example3: Change facial expression.

32



Our Causal GenAl Enables Precise Control
& Refinement

Example 3: Change facial expression

inrl in garden J

L) B
..........
.......
........
.....
.......
.........
......

Example1: Add Mustache

M/a female face ]

i

_

’J ’7 ’ :,
Mdd mustache ?]
2

»
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OO0
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)
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Our Causal GenAl Enables Precise Control
& Refinement

Example1: Add Mustache

Ma female face }

|

Example 3: Change facial expression

mgirl in garden ]

Ours

J,, ' / ‘/ ”
Mdd mustache ?] *
2




Summary: Real Problems of CRL

In neuroscience

® [.ocalization & causal analysis from EEG/MEG data (latent
variables; changing distributions)

® linding regions of interest from {MRI data (causal abstraction)
Psychometric studies (latent variables, 1.1.d. case)

Deep reinforcement learning (temporal constraints)

Multi-model CRL in healthcare (multi-modal learning)

Generative Al: Image generation and refinement (latent variables;

)



