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Outline

Domain adaptation / transfer learning: What and Why?
Iraditional approaches to domain adaptation
Adaptive methods for domain adaptation

® Related problems: image translation, multi-domain generation

Future of domain adaptation



Domain Adaptation
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® ‘|raditional approaches to domain adaptation



Possible Situations for Domain
Adaptation: When X—=Y

covariate shift s

(Shimodairaoo; Sugiyama etal.0o8; Huang
etal.o7, Gretton etal.08...)
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may Matter in Prediction: An
[llustration

e

o

Understanding connections between different scenarios
& modeling difterences



What Features/Components to Transfer?

e Invariant cause distribution (Zhang et al., ICML’13)

e Invariant/transferrable causal mechanism (Zhang et al., ICML’13;
AAAT’14; Gong et al, ICML’16): invariance of P(X¢<|Y)

e Nonparametric transfer learning (Stojanov et al. AISTATS’19; Gong et
al, ICML’18; Zhang et al., NeurIPS’20)

o Detect, model, utilize changes

e Even 1f one aims to find invariant representation, the transformation 1s
domain-specific (Stojanov et al., NeurIPS’21)



Possible Situations for Domain
Adaptation: When Y—X (Zhang et al., 2013)

Y lly th fX 0 %I‘?; 2 (é;j? §' 697 '
® Y 1s usually the cause o W
(especially for classification) :33:} 2-77%8/3 ‘ *@

o Target shift (TarS) <0maZTD—>®_>®

PN

LN

e Conditional shift (ConS)
@ O-@ [

e Generalized target shift (GeTarS) helps

(0mazD->@—>@ i

PY|X

involved parameters estimated by matching Px

Zhang et al., ICML 201 3; Scholkopf et al., 2012; Zhang et al., AAAl 2015; Gong et al., ICML
2016; Stojanov et al., AISTATS 2018; Zhao et al., ICML 2019; Fu et al, CVPR 2019...




Target shift GT)~®

e Pl¢ £ PI' but P§§|Y = P”|Y, and furthermore
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® ratio *(y) can be estimated by min.D( / Y B(y)PY|ydy ): difficult !



Correcting TarS by Reweighting Target to
Match Covariate with KMM
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® (P problem: unique solution to 3!

® reparameterization such that f 1s a function of & smooth 1n y: still a
QP problem




Correction for TarS: An illustration

T

X

= ' predicted by target shift

= =y fitted on test data (oracle)
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Conditional shift

Cdomain> (1)~ @

o Il Pt€|y + PY y» possible to determine Pfﬁ P

e In general, not possible: marginal P¥ do not contain enough
information to determine Py, (or Pyix)

® Change in Px |y must be constrained



"Traditional Methods Assume How
Distribution Changes...

e (Covariate shift @0 maz’D—>®_>@

e Target shift d

e Conditional shift

damai@@)

How to discover and leverage the changeability of the distribution, especially
in complex situations?

(Shimodaira 2000; Sugiyama et al. 2008; Huang et al. 2007, Zhang et al.,, 2013; Zhang et al.,
2015; Gong et al., 201 6; Stojanov et al., 2018...)
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® Adaptive methods for domain adaptation

® Related problems: 1image translation, multi-domain generation



A General (& or &) Approach

Domain Generalization by Marginal Transfer Learning

Gilles Blanchard BLANCHARDQUNIVERSITE-PARIS-SACLAY.FR
Université Paris-Saclay, CNRS, Inria, Laboratoire de mathématiques d’Orsay

Aniket Anand Deshmukh ANIKETDEQUMICH.EDU
Microsoft AI € Research

Urun Dogan URUNDOGAN@QGMAIL.COM
Microsoft AI € Research

Gyemin Lee GYEMIN@QSEOULTECH.AC.KR

Dept. Electronic and IT Media Engineering
Seoul National University of Science and Technology

Clayton Scott CLAYSCOTQUMICH.EDU
Electrical and Computer Engineering, Statistics
University of Michigan

Abstract

In the problem of domain generalization (DG), there are labeled training data sets from
several related prediction problems, and the goal is to make accurate predictions on future
unlabeled data sets that are not known to the learner. This problem arises in several ap-
plications where data distributions fluctuate because of environmental, technical, or other
sources of variation. We introduce a formal framework for DG, and argue that it can be
viewed as a kind of supervised learning problem by augmenting the original feature space
with the marginal distribution of feature vectors. While our framework has several con-
nections to conventional analysis of supervised learning algorithms, several unique aspects
of DG require new methods of analysis.

This work lays the learning theoretic foundations of domain generalization, building on
our earlier conference paper where the problem of DG was introduced (Blanchard et al.,
2011). We present two formal models of data generation, corresponding notions of risk, and
distribution-free generalization error analysis. By focusing our attention on kernel meth-
ods, we also provide more quantitative results and a universally consistent algorithm. An

1711.07910v3 [stat.ML] 6 Jan 2021



A General Approach: Method

Domain Generalization by Marginal Transfer Learning

Consider a test sample ST = (XJT, Y]T)lgjgn,_,,, whose labels are not observed. If £ : Rx )Y
R, is a loss function for a single prediction, and predictions of a fixed decision function f
on the test sample are given by Y}T =f (P;"g, X;-T), then the empirical average loss incurred
on the test sample is

1 &5
L(ST, ) i= = D AV Y.
j=1

Thus, we define the risk of a decision function as the average of the above quantity when
test samples are drawn according to the same mechanism as the training samples:

E(f) = Esrop, [L(ST, )] = Bsrap, | — 3 4(F(PE, XT),¥7T)

j=1

In a similar way, we define the empirical risk of a decision function as its average prediction
error over the training samples:

- 1 — 1 o~ 1 S, =
E(f,N) =+ ;c(sz-,f) =N Z;af(P}(),Xij),nj)- (2)

=1 )=

o

— 2011). We present two formal models of data generation, corresponding notions of risk, and
~ distribution-free generalization error analysis. By focusing our attention on kernel meth-
A ods, we also provide more quantitative results and a universally consistent algorithm. An



Do You Agree with Their Categorization?

The key difference between DG and DA may be found in the performance measures
optimized. In DG, the goal is to design a single predictor f(Px,x) that can apply to any
future task, and risk is assessed with respect to the draw of both a new task, and (under
2SGM) a new data point from that task. This is in contrast to DA, where the target
distribution is typically considered fixed, and the goal is to design a predictor f(x) where, in
assessing the risk, the only randomness is in the draw of a new sample from the target task.
This difference in performance measures for DG and DA has an interesting consequence
for analysis. As we will show, it is possible to attain optimal risk (asymptotically) in DG
without making any distributional assumptions like those described above for DA. Of course,
this optimal risk is typically larger than the Bayes risk for any particular target domain
(see Lemma 9). An interesting question for future research is whether it is possible to
close or eliminate this gap (between DG and expected DA risks) by imposing distributional
assumptions like those for DA.

Another difference between DA and DG lies in whether the learning algorithm must be
rerun for each new test data set. Most unsupervised DA methods employ the unlabeled
target data for training and thus, when a new unlabeled target data set is presented, the
learning algorithm must be rerun. In contrast, most existing DG methods do not assume
access to the unlabeled test data at learning time, and are capable of making predictions

as new unlabeled data sets arrive without any further training. I
""""""""" vieWed a5"4 Kihd' of supervided 18ariiny broblém” by A0ghientihg" fAé Origmal "feat ke Space™ == === ======""
with the marginal distribution of feature vectors. While our framework has several con-

nections to conventional analysis of supervised learning algorithms, several unique aspects

of DG require new methods of analysis.

\"

This work lays the learning theoretic foundations of domain generalization, building on
our earlier conference paper where the problem of DG was introduced (Blanchard et al.,
2011). We present two formal models of data generation, corresponding notions of risk, and
distribution-free generalization error analysis. By focusing our attention on kernel meth-
ods, we also provide more quantitative results and a universally consistent algorithm. An

:1711.07910



NeurIPS 2020

Domain Adaptation As a Problem of Inference on
Graphical Models

Kun Zhang*, Mingming Gong*, Petar Stojanov, Biwei Huang, Qingsong Liu, Clark Glymour

Abstract

This paper is concerned with data-driven unsupervised domain adaptation, where
it is unknown in advance how the joint distribution changes across domains, i.e.,
what factors or modules of the data distribution remain invariant or change across
domains. To develop an automated way of domain adaptation with multiple source
domains, we propose to use a graphical model as a compact way to encode the
change property of the joint distribution, which can be learned from data, and
then view domain adaptation as a problem of Bayesian inference on the graphical
models. Such a graphical model distinguishes between constant and varied modules
of the distribution and specifies the properties of the changes across domains, which
serves as prior knowledge of the changing modules for the purpose of deriving the
posterior of the target variable Y in the target domain. This provides an end-to-end
framework of domain adaptation, in which additional knowledge about how the
joint distribution changes, if available, can be directly incorporated to improve the
graphical representation. We discuss how causality-based domain adaptation can
be put under this umbrella. Experimental results on both synthetic and real data
demonstrate the efficacy of the proposed framework for domain adaptation.

1 Introduction 18



Nonstationary/Heterogeneous Data and

Causal Modeling

® Ubiquity of nonstationary/heterogeneous data

® Nonstationary time series (brain signals,
climate data...)

® Multiple data sets under different o m e e @ 1w
observational or experimental conditions

® (Causal modeling & distribution shift heavily

Huang, Zhang,
Nonstationary Data," JMLR, 2020

Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018

Iscovery from Heterogeneous/




Causal Discovery from Nonstationary/
Heterogeneous Data

. Parametric Latent
9
l \.1.d. data constraints? confounders?
Yes No No /g (C)\
‘ No Yes Yes i@%@ @
o Task:

® Determine changing causal modules &
estimate skeleton

® (lausal orientation determination benefits
from independent changes in Pcause) and
Pleffect | cause), including invariant
mechanism/ cause as special cases

Kernel nonstationary
across data sets? driving force estimation

® Visualization of changing modules over time/

— Huang et al.,, "Causal Discovery from Heterogeneous/Nonstationary Data," IMLR, 2020
- Tian, Pearl,“Causal discovery from changes,” UAI 200 |

- Hoover, “The logic of causal inference” Economics and Philosophy, 6:207—234, 1990.



Discovery & Visualization of

Changing Causal Modules

* Questions to answer for causal discovery:

With our proposed approach:

e Identify variables

with changing : o |
causal modules & @ \Y@ @ \T‘

recover causal
skeleton?

e Identify causal .
directions by using : @
distribution shifts? :

* Visualize the : Kernel nonstationarity

change in causal évisualization (KNV)
modules? '

21

Incorporate time/domain
index C as a surrogate +
apply constraint-based
causal discovery methods

Independent changes 1n
P(cause) and P(effect |
cause)

Find a mapping of P(V;|
PA?) to capture its
variability



Finding Causal Skeleton and
Changing Modules

g(C)
e Incorporate C into the variable set as a @/ \.
surrogate + apply constraint-based @% %@4)%@
causal discovery ox( C)/

e Detecting changing causal modules .
I\C \

e “Robust” causal skeleton discovery @_@Z @

e We can find the correct causal skeleton
asymptotically correctly, as if the Crucial to use nonparametric
confounders were known

conditional independence test !

Theorem 1. Given the previous assumptions, for every V;,V; € V, V; and V;

are not adjacent in the original causal DAG G if and only if they are independent
conditional on some subset of {Vi |k # 1,k # j} U{C}.



61(C) 02 (C)

Nonstationarity Helps |
Determine Causal Direction )—@)

e Independent changes in P(cause) and P(effect | cause):
generalization of invariance; generally violated for wrong directions

o o o e
e Special cases: if C —V;, — V], since C — V},, we known 2




An Approach to Data-Driven Domain
Adaptation

Target-domain

Data set 1 unlabeled data

Data set 2

= Prediction in

Data set n larget-domain

® Only relevant features needed to predict Y

® Augmented graph learned by CD-NOD
e Independently changing modules 6;

® Special case: invariant modules

@

Judea Pearl & @yudapearl - Feb 14, 2020

For ML folks, "domain adaptation" connotes an insurmountable obstacle.
For Cl folks it is a causal graphs problem embraced under

® Infer the po

® Nonparame "transportability" theory. This paper arxiv.org/pdf/2002.03278... views the
problem as Bayes inference on graphical models.
Zhang*, Gong™, Stojanov, Ht #Bookofwhy

Models," NeurlPS 2020. (F,




To Model Changing Conditional

Distributions
® Assume Y —X
® Why & how does the ¥) {
distribution change across B
domains? . :

® Generative network + (minimal)
(latent) parameters @ to model o, ——
changes in the causal process

f (rep-

resented
by NN)

® Understanding & generating
new domains

25

S

T xR

2w Y =
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Results on Simulated & Real Data

Table 1: Accuracy on simulated datasets for the baselines and proposed method. The values presented
are averages over 10 replicates for each experiment. Standard deviation is in parentheses.

DICA weigh simple_adapt comb_classif LMP poolSVM Infer
9 sources  80.04(15.5) 72.1(14.5) 70.0(14.3) 72.34(16.24) 78.90(13.81) 71.8(11.43) 83.90(9.02)
4 sources 74.16(13.2) 67.88(13.7)  65.22(16.00) 69.64(15.8) 79.06(13.93) 70.08(12.25) 85.38(11.31)
2 sources 86.56(13.63) 75.04(18.8) 69.42(17.87) 74.28(18.2) 84.52(13.72)  83.84(13.7) 93.10(7.17)

Table 2: Accuracy on the Wi-Fi & Flow data. Standard deviation is in parentheses.

DICA weigh LMP poolSVM Soft-Max poollNN Infer
£2,t3 — t1 29.32(2.5) 43.71(3.02) 46.80(1.4) 40.25(1.6) 44.86(5.1) 42.88(1.6) 70.8(2.7)
t1,83 512 245(3.6) 38.19(1.9)  30.11(2.1)  48.70(1.8) 44.95(4.4) 47.41(2.1) 84529) (L)
t1,t2 > t3  21.7(3.9)  36.03(1.85) 39.28(2.05) 40.46(1.4) 43.63(4.1) 41.00(1.8) 83.0(7.3)
Flow 3 sources 79.2(11.0) 84.2(9.3) 91.6 (8.4) 92.1(7.5) 89.0(9.7) 95.7(5.2) 96.8(3.5)
Flow 5 sources  83.1(12.0) 92.9(7.0) 92.3 (6.4) 94.7(6.1) 89.7(8.0) 96.0(5.1) 97.1(3.5)

Table 3: Accuracy on the digits data. T: MNIST; M: MNIST-M; S: SVHN; D: SynthDigits.

weigh poolNN poolDANN Hard-Max Soft-Max poolNN_Ours Infer
S+M+D/T 75.5 93.8 92.5 97.6 97.9 94.9 96.64
T+S+D/M 56.3 06.1 65.1 66.3 68.7 09.6 89.89
M+T+D/S 604 77.1 77.6 80.2 81.6 67.8 89.34




Transter Learning on WIFI Data

Input X: WiFi signal strengths from b dhck ok
multiple routers; Y : location

® 'Transfer from two time periods to
another (e..g, t1, 12 — t3)




Causality & Transterability

Causality helps

But hard to find (rather strong =

assumptions) %

And perhaps not necessary to R

achieve transferability o “Ifa particular stimulus in the
dog's surroundings was present

® Think about classical when the dog was given food

then that stimulus could
become associated with food
and cause salivation on its
own.”’

conditioning

28
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® ‘o represent independent changes in the joint distribution

® (ausal graph VS, augmented DAG

| bgcause pb(Y|X) is | 0
s invariant across domains .

@_> D)

(a) The underlying data generating process of Example (b) The augmented DAG representation for
1. Y generates (causes) X, and S denotes the selection Example 1 to explain how the data distribu-
variable (a data point is included if and only if S = 1).  tion changes across domains.

0x

nx
T, / because p(Y) is =
@/ \® invariant across domains <: ) 5 @m

(c) The generating process of Example 2. L is a con- (d) The augmented DAG representation for
founder; the mechanism of X changes across domains, Example 2 to explain how the data distribu-
as indicated by 7nx. tion changes across domains.




What Changes Lead to Distribution
Shift?

e Distributions of measured features or their relationships 1n
between

e Due to changes in hidden variables (illumination conditions,
temperature...)?



Partial Identifiability for Domain Adaptation

Lingjing Kong! Shaoan Xie !

Weiran Yao

1

Yujia Zheng! Guangyi Chen?! Petar Stojanov

3

Victor Akinwande'! Kun Zhang?!

Abstract

Unsupervised domain adaptation is critical to
many real-world applications where label informa-
tion is unavailable in the target domain. In general,
without further assumptions, the joint distribution
of the features and the label is not identifiable
in the target domain. To address this issue, we
rely on a property of minimal changes of causal
mechanisms across domains to minimize unnec-
essary influences of domain shift. To encode this
property, we first formulate the data generating
process using a latent variable model with two par-
titioned latent subspaces: invariant components
whose distributions stay the same across domains,
and sparse changing components that vary across
domains. We further constrain the domain shift to
have a restrictive influence on the changing com-
ponents. Under mild conditions, we show that
the latent variables are partially identifiable, from

31

domain indices u, the training (source domain) data follows
multiple joint distributions Py yiu,» Px.y|uss - Px,ylun>
and the test (target domain) data follows the joint distri-
bution py |7, Where py |, may vary across uj, Uy, ...,
u)s. During training, for each ¢-th source domain, we are
given labeled observations (xgj), y,(:) )it from py vy, and
target domain unlabeled instances (x] )35, from py y(u-
The main goal of domain adaptation is to make use of the
available observed information, to construct a predictor that

will have optimal performance in the target domain.

It is apparent that without further assumptions, this objective
is ill-posed. Namely, since the only available observations in
the target domain are from the marginal distribution py,7,
the data may correspond to infinitely many joint distribu-
tions py y|,7- This mandates making additional assump-
tions on the relationship between the source and the target
domain distributions, with the hope to be able to reconstruct
(identify) the joint distribution in the target domain py y|,,7-
Tvpicallv. these assumptions entail some measure of sim-



Finding Changing Hidden Variables for

Iranster Learning

| . Parametric Latent g
?
l \1.d. data constraints? confounders? S g X
Yes No No 1 —p
No Yes Yes

® Underlying components Z¢ may change across domains

® (hanging components Z¢ are identifiable; invariant part Z, are identifiable up to

1ts subspace

e Using invariant part Z. and transformed changing part Zj for prediction

Models — Art — Clipart ~ — Product — Realworld | Avg

Source Only (He et al., 2016) | 64.58+0.68 52.32+0.63 77.63+0.23  80.70+0.81 | 68.81
DANN (Ganin et al., 2016) 64.26+0.59 58.01+£1.55 76.44+0.47 78.80+0.49 | 69.38
DANN+BSP (Chen et al., 2019) | 66.10+0.27 61.03+0.39 78.13+0.31  79.92+0.13 | 71.29
DAN (Long et al., 2015) 68.28+0.45 57.92+0.65 78.45+0.05 81.93+0.35 | 71.64
MCD (Saito et al., 2018) 67.84+0.38 59.91+0.55 79.21+£0.61  80.93+0.18 | 71.97
M3SDA (Peng et al., 2019) 66.22+0.52 58.55+£0.62 79.45+0.52  81.35+0.19 | 71.39
DCTN (Xu et al., 2018) 66.92+0.60 61.82+0.46 79.20+£0.58  77.78+0.59 | 71.43
MIAN (Park & Lee, 2021) 69.39+0.50 63.05+0.61 79.62+0.16  80.44+0.24 | 73.12
MIAN-~ (Park & Lee, 2021) 69.88+0.35 64.20+0.68 80.87+0.37 81.49+0.24 | 74.11
iMSDA (Ours) 75.77+£0.21 60.83+0.73 84.13+0.09 84.83+0.12 | 76.39

Table 2. Classification results on Office-Home. Backbone: Resnet-50. Baseline results are taken from (Park & Lee, 2021).

Kong, Xie,Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022



Implementation of Partial
Disentanglement for Domain Adaptation

x
'
fu fx
‘ v
.......... .ZAC 23 ._..:.... —> g —> f
A R R B A ‘-"
Figure 1. The generating process: The gray shade e
of nodes indicates that the variable is observable. fu
ceennnnns ..
.... 5 g tte., ~
...... Ze | Jas | T
| network | net k
e | 0] e T
N(0,I)

Figure 2. Diagram of our proposed method, IMSDA. We first apply
the VAE encoder (f,., fs) to encode x into (Z., zs), which is

further fed into the decoder g for reconstruction. In parallel, the
loss = ||x-x|]2= ||x-d()]|]? = || x-d(e(x))|] changing part Z; is passed through the flow model fu to recover the
high-level invariant variable z;. We use (Z., zs) for classification

Autoencoder with the classifier fqs and for matching NV (0, I) with a KL loss.



Published as a conference paper at ICLR 2022

Application to RL

ADARL: WHAT, WHERE, AND HOW TO ADAPT IN
TRANSFER REINFORCEMENT LEARNING

Biwei Huang Fan Feng

Carnegie Mellon University City University of Hong Kong
biweih@andrew.cmu.edu ffenglO0l7@gmail.com
Chaochao Lu

University of Cambridge & Max Planck Institute for Intelligent Systems
cl64l@cam.ac.uk

Sara Magliacane Kun Zhang
University of Amsterdam & MIT-IBM Watson Al Lab  Carnegie Mellon University &
sara.magliacane@gmail.com Mohamed bin Zayed University of Artificial Intelligence

kunzl@cmu.edu

ABSTRACT

One practical challenge in reinforcement learning (RL) is how to make quick
adaptations when faced with new environments. In this paper, we propose a
principled framework for adaptive RL, called AdaRL, that adapts reliably and
efficiently to changes across domains with a few samples from the target domain,
even in partially observable environments. Specifically, we leverage a parsimonious
graphical representation that characterizes structural relationships over variables
in the RL system. Such graphical representations provide a compact way to
encode what and where the changes across domains are, and furthermore inform
us with a minimal set of changes that one has to consider for the purpose of policy
adaptation. We show that by explicitly leveraging this compact representation to
encode changes, we can efficiently adapt the policy to the target domain, in which
onlv a few samvles are needed and further policv ontimization is avoided. We

34



Adaptive RL: Procedure

Source domains

Target domain
1

._]1.

E"

Domain-specific parameters §

o

. Domaintshared representatio
Spe-1 = > S1e

SZ.:— 1

”*(Oim'n)
Optimal parametrised policy

Domain n

-1 7*(Ofarger)
timeslice t-1 timeslice t Optimal target policy

Model estimation

Figure 1: The overall AdaRL framework. We learn a Dynamic Bayesian Network (DBN) over the
observations, latent states, reward, actions and domain-specific change factors that is shared across
the domains. We then characterize a minimal set of representations that suffice for policy transfer, so
that we can quickly adapt the optimal source policy with only a few samples from the target domain.



Remember? Causal Representation Learning from
Multiple Distributions: A General Setting

Parametric Latent

i.i.d. data? ]
constraints? confounders? 92 93

Yes

. @%@@

® Goal: Uncovering hidden variables Z; with
changing causal relations from X in

nonparametric settings X
* Whatisidenufi We exploit the changes in causal
e Markov net mechanisms along with domain!

® FEach estimated variable Z; is a function of (25)(2) (25)—(2s)
Z. and 1t intimate neighbors 4:% /l\
@ 2)~2)2) @~z

® [n this example, each Zi (2?54‘) can be recovered (a) Gz, the DAG over true latent (b) The corresponding Markov
variables Z;. network M 7.

up to component-wise transformation

- Zhang, Xie, Ng, Zheng, “Causal Representation Learning from Multiple Distributions:A General Setting,” ICML 2024
36



A General Representation-Based Approach to Multi-Source Domain Adaptation

Anonymous Authors'

Abstract

A central problem in unsupervised domain adap-
tation is determining what to transfer from labeled
source domains to an unlabeled target domain. To
handle high-dimensional observations (e.g., im-
ages), a line of approaches use deep learning to
learn latent representations of the observations,
which facilitate knowledge transfer in the latent
space. However, existing approaches often rely on
restrictive assumptions to establish identifiability
of the joint distribution in the target domain, such
as independent latent variables or invariant label
distributions, limiting their real-world applicabil-
ity. In this work, we propose a general domain
adaptation framework that learns compact latent
representations to capture distribution shifts rela-
tive to the prediction task and address the funda-
mental question of what representations should be
learned and transferred. Notably, we first demon-
strate that learning representations based on all
the predictive information, i.e., the label’s Markov

source domain adaptation (MSDA) setup, each source do-
main u € {1,..., M} provides access to a labeled dataset
(x), y(W) = {(xg“), y,(:‘)) v, where m,, represents the
number of samples in domain u. Here, the i-th dimension
of the feature vector X is denoted as X;, and :L'S:) corre-
sponds to the value of the ¢-th feature for the k-th sample in
domain u. The goal is to train a classifier that generalizes to
an unlabeled target domain, where only the feature vectors

x" = {x] } >, are available.

Determining the joint distribution P% - in the target domain
based solely on the marginal distribution P5 is a fundamen-
tally underdetermined problem. In the absence of additional
assumptions, there are infinitely many possible joint dis-
tributions Py - that can align with the observed marginal
distribution. Therefore, assumptions that connect the source
and target domain distributions are essential for identifying
the target joint distribution. Common approaches impose
constraints to ensure a degree of similarity across these dis-
tributions. A widely adopted assumption is covariate shift
(Pan & Yang, 2009), which asserts that the conditional dis-

o o . : tribution Py x remains consistent across domains while

-’



Outline

® Related problems: 1image translation, multi-domain generation



Unsupervised Image-to-Image Iranslation

D N A Y r
¥
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Im 11N

Minimize the influence of ‘Style’on Image’ ¥4'%
during translation. A

How? A minimal number of changing
components?

Images from the winter season domain.
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MULTI-DOMAIN IMAGE GENERATION AND TRANSLA-
TION WITH IDENTIFIABILITY GUARANTEES
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ABSTRACT

Multi-domain image generation and unpaired image-to-to-image translation are
two important and related computer vision problems. The common technique
for the two tasks is the learning of a joint distribution from multiple marginal
distributions. However, it is well known that there can be infinitely many joint
distributions that can derive the same marginals. Hence, it is necessary to formulate
suitable constraints to address this highly ill-posed problem. Inspired by the recent
advances in nonlinear Independent Component Analysis (ICA) theory, we propose
a new method to learn the joint distribution from the marginals by enforcing

a specific type of minimal change across domains. We report one of the first
recnlte connectino multi-donmain cenerative mndele tn identifiahilitv and chnwe
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Sample Images Generated by
Generative Adversarial Networks (GANs)

Images generated by a GAN created by NVIDIA.
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https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf

Training set

Random
noise €

Generator

ﬁke image  Image credit: Thalles Silva

Discriminator

h {Fa ke

Minimax game which G wants to minimize V while D wants to
maximize it:

minmax V(D,G) = E

G D

z~pana(e) (108 D ()] + Ezp, (2 [log(1 — D(G(2)))].
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https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

2

2N

Random
noise €

GAN-Based e W

E == ke
Implementations

Generator & | /Fake image

(1)
€

»model the data distribution in
u-th domain

C =

Generator

_ Match the data distribution across domains, while the dimensionality of eéu)

is as small as possible (minimal changes across domains controlled by A; no
penalty when A=0)

- Correspondence relations among domains are identifiable
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Multi-domain Image Generation &
Translation with Identihiability Guarantees

® [dea: Matching the distributions across domains with a minimal
number of changing components

® (orrespondence info (joint distribution) identifiable under mild
assumptions

® [xample: Generating female & males images with the same “content”

Ours (A=0.1) StyleGAN2-ADA

- Xie, Kong, Gong, Zhang, “Multi-domain image generation and translation with identifiability guarantees”, ICLR 2023



Outline

Domain adaptation / transfer learning: What and Why?
Iraditional approaches to domain adaptation
Adaptive methods for domain adaptation

® Related problems: image translation, multi-domain generation

Future of domain adaptation



Transter learning with large language models

(LLMs)

® [nvolves leveraging pre-trained LLLLMs, trained on vast datasets, to
improve performance on specific tasks by fine-tuning them on smaller,
task-specific datasets, instead of training from scratch.

® Procedure: Pre-training, followed by fine-tuning

® Benefits:
® Reduced Training Time and Resources (for fine-tuning)
® [mproved Performance
® (eneralization

® Applications: language translation, sentiment analysis, question
answering. ..



Iranster learning & large models: My Opinion

® [nference in (hierarchical) large models

® Lxamples given before...



Summary: Domain Adaptation / Iranster
LLearning

Why domain adaptation / transter learning?
What it you have only a small number of domain?
What 1t you have access to many domains?

Future?



