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(Question to Answer

e Will the sun rise tomorrow?

e Matters of fact, which are the second objects of human reason, are not
ascertained 1n the same manner; nor 1s our evidence of their truth, however
oreat, of a like nature with the foregoing. The contrary of every matter of fact is still
possible, because 1t can never imply a contradiction, and 1s concewed by the mind with the
same facility and distinctness, as if ever so conformable to reality. I hat the sun will not rise
tomorrow 1s no less ntelligible a proposition, and ymplies no more contradiction, than the
affirmation, that it will nse. We should in vain, therefore, attempt to demonstrate its falsehood.
Were 1t demonstratively false, it would imply a contradiction, and could never

be distinctly conceived by the mind. —An Enquiry Concerming Human Understanding
(1772). Hackett Publ Co. 1993; Chapter on Gause and Effect.

e Do you agree? What can we do?



Making Use of Data:

Statistics...

® Connection between probability
theory & statistics

Brobhability

theory
Population Sample
Collect data
A
Draw Describe
Conclusions Sample
!
Statistical
Parameters | nference Statistics

Using sample statistics to estimate population parameters.

Statistical inference is the process of drawing conclusions about an underlying popule



Why Probability?

e Probability 1s a tool to understand
e what 1s randomness

e Random experiment: an experiment whose outcome 1s not
known to us
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To Define Probability

e Assume all possible outcomes of the random experiment are
known

e Consider the following examples...
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Why Probabilistic Thinking:
A Story

The actual science of logic 1s conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately) we
have to reason on. Therefore the true logic for this world 1s the calculus
of Probabilities, which takes account of the magnitude of the probability

which 1s, or ought to be, in a reasonable man’s mind.
James Clerk Maxwell (1850)



Events

® LEvent: A set of outcomes of an experiment, as a subset of the
sample space (2

® E.g, get6 from rolling a die
® Incompatible events, e.g., get 6 and get 2

® (Complementary events: Events 4 and [not 4]

® Possible events form a field of sets (event space) F

o {15,125, 35, 4, 155, 165, 11,25, 11,35, 1145, 11,55, 11,65, 12,35

® A field of sets over a nonempty set (2 is any collection of subsets of (2
that is closed under the intersection and union of pairs of sets and
under complements of individual sets



Probability: Axioms

m . y
. . -
- 3

® Probability measure on F over (2: a function P

defined on all sets in F and assigning each set
(event) a real number satisfying:

® Nonnegativity: P(A)eNR, P(A)20, VAeF

® Normalization: P(Q) =1

® Additivity: P(A UB)= P(A)+ P(B) for incompatible A and B




Conditional Probability

P(A|B): probability of A given B has occurred

® probability of getting 2 from the 2nd die given getting 6 from the 1st
Suppose P(B) # 0; 1t 1s then defined to be P(ANB) / P(B)

Fix B with P(B) # 0; then P(:|B) satisfies the probability
ax10ms

A and B are independent iff P(ANB) = P(A) P(B)
o [.c,P(AB)=P(A)

Product and sum rules are fundamental: :-)

e P(AnB)=P(A|B) P(B)

e P(A)=P(AnB) + P(An~B)



Roughly Speaking, Random
Variables and Their Realizations...

e A random variable 1s a variable whose possible values are
numerical outcomes of a random phenomenon.

e Lo, the sum of what I got on the two dice, the height of a
MBZUAI student, the daily return of a stock...
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Discrete vs. Continuous
Random Variables

® A random variable is discrete if its range (the set of
values that it can take) is finite or at most countably
infinite

® E. g, the sum of what I got on the two dice

® P(X=k) = P(lo: X(®) = £}); tabular representation for the
probability mass function (PMF)

® A random variable is continuous (not discrete) if its
range (the set of values that it can take) is uncountably
infinite

® [ g, the height of a CMU student
® Pla<X<b)=P(lo: a<Xm) <b})



How to Specity Prob. Measures
of Random Variables

® PMFs for discrete variables

® Cumulative distribution function (CDEF): T o
A function Fy:R—[0,1] which specifies as.
probability measure as |

Fx(x) 2P(X < x)

® Probability density function (PDF):
derivative of the CDF for continuous
variables whose CDVFs are differentiable

everywhere

A dF' X (ZC) ,’

px(z) = dx



Probability Measure: Examples

— Discrete variables:

— Bernoulli(p):

the discrete probability distribution of a random variable which takes the
value 1 with probability p and the value 0 with probability g=1-p.

P(X=1)=p.
— Binomial(n,p):

the discrete probability distribution of the number of successes in a
sequence of n independent experiments, each with its own boolean-
valued outcome: success (with probability p) or failure (with probability
q=1—-p).

n

P(X=k) = ( K

)p"(l —p)" "



Probability Measure: Examples

- Continuous variables:

Gaussian Exponential Uniform

Shape of the Gaussian pdf Shape of the Exponential pdf Shape of the Uniform pdf
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Some Distributions
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Conditional Distributions

® Joint/marginal PMFs, CDFs, and PDFs:
straightforward

® What is the probability distribution over X, when
we know Y must take a certain value y?

® Discrete case: Provided Py (y)#0, conditional PMF

of X given Y is Pyy (2.7)

Py (y)

Pxy =

® Continuous case: Provided py(y)#0, conditional

PDF of X given Y is
pXY(x7 y)

py (¥)

Px|ly =



A Question...

® With § coins which are not necessarily fair, how Q ) _
many parameters to represent the joint Q
probability distribution P(O;,0;,...,05)?

® [n practice we often need fewer parameters...

® Divide-and-conquer



Statistical Independence

® '[wo variables X and Y are independent if Fxy(x,)
= Fx(x) Fy(y) tor all values of x and y. Equivalently,

® For discrete variables, Pxy(x,y) = Px(x)Py(y), or
Pxyy(x|y) = Px(x) whenever Py (y)£0

® Lor continuous variables: p instead of P



Pairwise Independence vs.
Mutual Independence

® Pairwise independent: every pair of random
variables is independent

® Mutually independent: Fxix..x: (x,) = Fx: (x1) Fx:

® Three-coin example: A |l B; C is determined by A and
BbutClBand Cll A

® Pairwise independence? Mutual independence?



Ways to Produce Dependence

® Common cause underlying them
® causal relations between them

® Selection (conditioning on the effect)!



Another Example

® What if Xi’s are not mutually independent
but we know they were generated the
following way?

X1 —> Xo— ... X, slippery ground

falling down




Conditional Independence

® ‘[wo variables X and Y are conditionally independent
given Z it Fxyiz(x,y|z) = Fxz(x|z) Fyz(y|z) for all values
of x, y and z. Equivalently,

® For discrete variables, Pxyz (x,y|z) = Px iz (x|2)Pyz (y|2),
or Pxiyz(x|y,z) = Pxiz(x|z) whenever Pyz(y,z)#0

® Lor continuous variables...

® X || Y|Z: If Zis known, Y is not useful when modeling/
predicting X



Some Properties of
(Conditional) Independence

® Symmetry
® Decomposition
® Weak union

® (Contraction

Relation

ship between indepert

XU1lY = Y1IX

X 1(4,B) = and{X'U'A

X 1B

XU A|B

X U(A,B) = and{XJ_LB|A

X1 A|B
X1 B



Some Properties of
(Conditional) Independence

P(A,B|X) = P(A,B)

=P(A4|X) = P(A) (by marginalizing B out)

® Symmetry
® Decomposition
® Weak union

® (Contraction

X1lY = Y1IX

X1 A
X 1 B

XU A|B
X1UB|A

X 11(A,B) = and {
X U(A,B) = and {

XULA[BLl 4 = X.1(AB)
X 1l B



Some Properties of
(Conditional) Independence

P(X|4,B) = P(X);
P(X|4) = P(X).

=P(X|4,B) = P(X|A), i.e., X || B|A

® Symmetry
® Decomposition
® Weak union

® (Contraction

X1lY = Y1IX

X1 A
X 1(A,B) = and{XJ_LB
X1 A|B
X U(A,B) = and{XJ.LB|A
XJ'LAlB}and ~ X 1(A B)
XU B
endence?



Relation between Independence
and Conditional Independence

® If X| Y, are they conditionally independent given
Z?

® [f X| Y|Z, are they independent ?



Expectation, Variance, and
Standard Deviation

® Expectation:
X)] & Z g(x)Px(x) (for discrete varaibles) or

+00
Elg(X)] & / g(x)px (x)dx (for continuous varaibles)

® Mean of X: E[X]

® Variance: ‘_,
Var[X] £ E{|X — B(X)]?}

® Standard deviation: e
Std| X \/ Var|X -




Strong/Weak Relations?

Strong relationships

Weak relationships




Covariance and Correlation

® (Covariance: Cov[X,Y]| = E[(X — E[X])(Y — E[Y])]

® Uncorrelated if Cov[ X Y] =0

Cov|X,Y]
v/ Var[X|Var|Y]

® (orrelation: Corr[X,Y] =




Some Properties of
Expectation and Variance

k k

B2 o] = 3 Flaixi

k

[H X; } H FE|X;| if all variables are independent!

Var[aX + 0| = aZVar[X ]
k
Var[z } Z a; Var[Xi] if all variables are uncorrelated!

1=1



Are They Uncorrelated?

Be careful with correlation (covariance)...



Independence and
Uncorrelatedness

® Independence = uncorrelatedness

® How about the reverse direction?



Normal
Distribution

1 _ (z—p)?
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Normal Distribution

® Very common distribution (sometimes also informally

known as bell curve)

® PDF specified by mean p and standard deviation o (or

variance 02):

(z] ) 1 _ (= )2
px(x|p,o)= e 20
| V2021 f—>
) V—
(\eﬁote |
O{&6ﬂ 0 i?‘: 210 ‘é:l? 4:3 ;S%i?-— 6:3 70 a0 o0 1(:0
o 5o 50



Multivariate Normal . |
ovariance matrix

Distribution  z- [ Vet - Cpti )

® PDF for point x = (Xi,..., Xk), specified by mean p and

covariance matrix 1

2m)FS

(x —p)TE (x - u))

1
o (-

px(x) = 7

Sample & ma;fginzll



Some Distributions
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Some Properties of Normal
Distributions

“Simplicity” of the form; completely characterized by mean and
covariance; marginal and conditionals are also Gaussian

Uncorrelatedness implies independence

Has maximum entropy, given values of the mean and the
covariance matrix

Approximately holds in many cases because of central limit
theorem (CLT; see demonstrations)

Interested students may refer to Chapter 7 of
“Probability theory: The logic of science”



Central Limit Theorem: An
[llustration

. BN
® CLT: Under some conditions, S=-)_Xi converges to a

1=1
normal distribution for independent X; with finite mean
and variance

1 72 73

120 ; 200 ; ; ; 200

hist(U.) hist( (U1+U2)/sqrt(2)) hist( (U,+U_ +U,_)/sqrt(3) )

100
150 | 150
80
60 100 ¢ 100 |
40
50 50

20

0
-0.5 0 0.5 -1

® Are they really normal? Cramer’s decomposition theorem!
E. T. Jaynes. Probability Theory: The Logic of Science. 1994. Chapter 7.

38



CHAPTER 7

THE CENTRAL GAUSSIAN, OR NORMAL, DISTRIBUTION

“My own impression --- is that the mathematical results have outrun their in-
terpretation and that some simple explanation of the force and meaning of the
celebrated integral - - - will one day be found - -- which will at once render useless
all the works hitherto written.” - - - Augustus de Morgan (1838)

Here, de Morgan was expressing his bewilderment at the “curiously ubiquitous” success of methods
of inference based on the gaussian, or normal, “error law” (sampling distribution), even in cases
where the law is not at all plausible as a statement of the actual frequencies of the errors. But the
explanation was not forthcoming as quickly as he expected.
In the middle 1950’s the writer heard an after—dinner speech by Professor Willy Feller, in
which he roundly denounced the practice of using gaussian probability distributions for errors,
on the grounds that the frequency distributions of real errors are almost never gaussian. Yet in
spite of Feller’s disapproval, we continued to use them, and their ubiquitous success in parameter
estimation continued. So 145 years after de Morgan’s remark the situation was still unchanged, and
the same surprise was expressed by George Barnard (1983): “Why have we for so long managed
with normality assumptions?”
Today we believe that we can, at last, explain (1) the inevitably ubiquitous nse and (2) the
ubiquitous success, of the gaussian error law. Once seen, the explanation is indeec  [nterested students may
yet to the best of our knowledge it is not recognized in any of the previous liter
because of the universal tendency to think of probability distributions in terms ¢ refer t0. Chapter / Of
cannot understand what is happening until we learn to to think of probabilit P”'Obablllly theo”y: The
terms of their demonstrable information content instead of their imagined (an lOgiC Of science’’
irrelevant ) frequency connections.
A simple explanation of these properties — stripped of past irrelevancies — has been achieved
only very recently, and this development changed our plans for the present work. We decided that it
is so important that it should be inserted at this somewhat early point in the narrative, even though
we must then appeal to some results that are established only later. In the present Chapter, then,
we survey the historical basis of gaussian distributions and get a quick preliminary understanding
of their functional role in inference. This understanding will then guide us directly — without the
usual false starts and blind alleys — to the computational procedures which yield the great majority
of the useful applications of probability theory.



Three Ways to Derive
(Gaussian PDFs

Found by de Moivre (1733), without realizing its importance

Independence + 1sotropy (Herschel 1785)

Maximum likelihood estimate = arithmetic mean (Gauss,

1809)

Stability 1n 1ts form under small perturbation (Landon, 1941)

Interested students may refer to Chapter 7 of
“Probability theory: The logic of science”



Distance Between Distributions:
Are Two Distributions the Same?

® Kullback-Leibler divergence

Dra(PIQ) =3 P(i) s il

Qi)

Dia(p@la@) = [ " pla) log % dz.

® Non-negative; asymmetric; zero iff identical



Are Two Variables Independent?

® Natural measure of statistical dependence:
mutual information

1Y) = 33 Pl tog (i

I(X;Y)Z//p(x,y)log( P, y)

p(z) p(y)

® Non-negative; is zero ift X and Y are
independent



Summary: Probability Theory

® How to understand probability?

® ‘Typical distributions

® Independence & conditional independence

Basic statistics: expectation, variance...
Independence vs. zero correlation
(Gaussian distribution

Distance “between” two distributions & measure of
dependence



Making Use of Data:

Statistics...
® Relationship between probability Weonnabil ity
theory & statistics .

theory

Population N Sample
Collect data

Draw Describe
Conclusions Sample

}

| Statistical
Parameters , Inference Statistics

Using sample statistics to estimate population parameters.



Terms

Population
Random variable

Parameter (A parameter is a number describing a whole
population (e.g., population mean), while a statistic is a
number describing a sample)

Sample
Statistic
Likelihood function

Null hypothesis, null distribution, p value



Average dice roll by number of rolls

- Theoretical mean

Law of Large R
Numbers .|

0 200 400 600 800 1000
Number of trials

® [aw of large numbers (LLN) is a theorem that describes the
result of performing the same experiment a large number of
times: the average of the results obtained from a large number of
trials should be close to the expected value, and will tend to
become closer as more trials are performed.




Let’s Gome Closer to Reality...

Find knowledge from data,

2.5
which has randomness. E.g., .|
1.5_ . .o.. ...:.-o
Bayesian inference 1| PR Nt
Parameter estimation and of
" -0.5f RN
hypothesis test g |
. 1.5}
Learning
ot
. . -2.5 : ' ' . .
® Supervised learning S
. . %DD o .Il.
® Unsupervised learning... B2 o VA
. 0
. s O
® (ausal discovery T
m]



*
We’ll See More Detail: Bayesian vs.
Frequentist Interence

Parameter 8 is unknown but Parameter @ is a random

Setup fixed variable
6 - best estimate of the p(0]x) — posterior
VWV:r?tt,,d" e unknown (but fixed) 6 based distribution of 8 that is
' on the given data x informed by the given data x
What do we Statistical model {fy: 6 € Q}, Statistical model {fy: 0 € Q},

need? data x data x, and prior n(0)



Related Question: What 1s
Probability?

® [requentist view: treats “probability” in equivalent terms
to “frequency”

® Irank Ramsey: Probability is a rational degree of belief

® The measure of degrees of belief must satisty the
axioms for probability measures.

® As new evidence is acquired, the measure of degrees of
belief in a system of events must change to their
conditional probabilities on the evidence.



How to Update Our Belief?

~ geltyimages
S,

A

~ee—ym: = =

s B__




Bayes’ Rule

P(B|A)P(A)

P(A|B) = ——p 5

® Use evidence (B) to update probabilities (info
about A)

® How to find P(B)?
P(B|A;)P(A;) P(B|A;)P(A;)

® P(A;|B) = P(B)  S7 P(B|An)P(A)




Bayes’ Rule: Example

P _
PUAIB) = ——pG > ey P(B|Ag)P(A)

® Suppose a drug test 1s 99% sensitive and 99% specific.
That 1s, the test will produce 99% true positive results
for drug users and 99% true negative results for non-
drug users.

® Suppose that 0.1% of people are users of the drug.

® |farandomly selected individual tests positive, what 1s
the probability he or she is a user?

® P(Userl+)=? A.0.1, B.04, C.0.9

P(User|+) _ P(+|User)P(User)/P(+) _ P(+|User)P(User)
P(~User|+) P(+|~User)P(~ User)/P(+) P(+|~ User)P(~ User)
0.99 - 0.001 99

(1-0.99)-(1—0.001) 999



* Bayesian Inference: An Example

An Example:

A. You measured my height 4 times, with n observations 1.78m, 1.80m, 1.79m, 1.81m. They
are assumed to be generated from N(0, 0.032). .

B. The prior distribution of my height 1s 8 ~ N(1.75, 0.12).
C. The posterior distribution of my height 0 ? -



* Bayesian Inference: An Example

® x, a data point in general.
e 0, the parameter of the data point's distribution, 1.e., X ~ px(x10).
e (, the hyperparameter of the parameter distribution, 1.¢., 0 ~ p(01a)
e X 1s the sample, a set of n observed data points, 1.e., x;, ..., Xn.
X
An Example:

A. You measured my height 4 times, with n observations 1.78m, 1.80m, 1.79m, 1.81m. They
are assumed to be generated from N(0, 0.032). .

B. The prior distribution of my height 1s 8 ~ N(1.75, 0.12).
C. The posterior distribution of my height 0 ? -



* Bayesian Inference: An Example

® x, a data point in general.
e 0, the parameter of the data point's distribution, 1.e., X ~ px(x10).
e (, the hyperparameter of the parameter distribution, 1.¢., 0 ~ p(01a)
e X 1s the sample, a set of n observed data points, 1.e., x;, ..., Xn.
X
o QARG - 2L MEIBHO) R0t

Bayesian prediction (posterior

predictive distribution): pE| X, a) / p(E | 0)p( ) ¢

An Example:

A. You measured my height 4 times, with n observations 1.78m, 1.80m, 1.79m, 1.81m. They
are assumed to be generated from N(0, 0.032). .

B. The prior distribution of my height 1s 8 ~ N(1.75, 0.12).
C. The posterior distribution of my height 0 ? -



* Bayesian Inference: An Example

® x, a data point in general.
e 0, the parameter of the data point's distribution, 1.e., X ~ px(x10).

- mt 2 A laix n @10 @@ a0 at@end dlheo e w0 e e

i 30 ; I
' Prior distribution: 6 ~ N (pq, 03); D i i
i P i ” j
D D i ! i
- p(XIO)p(Ola) | |
' likelihood: p(X|0,0%) =[]/, p(z;|0,0%); ¥ _ i :
I: : G20 i e/p(@lx, @)
o ! i
| _ 2 © i '
I3 p(9|X, Oé) — N(:ula 02)7 : 215 ' :
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A. You measured my height n times, with n observations 1.78m, 1.80m, 1.79m, 1.81m. They
are assumed to be generated from N(0, 0.032). .

B. The prior distribution of my height is 8 ~ N(1.75, 0.12). _

C. The posterior distribution of my height 0 ? -



Can You See Whether They
Are Independent?
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® pxr(x,y) has the same shape for different values of y...

® Further consider two examples with difterent sample sizes...



A Simple Testing  |meums e

sample of observations could

PrOblem have been generated by a

process with a specific mean.

® [claim I am /.80m tall. You measured my height n times, with n
observations [.78m, 1.79m, ..., 1.81m

e Null hypothesis Hy: u = 1.80m, alternative hypothesis H;: u # 1.80m

® [et’s use the one-sample t-test...
X1 +I9+ ... +Tp

n

e (alculate the sample mean: I =

e (alculate the sample standard deviation:
. \/(xl — T2+ (29— Z)2 + ... + (zy, — T)2

n
e (alculate the test statistic T — U

YN

e Find the p value by comparing 7 to a #-distribution with (n — 1) [P =2~ P(T> 1)
degrees of freedom (two-tailed)

e Draw conclusion by comparing the p value with @



rl C > Have yvou taken an online course?

Independence Test:

Men 43 63 106

Discrete Case —

138 176 314

® Set hypotheses:
Hy: Variables are independent.
Hg: Variables are not independent.

® Formulate a plan:
® Significance level: 0.01, 0.05...

® Test method: Here we use chi-square test for 1

® Analyze the sample

® Statistic: Q=) > [(0i — Ei;)?/E;;] (Ej: expected freq.)

i=1 j=1

® Null dstr of Q; degrees of freedom: DF = (r-1)*(c-1)

® p-value: probability of observing a sample statistic as
extreme as the test statistic



The one-sample t-test is used
to determine whether a
sample of observations could
have been generated by a
process with a specific mean.

A Simple Testing
Problem

e [claimIam
observations Null hypothesis (Hp) is

Table of error types

e Null hypothe

True False
® [et’s use the
e Calculate Don't | Correct inference Type Il error
reject | (true negative) (false negative)
e (alculate (probability = 1-a) (probability = )
Decision P -
about null
hypothesis (H, i
e (alculate yp 's (Fo) Type | error Correct '”f?fence
Reject | (false positive) (frue positive)
(probability = a) | (probability = 1-_)
e Find the power p=2-P(I'>|t])
degrees ¢ (two-tailed)
e Draw conclusion by comparing the p value with @



Remember the Example?

An Example:

A. You measured my height 4 times, with n observations 1.78m, 1.80m, 1.79m, 1.81m. They
are assumed to be generated from N(0, 0.032).



Maximum Likelihood

Estimation : A
LLUL |

I I ) &
-2 -1 0
X

® Lstimate characteristics of the model distribution from
the sample

® 5o that the distribution underlying the sample is
close to the model distribution

® Suppose we have functional form of the pdf/pmf flx,6)
with unknown parameters €6

® Aim to find a point estimator of 0, i.e., a member of

{fx,;0) | 6€06} as the most likely pmf/pdf



*How to Find the -
Best Parameter
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Definitions |edit]

The Dirac delta can be loosely thought of as a function on the real line which is zero everywhere except at the origin, where it is infinite,

+o0, =0
5(””)={0, z#0

and which is also constrained to satisfy the identity

/ §(z) dz = 1.118]

This is merely a heuristic characterization. The Dirac delta is not a function in the traditional sense as no function defined on the real numbers has these properties.m] The Dirac delta function
can be rigorously defined either as a distribution or as a measure.

LIKELLNouw jreres=sm= -+~ LIUE verveeeso -

Equivalent to minimizing the Kullback-Leiber

divergence KL(pp(x) || f(x,;0))




Maximum Likelihood
Estimation: Example

® Let X;, X, ..., Xu be arandom sample from N(@;,0,).
Find the maximum likelihood estimate of &; and 6

n

b= b= (w6
1=1

1=1

® Sample mean, sample variance, sample covariance

T=5 Y% 8= gy Lm (@ = T)°

A. You measured my height n times, with n observations 1.78m, 1.80m, 1.79m,
181cm. They are assumed to be generated from N(0, 0.032).

B. What is the point estimate of 6? _



Identifiability of Parameters in
Statistical Models

® Jdentifiability, in simple words, means that different values of a
parameter must produce different probability distributions.

® Mathematically, a parameter O is said to be identifiable if and

only
0+#60=>P,#P,, or equivalently P,=P,=>0=10

® Js the mean of a Gaussian distribution identifiable?



Unbiased and Consistent Estimator

® If £[f] = 0, then 0 is called an unbiased estimate of 6

® If the estimate ,, converges in prob. to the true value of
the parameter, then it is a consistent estimate

Definition 5.5.1 A sequence of random variables, X, X»,..., converges in proba-
bility to a random variable X if, for every ¢ > 0,

lim P(|X, — X|>¢€)=0 or,equivalently, lim P(|X,— X|<e¢€) =1.

n—oo

® Are the MLEs of 0; and 62 we just derived unbiased?
consistent?

Interested students may refer to https.//stats.stackexchange.com/questions/3 103 6/what-is-the-
difference-between-a-consistent-estimator-and-an-unbiased-estimator .



https://stats.stackexchange.com/questions/31036/what-is-the-difference-between-a-consistent-estimator-and-an-unbiased-estimator
https://stats.stackexchange.com/questions/31036/what-is-the-difference-between-a-consistent-estimator-and-an-unbiased-estimator
https://stats.stackexchange.com/questions/31036/what-is-the-difference-between-a-consistent-estimator-and-an-unbiased-estimator

>x<
Let’s Check Their Properties...

S _ _
o Sample mean X = ;ZXl E[X]=? Var[X]=7?
i=1

| _
- 2 _ 2 21 _
o Jample variance §°= — El X.—X)*. E[S]=7
[See page 214 of “Statistical Inference”|



212 PROPERTIES OF A RANDOM SAMPLE Section 5.2

Definition 5.2.2 The sample mean is the arithmetic average of the values in a
random sample. It is usually denoted by
X1+ -+ X,

X="— "0
n

n

Xi.

S|

i=1

Definition 5.2.3 The sample variance is the statistic defined by

n

1 —
52 = S (X - X)2.
n—1 ro

The sample standard deviation is the statistic defined by S = v/ 52.

As is commonly done, we have suppressed the functional notation in the above
definitions of these statistics. That is, we have written S rather than S(X,,..., X,).
The dependence of the statistic on the sample is understood. As before, we will denote
observed values of statistics with lowercase letters. So Z, s2, and s denote observed
values of X, 52, and S.

The sample mean is certainly familiar to all. The sample variance and standard
deviation are measures of variability in the sample that are related to the population
variance and standard deviation in ways that we shall see below. We begin by deriving
some properties of the sample mean and variance. In particular, the relationship for
the sample variance given in Theorem 5.2.4 is related to (2.3.1), a similar relationship
for the population variance.

Theorem 5.2.4 Let z,,...,Z, be any numbers and Z = (z, + -+ + z,)/n. Then

a. ming 30, (z: —a)? = 1, (i — 2)?,
b. (n—1)s* = S0, (@ — 2)° = S0, a2 — nz2,

Proof: To prove part (a), add and subtract Z to get

n n

Y (@i—a)*=) (z:—z+z—a)?

t=] =1

= Zn:(zi - -7_:)2 +2 Zn:(x,- —-Z)(Z—a)+ Zn:(:i‘ - a,)2
=1 i=1

t=1
n n
=) (z:i—2)*+) (2-a)% (cross term is 0)

It is now clear that the right-hand side is minimized at a = Z. (Notice the similarity
to Example 2.2.6 and Exercise 4.13.)
To prove part (b), take a = 0 in the above. O

The expression in Theorem 5.2.4(b) is useful both computationally and theoretically
because it allows us to express s2 in terms of sums that are easy to handle.

We will begin our study of sampling distributions by considering the expected
values of some statistics. The following result is quite useful.

A27H BN

i casella_berger_statistical_inference1 @ K
214 PROPERTIES OF A RANDOM SAMPLE %2408 (#e6
a. EX =y,
- 0'2
b. Var X = —,
n
c. ES? =02,

Proof: To prove (a), let 9(X;) = X;/n, so Eg(X;) = p/n. Then, by Lemma 5.2.5,
EX =E 1ix = lE iX- = lnEX =
- ni= )oon i=1 ‘) on L
Similarly for (b), we have

_ 1 <& 1 n 1 o?
Var X = Var (;mzlxz) = FV&Y (;Xi) = ?nVar X) = -

For the sample variance, using Theorem 5.2.4, we have

1 z _
2 _ 2 _ 2
ES2 = E(n_ : [Zl:x, nX D

= —1—- nEX? — nEX?
n—1 1

_— n(o?+pu?) —n £7—3+u2 =o?
n—1 n ’

establishing part (c) and proving the theorem. O

The relationships (a) and (c) in Theorem 5.2.6, relationships between a statistic
and a population parameter, are examples of unbiased statistics. These are discussed
in Chapter 7. The statistic X is an unbiased estimator of u, and S? is an unbiased
estimator of o2. The use of n— 1 in the definition of $2 may have seemed unintuitive.
Now we see that, with this definition, ES? = ¢2. If S? were defined as the usual
average of the squared deviations with n rather than n — 1 in the denominator, then
ES? would be 2102 and S? would not be an unbiased estimator of 2.

We now discuss in more detail the sampling distribution of X. The methods from
Sections 4.3 and 4.6 can be used to derive this sampling distribution from the pop-
ulation distribution. But because of the special probabilistic structure of a random
sample (iid random variables), the resulting sampling distribution of X is simply
expressed.

First we note some simple relationships. Since X = L(X14---+ Xp), if f(y) is the
pdfof Y = (X; +---+ X,), then fg (z) = nf(nz) is the pdf of X (see Exercise 5.5).
Thus, a result about the pdf of Y is easily transformed into a result about the pdf of
X. A similar relationship holds for mgfs:

Mg (t) = EetX — Eet(X1++Xn)/n _ Re(t/n)Y _ My (t/n).

Since X,..., X, are identically distributed, Mx,(t) is the same function for each i.
Thus, by Theorem 4.6.7, we have the following.
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Figure 5.4.1. Region on which fr,v(r,v) > 0 for Example 5.4.7

5.5 Convergence Concepts

This section treats the somewhat fanciful idea of allowing the sample size to approach
infinity and investigates the behavior of certain sample quantities as this happens.
Although the notion of an infinite sample size is a theoretical artifact, it can often
provide us with some useful approximations for the finite-sample case, since it usually
happens that expressions become simplified in the limit.

We are mainly concerned with three types of convergence, and we treat them in
varying amounts of detail. (A full treatment of convergence is given in Billingsley
1995 or Resnick 1999, for example.) In particular, we want to look at the behavior of

X,, the mean of n observations, as n — oo.

5.5.1 Convergence in Probability

This type of convergence is one of the weaker types and, hence, is usually quite easy
to verify.

Definition 5.5.1 A sequence of random variables, X, X»,..., converges in proba-
bility to a random variable X if, for every ¢ > 0,

lim P(| X, —X|>¢€)=0 or,equivalently, lim P(|X,— X|<¢€) =1.
n—oo n—oo

The X, X,... in Definition 5.5.1 (and the other definitions in this section) are
typically not independent and identically distributed random variables, as in a random
sample. The distribution of X, changes as the subscript changes, and the convergence
concepts discussed in this section describe different ways in which the distribution of
Xn converges to some limiting distribution as the subscript becomes large.

Frequently, statisticians are concerned with situations in which the limiting random
variable is a constant and the random variables in the sequence are sample means (of
some sort). The most famous result of this type is the following.

Theorem 5.5.2 (Weak Law of Large Numbers) Let X,, Xa,... be iid random
variables with EX; = p and Var X; = 0? < oo. Define X,, = (1/n)Y_i—, Xi. Then,

472 ASYMPTOTIC EVALUATIONS

Recall that Theorem 10.1.6 stated that, under general conditions, MLEs are con-
sistent. Under somewhat stronger regularity conditions, the same type of theorem
holds with respect to asymptotic efficiency so, in general, we can consider MLEs to
be consistent and asymptotically efficient. Again, details on the regularity conditions
are in Miscellanea 10.6.2.

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let Xy, X,,..., be iid
f(z|6), let @ denote the MLE of 6, and let 7(8) be a continuous function of §. Under
the regqularity conditions in Miscellanea 10.6.2 on f(z|6) and, hence, L(6|x),

Va[r(8) — 7(8)] — nl0,v(6)],

where v(8) is the Cramér-Rao Lower Bound. That is, 7(8) is a consistent and asymp-
totically efficient estimator of 7(0).

Proof: The proof of this theorem is interesting for its use of Taylor series and its
exploiting of the fact that the MLE is defined as the zero of the likelihood function.
We will outline the proof showing that @ is asymptotically efficient; the extension to
7(6) is left to Exercise 10.7.

Recall that [(8|x) = " log f(z;|6) is the log likelihood function. Denote derivatives
(with respect to 8) by I,1”,.... Now expand the first derivative of the log likelihood
around the true value 6,

(10.1.4) I'(8]x) = I'(6o|x) + (6 — 60)" (Bo|x) + - - -,

where we are going to ignore the higher-order terms (a justifiable maneuver under
the regularity conditions).

Now substitute the MLE 8 for 6, and realize that the left-hand side of (10.1.4) is 0.
Rearranging and multiplying through by /n gives us

—U(Bo)x) _ —vat'(6olx)

(10'1.5) \/T_z(é - 00) = \/7—7' l"(e()'x) - Ll”(oolx) .

If we let I(6y) = E[l'(6p|X)]? = 1/v(6) denote the information number for one ob-
servation, application of the Central Limit Theorem and the Weak Law of Large
Numbers will show (see Exercise 10.8 for details)

~%y(a‘)p() — nl0, 1(6,)],

(in distribution)
(10.1.6)

;ll—l" (60]X) — I(6y). (in probability)

Thus, if we let W ~ n0, I(8p)], then /n(#—8p) converges in distribution to W/I(6,) ~
n[0,1/I(6)], proving the theorem. O

Example 10.1.13 (Asymptotic normality and consistency) The above the-
orem shows that it is typically the case that MLEs are efficient and consistent. We



*  MLE: What If We Use a Different

Distribution?
® [et X, Xo, ..., Xu be a random sample from the following
Laplace distribution. Find the maximum likelihood

estimate of u 0.5 T
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0.4

1 T — 1 0.3
px(w;u,b)ZQ—beXp( ‘ ; ‘) g

g -
1

0.1

o——-——’/—-—/ =

-10 8 6 4 -2 0 2 4 6 8 10

® Median: separating the higher half from the lower

P(X<m)>1/2,and P(X >m) > 1/2 - edian



Summary: From Probability 'Theory
to Statistics

® lrom probability theory to statistics

® Ways of making use of data

0.4

® Bayesian inference, parameter
estimation, and hypothesis test

031

0.2r

® |ntuition behind maximum 01l

likelihood estimation 0




