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Outline
• Supervised learning 

• From linear regression to nonlinear methods 

• Properties of regression 

• From parametric models to nonparametric models 

• Model selection: Why? What? How? 

• Classification 

• Unsupervised learning 

• Clustering ↓ 

• Dimensionality reduction… →



Remember This Example?
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Example of ML: Satisfaction prediction

✤ Example 1: Airline-Passenger-Satisfaction Prediction

✤ ‘Satisfaction’ is our target variable and the remaining 
are the feature variables based on which we will 
predict the value of Satisfaction. 



Linear Regression
• How to find the 

regression line ŷ=αx + 
c from data points (x1, 
y1), ..., (xn, yn)?

• To explain/predict Y 
with X

• Probabilisitic model: Y= 
aX + u + ε 

• Y: dependent variable; 
X: explanatory /
independent variable.
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6.5 A SIMPLE REGRESSION PROBLEM
There is often interest in the relation between two variables—for example, the
temperature at which a certain chemical reaction is performed and the yield of a
chemical compound resulting from the reaction. Frequently, one of these variables,
say, x, is known in advance of the other, so there is interest in predicting a future ran-
dom variable Y. Since Y is a random variable, we cannot predict its future observed
value Y = y with certainty. Let us first concentrate on the problem of estimating the
mean of Y—that is, E(Y | x). Now, E(Y | x) is usually a function of x. For example,
in our illustration with the yield, say Y, of the chemical reaction, we might expect
E(Y | x) to increase with increasing temperature x. Sometimes E(Y | x) = µ(x) is
assumed to be of a given form, such as linear, quadratic, or exponential; that is,
µ(x) could be assumed to be equal to α + βx, α + βx + γ x2, or αeβx. To estimate
E(Y | x) = µ(x), or, equivalently, the parameters α, β, and γ , we observe the random
variable Y for each of n possibly different values of x—say, x1, x2, . . . , xn. Once the n
independent experiments have been performed, we have n pairs of known numbers
(x1, y1), (x2, y2), . . . , (xn, yn). These pairs are then used to estimate the mean E(Y | x).
Problems like this are often classified under regression because E(Y | x) = µ(x) is
frequently called a regression curve.

REMARK A model for the mean that is of the form α + βx + γ x2 is called a linear
model because it is linear in the parameters, α, β, and γ . Note, however, that a plot
of this model versus x is not a straight line unless γ = 0. Thus, a linear model may be
nonlinear in x. On the other hand, αeβx is not a linear model, because it is not linear
in α and β.

Let us begin with the case in which E(Y | x) = µ(x) is a linear function of x. The
data points are (x1, y1), (x2, y2), . . . , (xn, yn), so the first problem is that of fitting a
straight line to the set of data. (See Figure 6.5-1.) In addition to assuming that the
mean of Y is a linear function, we assume that, for a particular value of x, the value
of Y will differ from its mean by a random amount ε. We further assume that the
distribution of ε is N(0, σ 2). So we have, for our linear model,

Yi = α1 + βxi + εi,
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Linear Regression: Terminology

• Y= aX + u + ε, where ε ~ N(0,σ2)

dependent variable
independent variable / predictor

random error

slope parameter

intercept
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Linear Regression: Least Squares

• regression line ŷ=αx + c 

• Method of least squares:
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Linear Regression: MLE

• Y= aX + u + ε, where ε ~ 
N(0,σ2) 

• MLE:

Section 6.5 A Simple Regression Problem 267

6.5 A SIMPLE REGRESSION PROBLEM
There is often interest in the relation between two variables—for example, the
temperature at which a certain chemical reaction is performed and the yield of a
chemical compound resulting from the reaction. Frequently, one of these variables,
say, x, is known in advance of the other, so there is interest in predicting a future ran-
dom variable Y. Since Y is a random variable, we cannot predict its future observed
value Y = y with certainty. Let us first concentrate on the problem of estimating the
mean of Y—that is, E(Y | x). Now, E(Y | x) is usually a function of x. For example,
in our illustration with the yield, say Y, of the chemical reaction, we might expect
E(Y | x) to increase with increasing temperature x. Sometimes E(Y | x) = µ(x) is
assumed to be of a given form, such as linear, quadratic, or exponential; that is,
µ(x) could be assumed to be equal to α + βx, α + βx + γ x2, or αeβx. To estimate
E(Y | x) = µ(x), or, equivalently, the parameters α, β, and γ , we observe the random
variable Y for each of n possibly different values of x—say, x1, x2, . . . , xn. Once the n
independent experiments have been performed, we have n pairs of known numbers
(x1, y1), (x2, y2), . . . , (xn, yn). These pairs are then used to estimate the mean E(Y | x).
Problems like this are often classified under regression because E(Y | x) = µ(x) is
frequently called a regression curve.

REMARK A model for the mean that is of the form α + βx + γ x2 is called a linear
model because it is linear in the parameters, α, β, and γ . Note, however, that a plot
of this model versus x is not a straight line unless γ = 0. Thus, a linear model may be
nonlinear in x. On the other hand, αeβx is not a linear model, because it is not linear
in α and β.

Let us begin with the case in which E(Y | x) = µ(x) is a linear function of x. The
data points are (x1, y1), (x2, y2), . . . , (xn, yn), so the first problem is that of fitting a
straight line to the set of data. (See Figure 6.5-1.) In addition to assuming that the
mean of Y is a linear function, we assume that, for a particular value of x, the value
of Y will differ from its mean by a random amount ε. We further assume that the
distribution of ε is N(0, σ 2). So we have, for our linear model,

Yi = α1 + βxi + εi,

y

x66

70

74

78

82

86

90

94

48 52 56 60 64 68 72 76 80 84

y = µ(x)

(xi, yi)

(xi, µ(xi))

Figure 6.5-1 Scatter plot and the line y = µ(x)

L(a, u,�2) =
nY

i=1

1p
2⇡�

exp
h
� (yi � axi � u)2

2�2

i

logL(a, u,�2) = �n

2
log(2⇡�2)�

Pn
i=1(yi � axi � u)2

2�2
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Linear Regression: Strong/
Weak Relations

?



Linear Regression: The Two Directions

Question: 1. Interpretation of the parameter. 
2. Are the regression lines from X to Y and from Y to X identical?
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• Data generated by Y= 
aX + u + ε, where ε ~ 
N(0,σ2)

• Regression line in the 
reverse direction: 

• Consider different 
situations...

x̂ = �y + c2

line b

line aline c
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• Regression line in the 
reverse direction: 

• Consider different 
situations...

x̂ = �y + c2
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Linear Regression: The Two Directions



With Different 
Noise Distributions

• What if we use other 
distributions for the 
error in regression?

• Laplace distribution?

• What will you 
minimize?
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Supervised Learning: An Example

The prices of the house indicated by the variable MEDV is our target variable and the 
remaining are the feature variables based on which we will predict the value of a house.



Multiple Regression

• Regress Y on X = (X1,X2)T 

• ŷ=α1x1 + α2x2 + c 

• What if (x11, x12,..., x1N) and (x21, x22,..., x2N) 
are linearly dependent? 

• Least squares

• In matrix form

x =

2

6664

x11 x21

x12 x22
...

...
x1N x2N

3

7775

X1          X2

y =

2

6664

y1
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...
yN
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7775

X

x1
x2

xN



Multiple Regression
• Regress Y on X = (X1,X2)T 

• ŷ=α1x1 + α2x2 + c 

• For simplicity, assume all variables have 
zero mean

x =

2

6664

x11 x21

x12 x22
...

...
x1N x2N

3

7775

X1          X2

y =

2

6664

y1
y2
...
yN

3

7775

X

Minimize SE = (y � x↵)|(y � x↵)

@SE

@↵
= 2 · x|(y � x↵)

X X

X X

If x|x is invertible, setting @SE
@↵ = 0

) ↵ = (x|x)�1(x|y)X XX

X X



Simple Regression vs. 
Multiple Regression

• Let’s do simple regression 
from X to Y:     ŷ=αx + c 

• Will α be zero?

• Let’s do regression from (X,Z)T 
to Y:     ŷ=α1x + α2z + c 

• Will the coefficient of x be 
zero?

X

Z

Y
Process 1

X

Z

Y
Process 2

Independence vs. conditional independence ;-) 

and you can see it from graph!



What is Next: 
Nonlinear Regression
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Supervised Learning: An Example

The prices of the house indicated by the variable MEDV is our target variable and the 
remaining are the feature variables based on which we will predict the value of a house.



Types of Relationships



Nonlinear Relationships
• Y = a1X + a2X2 + ε 

• Y = a1X1 + a2X1X2 + 
a3X22 + ε 

• Y = a0 exp(a1X + ε) 

• What if you consider 
logY and X (suppose 
a0 >0)?

Variables: 
Y = Sales price 
X1 = Finished square feet 
X2 = 1 if air conditioning, 0 if no air conditioning 
X3 = 1 for high quality, 2 for medium quality, 3 for low quality construction 

 

Finished square feet

Sa
le

s p
ric

e

linear or nonlinear?



Polynomial Regression

• m-th order polynomial regression ŷ = f (x; ⍺) is given by 

• If m is larger than 1, it is nonlinear in x, 

• but linear in ⍺ 

• How to estimate ⍺?

f(x;↵) = ↵0 + ↵1x+ ↵2x
2 + ...+ ↵mxm



Additive Models

• More generally,  predictions can be based  on a linear 
combination of  a set of  basis  functions  : 

• Examples… 

• How to estimate ⍺?

{�1(x), ...,�m(x)}

f(x;↵) = ↵0 + ↵1�1(x) + ...+ ↵m�m(x)



Locally Weighted Linear Regression
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(see the demo with ‘LocallyWeightedLinearRegression.m’)



Locally Weighted 
Linear Regression

• Linear regression 

• Find parameter ⍺ to minimize squared error 

• Predicted value is ŷ = ⍺T x 

• Locally weighted linear regression 

• Find parameter ⍺ to minimize weighted error 

• Predicted value is ŷ = ⍺T x 

• wi: non-negative valued weights; a typical choice is
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Parametric vs. 
Nonparametric Models

• Linear regression algorithm: parametric 

• has a fixed, finite number of  parameters 

• Once they are learned and stored, we no longer need the 
training data for future predictions 

• Locally weighted linear regression 

• For making prediction, we need to keep the entire training set 
around 

• Nonparametric: the amount of  stuff  we need to keep in order to 
represent the model grows with the size of  the training set
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With Radial Basis 
Functions

• Can also make predictions by gauging the similarity of  new 
examples to “prototypes”, with “radial basis functions” 
measuring the similar to a “prototype”: 

• Training data points themselves could serve as prototypes

f(x;↵) = ↵0 + ↵1�1(x) + ...+ ↵m�m(x)

�k(x) = e�
||x�xk||2

2⌧2

Additive models cont’d

• We can view the additive models graphically in terms of
simple “units” and “weights”

. . .

f(x;w)

x1 x2

�1(x) �m(x)

w1

1
w0

wm

• In neural networks the basis functions themselves have
adjustable parameters (cf. prototypes)

Tommi Jaakkola, MIT CSAIL 16
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↵1 ↵m



Neural Networks

• In neural networks 
the basis functions 
themselves have 
adjustable parameter 

• and it can have 
multiple layers

The perceptron with real inputs
and a real output

• x1…xN are real valued
• W1…WN are real valued
• The output y can also be real valued

– Sometimes viewed as the “probability” of firing

sigmoid ௜ ௜

 

௜

x1

x2

x3

xN

-b

81

Complex decision boundaries

• Classification problems:  finding decision boundaries in 
high-dimensional space
– Can be performed by an MLP

• MLPs can classify real-valued inputs
94

784 dimensions
(MNIST)

784 dimensions

2

w0

Additive models cont’d

• We can view the additive models graphically in terms of
simple “units” and “weights”

. . .

f(x;w)

x1 x2

�1(x) �m(x)

w1

1
w0

wm

• In neural networks the basis functions themselves have
adjustable parameters (cf. prototypes)
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Avoiding under-fitting and over-fitting
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Instead, if we had added an extra feature x2, and fit y = θ0 + θ1x+ θ2x2,
then we obtain a slightly better fit to the data. (See middle figure) Naively, it
might seem that the more features we add, the better. However, there is also
a danger in adding too many features: The rightmost figure is the result of
fitting a 5-th order polynomial y =

∑5
j=0 θjx

j. We see that even though the
fitted curve passes through the data perfectly, we would not expect this to
be a very good predictor of, say, housing prices (y) for different living areas
(x). Without formally defining what these terms mean, we’ll say the figure
on the left shows an instance of underfitting—in which the data clearly
shows structure not captured by the model—and the figure on the right is
an example of overfitting. (Later in this class, when we talk about learning
theory we’ll formalize some of these notions, and also define more carefully
just what it means for a hypothesis to be good or bad.)

As discussed previously, and as shown in the example above, the choice of
features is important to ensuring good performance of a learning algorithm.
(When we talk about model selection, we’ll also see algorithms for automat-
ically choosing a good set of features.) In this section, let us talk briefly talk
about the locally weighted linear regression (LWR) algorithm which, assum-
ing there is sufficient training data, makes the choice of features less critical.
This treatment will be brief, since you’ll get a chance to explore some of the
properties of the LWR algorithm yourself in the homework.

In the original linear regression algorithm, to make a prediction at a query
point x (i.e., to evaluate h(x)), we would:

1. Fit θ to minimize
∑

i(y
(i) − θTx(i))2.

2. Output θTx.

In contrast, the locally weighted linear regression algorithm does the fol-
lowing:

1. Fit θ to minimize
∑

i w
(i)(y(i) − θTx(i))2.

2. Output θTx.
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then we obtain a slightly better fit to the data. (See middle figure) Naively, it
might seem that the more features we add, the better. However, there is also
a danger in adding too many features: The rightmost figure is the result of
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just what it means for a hypothesis to be good or bad.)
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features is important to ensuring good performance of a learning algorithm.
(When we talk about model selection, we’ll also see algorithms for automat-
ically choosing a good set of features.) In this section, let us talk briefly talk
about the locally weighted linear regression (LWR) algorithm which, assum-
ing there is sufficient training data, makes the choice of features less critical.
This treatment will be brief, since you’ll get a chance to explore some of the
properties of the LWR algorithm yourself in the homework.

In the original linear regression algorithm, to make a prediction at a query
point x (i.e., to evaluate h(x)), we would:

1. Fit θ to minimize
∑
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lowing:

1. Fit θ to minimize
∑

i w
(i)(y(i) − θTx(i))2.

2. Output θTx.

x

y

x

x

x x x
x

x

x

x x x
x

x

x

x x x
x

x

y

x

y

Under-fitting

Over-fitting

Why?



-2 -1 0 1 2
x

-2

-1

0

1

2

3

4
y

Training

true function
training data
test data

-2 -1 0 1 2
x

-2

-1

0

1

2

3

4

y

Test

true function
test data

-2 -1 0 1 2
x

-3

-2

-1

0

1

2

3

4

y

Learned polynomial functions with different orders

1st
2nd
3rd
4th
5th
6th
7th
true function
training data

1 2 3 4 5 6 7
Order of the polynomial function

0.3

0.4

0.5

0.6

0.7

0.8

Sq
ua

re
d 

er
ro

r

Error
Training error
Test error

y = 0.5x + 0.3x2 + 0.2x3
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Machine Learning Cares about the 
Performance on New, Unseen Data

• Machine learning problems (e.g., regression) are typically ill-posed: 
the observed data is finite and does not uniquely determine the 
classification or regression function. 

• In order to find a unique solution, and learn something useful, we 
must make assumptions 

• The goal of  ML is not to replicate the training data, but to predict 
unseen data well, i.e., to generalize well.
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Machine Learning Cares about the 
Performance on New, Unseen Data

• The goal of  ML: predict unseen data well, i.e., to generalize well 

• Training error   vs. test error  

• If  the class of  functions is  

• less complex: underfitting (e.g., fitting a line in the above example) 

• more complex: overfitting (e.g., fitting a 7th order polynomial)
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Bias-Variance Tradeoff: A Rough Picture
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Assume that data were generated according to y = f⇤(x) + ", where the
noise " has zero mean and variance �2.

We aim to find function ŷ = f(x;D), where D denote the training dataset,
to approximate the true function f⇤(x). Its expected error on an unseen sample
x is

ED

⇥
(y � f(x;D))2

⇤
=

�
BiasD[f(x;D)]

�2
+Var[f(x;D)] + �2,

where
BiasD[f(x;D)] = ED[f(x;D)]� f⇤(x),

and

Var[f(x;D)] = ED

h⇣
f(x;D)� ED[f(x;D)]

⌘2i
.

*



Model Selection

• Cross validation allows us to estimate the generalization error based on 
training examples alone… 

• Information Criterion takes into account by the training error and the 
model complexity…
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Cross 
Validation

• Cross validation allows us to estimate 
the generalization error based on 
training examples alone 

• k-fold cross validation  

• Leave-one-out cross-validation treats 
each training example in turn as a test 
example (k=n).

k k

E =
1

k

kX

i=1

Ei

(Note: E may be 
squared error for 

regression.)



Cross Validation: Illustration
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Complex Models Not Necessarily Good



Bayesian Information Criterion (BIC)
• Cross validation also known as the Schwarz Criterion after Gideon Schwarz 

(1978)
Let Mj denote the model of jth polynomial. The posterior of the model is

P (Mj |Data) / p(Data |Mj)P (Mj).

Suppose all candidate models are equally likely, then maximizing the pos-
terior probability of a model given the data is the same as maximizing the
‘marginal’ likelihood:

p(Data |Mj) =

Z
p(Data |↵j ,Mj)p0(↵j |Mj)d↵j =

Z
L(↵j |Data)p0(↵j |Mj)d↵j .

Further use an uninformative, flat prior p0(↵j), and then

log p(Data |Mj) ⇡ logL(↵̂j |Data)� dj
2

log n,

where ↵̂j is the maximum likelihood estimator and dj is the number of free
parameters in Mj .

+ or -



Bayesian Information Criterion (BIC)
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Summary: Basic Ideas of  Model 
Selection

• Why prefer simple models? 

• How simple is simple enough? 

• The simplest model and the most 
probable model 

• Help find causal model? 

• Methods for model selection 

• Cross validation 

• Information criteria 

• …
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Supervised Learning: Examples
• Regression: the target variable to be predicted is continuous 

• Predict the price of  a car from its mileage. 

• Navigating a car: angle of  the steering. 

• Classification:  

• Face recognition (difficult because of  the complex variability in the 
data: pose and illumination in a face image, occlusions, glasses/
beard/make-up/etc.) 

           Training                                    Test   

• Optical character recognition (with different styles…) 

• Medical diagnosis 

• Credit scoring: classify customers into high- and low-risk, based on 
their income and savings, using data about past loans (whether they 
were paid or not)

1 Introduction

1.1 What is machine learning (ML)?

• Data is being produced and stored continuously (“big data”):

– science: genomics, astronomy, materials science, particle accelerators. . .

– sensor networks: weather measurements, traffic. . .

– people: social networks, blogs, mobile phones, purchases, bank transactions. . .

– etc.

• Data is not random; it contains structure that can be used to predict outcomes, or gain knowl-
edge in some way.
Ex: patterns of Amazon purchases can be used to recommend items.

• It is more difficult to design algorithms for such tasks (compared to, say, sorting an array or
calculating a payroll). Such algorithms need data.
Ex: construct a spam filter, using a collection of email messages labelled as spam/not spam.

• Data mining: the application of ML methods to large databases.

• Ex of ML applications: fraud detection, medical diagnosis, speech or face recognition. . .

• ML is programming computers using data (past experience) to optimize a performance criterion.

• ML relies on:

– Statistics: making inferences from sample data.

– Numerical algorithms (linear algebra, optimization): optimize criteria, manipulate models.

– Computer science: data structures and programs that solve a ML problem efficiently.

• A model:

– is a compressed version of a database;

– extracts knowledge from it;

– does not have perfect performance but is a useful approximation to the data.

1.2 Examples of ML problems

• Supervised learning : labels provided.

– Classification (pattern recognition):

∗ Face recognition. Difficult because of the complex variability in the data: pose and
illumination in a face image, occlusions, glasses/beard/make-up/etc.

Training examples: Test images:

∗ Optical character recognition: different styles, slant. . .

∗ Medical diagnosis: often, variables are missing (tests are costly).

1

1 Introduction

1.1 What is machine learning (ML)?

• Data is being produced and stored continuously (“big data”):

– science: genomics, astronomy, materials science, particle accelerators. . .

– sensor networks: weather measurements, traffic. . .

– people: social networks, blogs, mobile phones, purchases, bank transactions. . .

– etc.

• Data is not random; it contains structure that can be used to predict outcomes, or gain knowl-
edge in some way.
Ex: patterns of Amazon purchases can be used to recommend items.

• It is more difficult to design algorithms for such tasks (compared to, say, sorting an array or
calculating a payroll). Such algorithms need data.
Ex: construct a spam filter, using a collection of email messages labelled as spam/not spam.

• Data mining: the application of ML methods to large databases.

• Ex of ML applications: fraud detection, medical diagnosis, speech or face recognition. . .

• ML is programming computers using data (past experience) to optimize a performance criterion.

• ML relies on:

– Statistics: making inferences from sample data.

– Numerical algorithms (linear algebra, optimization): optimize criteria, manipulate models.

– Computer science: data structures and programs that solve a ML problem efficiently.

• A model:

– is a compressed version of a database;

– extracts knowledge from it;

– does not have perfect performance but is a useful approximation to the data.

1.2 Examples of ML problems

• Supervised learning : labels provided.

– Classification (pattern recognition):

∗ Face recognition. Difficult because of the complex variability in the data: pose and
illumination in a face image, occlusions, glasses/beard/make-up/etc.

Training examples: Test images:

∗ Optical character recognition: different styles, slant. . .

∗ Medical diagnosis: often, variables are missing (tests are costly).

1

1 Introduction

1.1 What is machine learning (ML)?

• Data is being produced and stored continuously (“big data”):

– science: genomics, astronomy, materials science, particle accelerators. . .

– sensor networks: weather measurements, traffic. . .

– people: social networks, blogs, mobile phones, purchases, bank transactions. . .

– etc.

• Data is not random; it contains structure that can be used to predict outcomes, or gain knowl-
edge in some way.
Ex: patterns of Amazon purchases can be used to recommend items.

• It is more difficult to design algorithms for such tasks (compared to, say, sorting an array or
calculating a payroll). Such algorithms need data.
Ex: construct a spam filter, using a collection of email messages labelled as spam/not spam.

• Data mining: the application of ML methods to large databases.

• Ex of ML applications: fraud detection, medical diagnosis, speech or face recognition. . .

• ML is programming computers using data (past experience) to optimize a performance criterion.

• ML relies on:

– Statistics: making inferences from sample data.

– Numerical algorithms (linear algebra, optimization): optimize criteria, manipulate models.

– Computer science: data structures and programs that solve a ML problem efficiently.

• A model:

– is a compressed version of a database;

– extracts knowledge from it;

– does not have perfect performance but is a useful approximation to the data.

1.2 Examples of ML problems

• Supervised learning : labels provided.

– Classification (pattern recognition):

∗ Face recognition. Difficult because of the complex variability in the data: pose and
illumination in a face image, occlusions, glasses/beard/make-up/etc.

Training examples: Test images:

∗ Optical character recognition: different styles, slant. . .

∗ Medical diagnosis: often, variables are missing (tests are costly).

1
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Boxplots of income as a function of default status.

4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y , as follows:

Y =

�
��

��

1 if stroke;

2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors X1, . . . , Xp. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the di�erence
between stroke and drug overdose is the same as the di�erence between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

Y =

�
��

��

1 if epileptic seizure;

2 if stroke;

3 if drug overdose.

creditcards.pdf (ISL, Figure 4.1) [The problem of classification. We are given data points,
each belonging to one of two classes. Then we are given additional points whose class is
unknown, and we are asked to predict what class each new point is in. Given the credit card
balance and annual income of a cardholder, predict whether they will default on their debt.]

– Collect training data: reliable debtors & defaulted debtors
– Evaluate new applicants (prediction)

decision boundary

[Draw this figure by hand. classify.pdf ]
[Draw 2 colors of dots, almost but not quite linearly separable.]
[“How do we classify a new point?” Draw a point in a third color.]
[One possibility: look at its nearest neighbor.]
[Another possibility: draw a linear decision boundary; label it.]
[Those are two di↵erent models for the nature of this data.]

[We’ll learn some ways to draw these linear decision boundaries in the next several lectures. But for now,
let’s compare these two methods.]



Classification

• We are given a training set of  labeled examples (positive and 
negative)and want to learn a classifier that we can use to 
predict unseen examples, or to understand the data. 

• Training set:  , where xi is the ith input vector and 
yi∈ {0,1}its class label.

{(xi, yi)}ni=1
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credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Boxplots of income as a function of default status.

4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y , as follows:

Y =

�
��

��

1 if stroke;

2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors X1, . . . , Xp. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the di�erence
between stroke and drug overdose is the same as the di�erence between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

Y =

�
��

��

1 if epileptic seizure;

2 if stroke;

3 if drug overdose.

creditcards.pdf (ISL, Figure 4.1) [The problem of classification. We are given data points,
each belonging to one of two classes. Then we are given additional points whose class is
unknown, and we are asked to predict what class each new point is in. Given the credit card
balance and annual income of a cardholder, predict whether they will default on their debt.]

– Collect training data: reliable debtors & defaulted debtors
– Evaluate new applicants (prediction)

decision boundary

[Draw this figure by hand. classify.pdf ]
[Draw 2 colors of dots, almost but not quite linearly separable.]
[“How do we classify a new point?” Draw a point in a third color.]
[One possibility: look at its nearest neighbor.]
[Another possibility: draw a linear decision boundary; label it.]
[Those are two di↵erent models for the nature of this data.]

[We’ll learn some ways to draw these linear decision boundaries in the next several lectures. But for now,
let’s compare these two methods.]



Classification

• We are given a training set of  labeled examples (positive and 
negative) and want to learn a classifier that we can use to 
predict unseen examples, or to understand the data. 

• Training set:  , where xi is the ith input vector and 
yi ∈ {0,1}its class label. 

• How? A natural way is to find a decision boundary! f (x;w) = 0

{(xi, yi)}ni=1
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Boxplots of income as a function of default status.

4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y , as follows:

Y =

�
��

��

1 if stroke;

2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors X1, . . . , Xp. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the di�erence
between stroke and drug overdose is the same as the di�erence between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

Y =

�
��

��

1 if epileptic seizure;

2 if stroke;

3 if drug overdose.

creditcards.pdf (ISL, Figure 4.1) [The problem of classification. We are given data points,
each belonging to one of two classes. Then we are given additional points whose class is
unknown, and we are asked to predict what class each new point is in. Given the credit card
balance and annual income of a cardholder, predict whether they will default on their debt.]

– Collect training data: reliable debtors & defaulted debtors
– Evaluate new applicants (prediction)

decision boundary

[Draw this figure by hand. classify.pdf ]
[Draw 2 colors of dots, almost but not quite linearly separable.]
[“How do we classify a new point?” Draw a point in a third color.]
[One possibility: look at its nearest neighbor.]
[Another possibility: draw a linear decision boundary; label it.]
[Those are two di↵erent models for the nature of this data.]

[We’ll learn some ways to draw these linear decision boundaries in the next several lectures. But for now,
let’s compare these two methods.]

f (x;w) = 0



Classification with 
Linear Regression?

• We have training set:  , where xi is 
the ith input vector and yi ∈ {0,1}its class label 

• How about using linear regression? ŷ = l(x;w) = 
w0 + w1Tx for prediction then classify a new 
(test) example according to  

• label = 1 if l(x;w)>0.5, and label = 0 
otherwise 

• Not a good idea… See why…

{(xi, yi)}ni=1
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Boxplots of income as a function of default status.

4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y , as follows:

Y =

�
��

��

1 if stroke;

2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors X1, . . . , Xp. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the di�erence
between stroke and drug overdose is the same as the di�erence between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

Y =

�
��

��

1 if epileptic seizure;

2 if stroke;

3 if drug overdose.

creditcards.pdf (ISL, Figure 4.1) [The problem of classification. We are given data points,
each belonging to one of two classes. Then we are given additional points whose class is
unknown, and we are asked to predict what class each new point is in. Given the credit card
balance and annual income of a cardholder, predict whether they will default on their debt.]

– Collect training data: reliable debtors & defaulted debtors
– Evaluate new applicants (prediction)

decision boundary

[Draw this figure by hand. classify.pdf ]
[Draw 2 colors of dots, almost but not quite linearly separable.]
[“How do we classify a new point?” Draw a point in a third color.]
[One possibility: look at its nearest neighbor.]
[Another possibility: draw a linear decision boundary; label it.]
[Those are two di↵erent models for the nature of this data.]

[We’ll learn some ways to draw these linear decision boundaries in the next several lectures. But for now,
let’s compare these two methods.]

f (x;w) = 0



class 0 class 1



Projections of the 
Data

• A linear function f(x;w) = w0 + w1Tx 
projects each point x= (x1, x2)T to a line 
parallel to w1. 

• Let’s see how well the projected points, 
determined by w1, are separated across the 
classes.
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
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4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y , as follows:

Y =

�
��

��

1 if stroke;

2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors X1, . . . , Xp. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the di�erence
between stroke and drug overdose is the same as the di�erence between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

Y =

�
��

��

1 if epileptic seizure;

2 if stroke;

3 if drug overdose.

creditcards.pdf (ISL, Figure 4.1) [The problem of classification. We are given data points,
each belonging to one of two classes. Then we are given additional points whose class is
unknown, and we are asked to predict what class each new point is in. Given the credit card
balance and annual income of a cardholder, predict whether they will default on their debt.]

– Collect training data: reliable debtors & defaulted debtors
– Evaluate new applicants (prediction)

decision boundary

[Draw this figure by hand. classify.pdf ]
[Draw 2 colors of dots, almost but not quite linearly separable.]
[“How do we classify a new point?” Draw a point in a third color.]
[One possibility: look at its nearest neighbor.]
[Another possibility: draw a linear decision boundary; label it.]
[Those are two di↵erent models for the nature of this data.]

[We’ll learn some ways to draw these linear decision boundaries in the next several lectures. But for now,
let’s compare these two methods.]

f (x;w) = 0

Linear regression and projections

• A linear regression function (here in 2D)

f(x;w) = w0 + xTw1

projects each point x = [x1 x2]T to a line parallel to w1.
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f(x;w) = 0.5 

w 

f(x;w) = 0 

f(x;w) = 1

• We can study how well the projected points {z1, . . . , zn},
viewed as functions of w1, are separated across the classes.
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Effect of Different Projects
• With different w1:

Projection and classification

• By varying w1 we get di↵erent levels of separation between
the projected points
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(Partly adapted from Tommi Jaakkola’s slides)



Finding the Optimal Projection
• Find w1 to maximize the “separation” of  the projected points across 

classes 

• Quantify the separation (overlap) in terms of  means and variances of  
the resulting 1-dimensional class distributions

Projection and classification

• By varying w1 we get di↵erent levels of separation between
the projected points
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Before & After the Projection

• For original x (d-dimensional):  

• class 0: n0 samples, mean μ0, covariance Σ0  

• class 1: n1 samples, mean μ1, covariance Σ1 

• Projected class descriptions (1-dimension): 

• class 0: n0 samples, mean w1Tμ0, variance w1TΣ0w1  

• class 1: n1 samples, mean w1Tμ1, variance w1TΣ1w1 

Fisher linear discriminant: preliminaries
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• Class descriptions in Rd:
class 0: n0 samples, mean µ0, covariance ⌃0

class 1: n1 samples, mean µ1, covariance ⌃1

• Projected class descriptions in R:
class 0: n0 samples, mean µT

0 w1, variance wT
1 ⌃0w1

class 1: n1 samples, mean µT
1 w1, variance wT

1 ⌃1w1

Tommi Jaakkola, MIT CSAIL 11



Fisher Linear Discriminant

• Objective: Finding projection w1 to maximize   

• The solution is w1  

• Theoretically optimal for two normal populations with equal 
covariances Σ0 = Σ1 

Fisher linear discriminant

• Estimation criterion: we find w1 that maximizes

JFisher(w) =
(Separation of projected means)2

Sum of within class variances

=
(µT

1 w1 � µT
0 w)2

n1wT
1 ⌃1w1 + n0wT

1 ⌃0w1

• The solution (class separation)

ŵ1 / (n1⌃1 + n0⌃0)�1(µ1 � µ0)

is decision theoretically optimal
for two normal populations with
equal covariances (⌃1 = ⌃0)
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Fisher linear discriminant

• Estimation criterion: we find w1 that maximizes

JFisher(w) =
(Separation of projected means)2

Sum of within class variances

=
(µT

1 w1 � µT
0 w)2

n1wT
1 ⌃1w1 + n0wT

1 ⌃0w1

• The solution (class separation)

ŵ1 / (n1⌃1 + n0⌃0)�1(µ1 � µ0)

is decision theoretically optimal
for two normal populations with
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Fisher linear discriminant

• Estimation criterion: we find w1 that maximizes

JFisher(w) =
(Separation of projected means)2

Sum of within class variances

=
(µT

1 w1 � µT
0 w)2

n1wT
1 ⌃1w1 + n0wT

1 ⌃0w1

• The solution (class separation)

ŵ1 / (n1⌃1 + n0⌃0)�1(µ1 � µ0)

is decision theoretically optimal
for two normal populations with
equal covariances (⌃1 = ⌃0)
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Fisher linear discriminant

• Estimation criterion: we find w1 that maximizes

JFisher(w) =
(Separation of projected means)2

Sum of within class variances

=
(µT

1 w1 � µT
0 w)2

n1wT
1 ⌃1w1 + n0wT

1 ⌃0w1

• The solution (class separation)

ŵ1 / (n1⌃1 + n0⌃0)�1(µ1 � µ0)

is decision theoretically optimal
for two normal populations with
equal covariances (⌃1 = ⌃0)
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Projection and classification

• By varying w1 we get di↵erent levels of separation between
the projected points
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Simple Decision Theory

• Suppose we know the class-conditional densities p(x|y) for y = 0, 1 as 
well as the overall class frequencies P(y). 

• How do we decide which class a new example xnew belongs to in 
order to minimize the overall probability of  error?

Background: simple decision theory

• Suppose we know the class-conditional densities p(x|y) for
y = 0, 1 as well as the overall class frequencies P (y).

How do we decide which class a new example x0 belongs to
so as to minimize the overall probability of error?

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

class 0 density
P(x|y=0) 

class 1 density
P(x|y=1) 
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p(x|y=0)P(y=0)

p(x|y=0)P(y=0) The minimum probability of  error 
decisions are given by

ynew = arg max
y=0,1

P (y|xnew)

= arg max
y=0,1

{p(xnew|y)P (y) }

Known as Bayes classifier. 



Logistic Regression

• For binary classification problems, we can write these decisions as 

 

• We generally don’t know P(y|x), but we can parametrize the log-odds 
with a liner function: 

 

• It gives rise to the logistic model 

y = 1 if log P (y=1 |x)
P (y=0 |x) > 0, and y = 0 otherwise.

log
P (y = 1 |x)
P (y = 0 |x) = f(x;w) = w0 +w|

1x.

P (y = 1 |x) = g(w0 +w|
1x),

where g(t) = 1
1+e�t is a logistic “squashing function”

that turns linear functions into probabilities.

Logistic regression cont’d

• Our log-odds model

log
P (y = 1|x)
P (y = 0|x)

= w0 + xTw1

gives rise to a specific form for the conditional probability
over the labels (the logistic model):

P (y = 1|x,w) = g
�
w0 + xTw1

�

where

g(z) = (1 + exp(�z))�1

is a logistic “squashing
function” that turns linear
predictions into probabilities
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Logistic Regression for 
Classification: Illustration

• For binary classification problems, we can write these decisions as 

y = 1 if log P (y=1 |x)
P (y=0 |x) > 0, and y = 0 otherwise.

Logistic regression: decisions

• Logistic regression models imply a linear decision boundary

log
P (y = 1|x)
P (y = 0|x)

= w0 + xTw1 = 0

w0 + xTw1 = 0

w1

Tommi Jaakkola, MIT CSAIL 18

log P (y = 1 |x)P (y = 0 |x) = f(x;w) = w0 +w |
1 x = 0



Parameter Estimation for Logistic 
Regression

• As with regression models, we can fit the logistic models using 
maximum (conditional) log-likelihood: 

  

• No closed-form solution (like optimization of  parameters in neural 
networks—remember?) 

• By gradient-based method (or more advanced numerical methods)

L(w; Data) =
nX

i=1

logP (yi |xi,w), where

P (y = 1 |x,w) = g(w0 +w|
1x) =

1

1 + e�(w0+w|
1x)

.

Logistic regression cont’d

• Our log-odds model

log
P (y = 1|x)
P (y = 0|x)

= w0 + xTw1

gives rise to a specific form for the conditional probability
over the labels (the logistic model):

P (y = 1|x,w) = g
�
w0 + xTw1

�

where

g(z) = (1 + exp(�z))�1

is a logistic “squashing
function” that turns linear
predictions into probabilities
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Elementary Optimization: 
Gradient Method

• A general approach to                  :

• Example: min 

xnew = xold � � 5 f(xold)

f(x1, x2) = sin

✓
1

2
x2
1 �

1

4
x2
2 + 3

◆
cos(2x1 + 1� ex2).

A nice demo is given on https://www.benfrederickson.com/numerical-optimization/ 

https://www.benfrederickson.com/numerical-optimization/


Logistic Regression: Example

• Maximize the Likelihood function  

• Fitted model:

0.8 1 1.2 1.4 1.6 2.5
Move 6 4 2 2 0 0
Still 1 1 4 4 4 2
Total 7 5 6 6 4 2
Prop. 0.17 0.2 0.67 0.67 1 1

Concentration of anesthetic

P (y = 1 |x) = 1

1 + e�(�6.47+5.57x)
.



Extended Logistic Regression

• As with regression models, we can fit the logistic models using 
maximum (conditional) log-likelihood: 

 

L(w; Data) =
nX

i=1

logP (yi |xi,w), where

P (y = 1 |x,w) = g(w0 +w|
1x) =

1

1 + e�(w0+w|
1x)

.

Logistic regression cont’d

• Our log-odds model

log
P (y = 1|x)
P (y = 0|x)

= w0 + xTw1

gives rise to a specific form for the conditional probability
over the labels (the logistic model):

P (y = 1|x,w) = g
�
w0 + xTw1

�

where

g(z) = (1 + exp(�z))�1

is a logistic “squashing
function” that turns linear
predictions into probabilities
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For instance, we can use additive models instead of the linear model:

f(x;w) = w0 + w1�1(x) + ...+ wM�M (x).



Kernel Methods for Classification

The two classes are not 
linearly separable. :-(



Kernel Methods for Classification

What if you use a polynomial kernel with p=2 ?



Support Vector 
Machines

Can perform nonlinear classification with kernel trick.



Supervised Learning Algorithms

✤ Nearest-neighbor

✤ Decision trees

✤ Linear/nonlinear regression

✤ Neural networks/deep learning

✤ …

5

Supervised Learning
• Nearest neighbour:

CS489/698 (c) 2018 P. Poupart• Choose the number of k and a distance 
metric (k = 5 is common)

• Find k-nearest neighbors of the sample 
that you want to classify

• Assign the class label by majority vote



Supervised Learning Algorithms

✤ Nearest-neighbor

✤ Decision trees

✤ Linear/nonlinear regression

✤ Neural networks/deep learning

✤ …



Summary: From Regression to 
Classification

• Classification 

• Fisher linear discriminant, Bayes classifier, logistic regression, 
decision trees, nearest neighbors, SVM, Kernel methods… 

• What if  we are not given y?



Outline
• Supervised learning 

• From linear regression to nonlinear methods 

• Properties of regression 

• From parametric models to nonparametric models 

• Model selection: Why? What? How? 

• Classification 

• Unsupervised learning 

• Clustering ↓ 

• Dimensionality reduction… →



Two Ways of  Finding Simpler 
Data Representations

• Fewer “data points” vs. fewer dimensions (#variables)?

67



Unsupervised Learning
- Draw inferences from datasets consisting of input data without 

labeled responses 
- Visualization, understanding…  
- Clustering 

- Centroid-based clustering 
- Distribution-based clustering 
- Connectivity-based clustering…

Gaussian mixture model clustering exampleSingle-linkage clustering example



K-Means Clustering
• Goal: Partition n observations into K clusters in which each 

observation belongs to the cluster with the nearest mean (or 
center), serving as a prototype of  the cluster (as a method of  vector 
quantization in signal processing). 

• A bit history (https://en.wikipedia.org/wiki/K-means_clustering#History): The term “K-
means" was first used by James MacQueen in 1967, though the idea 
goes back to Hugo Steinhaus in 1956. The standard algorithm was first 
proposed by Stuart Lloyd of Bell Labs in 1957 as a technique for pulse-
code modulation, although it was not published as a journal article until 
1982. In 1965, Edward W. Forgy published essentially the same method, 
which is why it is sometimes referred to as the Lloyd–Forgy algorithm. 

• Given a set of  observations (x1, x2, ..., xn), where each 
observation is a d-dimensional real vector, K-means clustering 
aims to partition the n observations into K (≤ n) sets S = {S1, 
S2, ..., SK} so as to minimize the within-cluster sum of  squares:  

  
argmin

S

KX

k=1

X

xi2Sk

||xi � µk||2, where µk =
1��Sk

��
X

xi2Sk

xi.

https://en.wikipedia.org/wiki/K-means_clustering#History


K-Means Clustering: Procedure
argmin

S

KX

k=1

X

xi2Sk

||xi � µk||2, where µk =
1��Sk

��
X

xi2Sk

xi.

- Think of it as an alternating optimization 
procedure (by alternating optimizations 
over the individual subsets of 
parameters)


- Start with some guess of the means of 
the clusters


- Refer to https://www.naftaliharris.com/
blog/visualizing-k-means-clustering/ to 
see how we can update the partitioning 
and means iteratively

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


K-Means Clustering: Procedure

• Procedure: Given an initial set of  K means 
µ1(1),…, µK(1), the algorithm proceeds by 
alternating between two steps, until 
convergence: 

• Assignment step: Assign each observation 
to the cluster with the nearest mean (i.e., 
with the least squared Euclidean distance) 

• Update step: Recalculate means (centroids) 
µk for observations assigned to each cluster. 

• Problems: local minima, strong assumptions… 

• How to make it more flexible?

argmin
S

KX

k=1

X

xi2Sk

||xi � µk||2, where µk =
1��Sk

��
X

xi2Sk

xi.

W
in

er
s t

ak
e a

ll!

Issues…
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https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html

https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html
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https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


Multivariate Normal 
Distribution

• PDF for d-dimensional point x, specified by mean μ and 
covariance matrix :

Sample & marginal
pdf

pX(x) =
1p

(2⇡)k|⌃|
exp

⇣
� 1

2
(x� µ)|⌃�1(x� µ)

⌘
d

⌃ =


V ar(X1) Cov(X1, X2)

Cov(X2, X1) V ar(X2)

�…
…

… …



Remember This Way of 
Specifying Causal Mechanisms?

Z

X

• Let X be sex and Y be height 

• How can you specify the causal mechanism? 

• How about using a conditional Gaussian model?



GMM for Clustering

• Z: which cluster the observation is from. P(Z=k)=πk 

• p(X=x|Z=k) = N(x; µk, Σk) =  

• What is the distribution of  X ? 

• Distinguish between Gaussian Mixture Model 
(GMM) and the sum of  Gaussian variables 

• Fit the GMM to the data, and then P(Z=k|X=xi), 
known as the posterior/membership prob. of  Z, 
provides a soft way of  clustering the ith data point 

• How to estimated the parameters?

1p
(2⇡)d|⌃k|

e�
1
2 (x�µk)

|⌃�1
k (x�µk)

Gaussian mixture model clustering example

p(X = x) =
KX

k=1

⇡kN(x;µk,⌃k)



GMM for Clustering: 
Parameter Estimation

• Z: which cluster the observation is from. P(Z=k)=πk 

• p(X=x|Z=k) = N(x; µk, Σk) =  

• How to estimated the parameters Θ? Maximum likelihood estimation. 
Gradient-based? 

• Expectation-Maximization (EM) algorithm: A general technique for finding 
maximum likelihood estimators with latent variables (Z) 

• E step: Estimate the latent variable Z with the posterior  

• M step: update parameters Θ

1p
(2⇡)d|⌃k|

e�
1
2 (x�µk)

|⌃�1
k (x�µk)

Gaussian mixture model clustering 

p(X = x) =
KX

k=1

⇡kN(x;µk,⌃k)

hki := P (Z = k|X = xi) =
⇡kN(xi;µk,⌃k)PK
l=1 ⇡lN(xi;µl,⌃l)

⇡k =
1

n

nX

i=1

hki; µk =

Pn
i=1 hkixiPn
i=1 hki

; ⌃k =

Pn
i=1 hki(xi � µk)(xi � µk)

|
Pn

i=1 hki
.

*



GMM for Clustering: A Demo

Gaussian mixture model clustering example

- What does the decision boundary looks like?

- Demo: https://lukapopijac.github.io/gaussian-mixture-model/

*

https://lukapopijac.github.io/gaussian-mixture-model/


What If We Have Such Data…

Issues…



Agglomerative Clustering

• Bottom-up manner 

1. Make each data point a cluster 

2. Take the two closest clusters and make 
them one cluster 

3. Repeat step 2 until there is only one 
cluster

Issues…

Did you see why it is a method of hierarchical clustering?



Agglomerative Clustering: Linkage Criteria
2. Take the two closest clusters and make them one cluster

Single linkage Complete linkageAverage linkage



Unsupervised Learning 1: Summary
- Draw inferences from datasets consisting of input data without 

labeled responses 
- Visualization, understanding…  
- Clustering 

- Centroid-based clustering 
- Distribution-based clustering 
- Connectivity-based clustering…

Gaussian mixture model clustering exampleSingle-linkage clustering example



Two Ways of  Finding Simpler 
Data Representations

• Fewer “data points” vs. fewer dimensions (#variables)?
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Next: multivariate analysis & 
its connection to causal analysis
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