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Outline

• Unsupervised learning with 
multivariate analysis

• Principal component 
analysis (PCA)

• Factor analysis

• And probabilistic PCA

• Independent component 
analysis



Two Ways of  Finding Simpler 
Data Representations

• Fewer “data points” vs. fewer dimensions (#variables)?
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Multivariate analysis (MVA): involves observation and 
analysis of more than one outcome variable at a time.

F1...

X1 X2... Xd

Fm

ε1 ε2 εd

A

S1...

X1 X2... Xd

Sm
A

Find a projection of the data: 
Y = wTX with certain properties.

• Factor analysis:          
X  =  A·F + ε 

• Principal 
component 
analysis

• Independent 
component analysis:          
X  =  A·S

X = [X1, X2, ..., Xd]T

• Regression…



Major Information in the Data?
• Major information in the NYSE stock market? Better to analyze 

returns…
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Major 
Information 
in the Data?

• Major information in 
the NYSE stock 
market?
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Principal Component Analysis 
(PCA)

• Find a projection of the data 

Y = wTX 

to give the maximum variance 
(minimal squared reconstruction/

projection error?)

PCA was invented in 1901 by Karl Pearson, as an analogue of the 
principal axis theorem in mechanics; it was later independently 
developed and named by Harold Hotelling in the 1930s. Depending 
on the field of application, it is also named the discrete Karhunen–
Loève transform (KLT) in signal processing… (https://
en.wikipedia.org/wiki/Principal_component_analysis#History)

w

w: principal axis/direction; 
wTX: principal component

https://en.wikipedia.org/wiki/Principal_component_analysis#History
https://en.wikipedia.org/wiki/Principal_component_analysis#History


PCA: Effect of Weight Vector w

• Find a projection of the data 

Y = wTX 

to give the maximum variance 
(minimal squared reconstruction 

error?)
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PCA was invented in 1901 by Karl Pearson, as an analogue of the 
principal axis theorem in mechanics; it was later independently 
developed and named by Harold Hotelling in the 1930s. Depending 
on the field of application, it is also named the discrete Karhunen–
Loève transform (KLT) in signal processing… (https://
en.wikipedia.org/wiki/Principal_component_analysis#History)
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PCA

• Find a projection of the data 

Y = wTX 
to give the maximum variance 

• Find next ones if needed…

- Assume X has a zero mean.
- Maximize the sample variance of Y , which is 1

NY|Y = 1
Nw|XX|w =

w|Cw, where C = 1
NXX|, s.t. ||w||2 = w|w = 1.

- Let L = w|Cw � �w|w. Setting @L
@w = 0 gives

2Cw � 2�w = 0 ) Cw = �w.

- So w is an eigenvalue of C and � is the corresponding eigenvalue.
- The sample variance of Y is then w|Cw = w| · �w = �w|w = �. So �

corresponds to the larges eigenvalue.



PCA: Effect of Weight Vector w



PCA on MNIST Data



Principal Axis vs. Regression Line
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Principal Axis vs. Regression Line
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and the estimated weight vector is:
w = (0.88, 0.48)|,

with the corresponding eigenvalue 2.45

• First principal component PC1 = wTX



Principal Axis vs. Regression Line
• Regression line from X1 to X2:  x̂2 = ↵x1
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Principal Axis vs. Regression Line
• Regression line from X2 to X1:  x̂1 = �x2

-5 0 5
x1

-4

-3

-2

-1

0

1

2

3

4

x 2

� = 0.80



Principal Axis vs. Regression Line
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Principal Axis vs. Regression Line
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Nonlinear PCA
• Projections onto nonlinear manifold instead…

• Easily kernelized



Underlying 
Factors?

• Major information in 
the NYSE stock 
market?
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Factor Analysis
• Assume a generating model 

• X =  AF + ε  

• X = [X1, ..., Xd]T. 

• F = [F1, ..., Fp], p<d. 

• F ⫫ ε  

• E[F]=0; Cov[F ]=I. 

• Cov[ε]= Ψ, which is diagonal.

• Partial identifiability of A & F

• Estimation: MLE
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- pX(x)?


- Likelihood?



Factor Analysis
• Assume a generating model 

• X =  AF + ε  

• X = [X1, ..., Xd]T. 

• F = [F1, ..., Fp], p<d. 

• F ⫫ ε  

• E[F]=0; Cov[F ]=I. 

• Cov[ε]= Ψ, which is diagonal.

• Partial identifiability of A (up to 
right orthogonal transformation)

• Estimation: MLE
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X1 X2... Xd
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- pX(x)?


- Likelihood??
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AA| + = AUU|A| + ,

where U is an orthogonal matrix.

- Bekker, P. A. and ten Berge, J. M. F., Generic 
global indentification in factor analysis. 

Linear Algebra and its Applications, 
264:255–263, 1997.



Factor Analysis on the Returns

• X =  AF + ε  

• X = [X1, ..., Xd]T. 

• F = [F1, ..., Fp], p<n. 

• F ⫫ ε  

• E[F]=0; Cov[F ]=I. 

• Cov[ε]= Ψ, which is diagonal.

Â =
0.3656 0.0003 0.0089 0.1697

0.1175 0.7002 0.1001 0.2019

0.0833 0.1122 0.9837 0.0889

0.3142 0.3506 0.1060 0.6585

0.6793 0.2985 0.1211 0.1736

0.5529 0.2267 0.1164 0.4120

0.3310 0.4828 0.0586 0.1436

0.5881 0.5311 0.0819 0.1465

0.5598 0.3829 0.0210 0.0286

0.5908 0.4224 0.0516 0.1744
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Factor Analysis
• Assume a generating model 

• X =  AF + ε  

• X = [X1, ..., Xd]T. 

• F = [F1, ..., Fp], p<n. 

• F ⫫ ε  

• E[F]=0; Cov[F ]=I. 

• Cov[ε]= Ψ, which is diagonal.

• Partial identifiability of A & F

• Estimation: MLE; usually EM

Relationship between FA and PCA? 

-What if the noise terms are isotropic 

(Probabilistic PCA)?  

- What if we add (non)isotropic noise?
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Factor Analysis
• Assume a generating model 

• X =  AF + ε  

• X = [X1, ..., Xd]T. 

• F = [F1, ..., Fp], p<n. 

• F ⫫ ε  

• E[F]=0; Cov[F ]=I. 

• Cov[ε]= Ψ, which is diagonal.

• Partial identifiability of A

• Estimation: MLE

Relationship between FA and PCA: 

- What if the noise terms are isotropic? 
- A in FA consistent with w in PCA.  

- What if we add (non)isotropic noise? 
- A estimated by FA stays the same; w in 

PCA may change.

F1 …

X1 X2... Xd

Fp

ε1 ε2... εd

A



Factor Analysis: A Bit History
• Charles Spearman was the first psychologist to 

discuss common factor analysis, in a 1904 
paper that provided few details about his 
methods and was concerned with single-factor 
models.  

•  discovered that school children's scores on a wide 
variety of seemingly unrelated subjects were 
positively correlated, which led him to postulate 
that a single general mental ability underlies and 
shapes human cognitive performance. 

•  The initial development of common factor 
analysis with multiple factors was given by 
Louis Thurstone in two papers in the early 
1930s. Thurstone introduced several important 
factor analysis concepts, including uniqueness  
and rotation…
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Non-Gaussianity is Informative in 
the Linear Case…

• Smaller entropy, more structural, 
more interesting

• “Purer” according to the central 
limit theorem

198 ICA BY MAXIMIZATION OF NONGAUSSIANITY

Fig. 8.26 An illustration of projection pursuit and the “interesting” directions. The data in
this figure is clearly divided into two clusters. The goal in projection pursuit is to find the
projection (here, on the horizontal axis) that reveals the clustering or other structure of the
data.

the other hand, the projection on the vertical direction, which is also the direction of
the first principal component, fails to show this structure. This also shows that PCA
does not use the clustering structure. In fact, clustering structure is not visible in the
covariance or correlation matrix on which PCA is based.

Thus projection pursuit is usually performed by finding the most nongaussian
projections of the data. This is the same thing that we did in this chapter to estimate the
ICA model. This means that all the nongaussianity measures and the corresponding
ICA algorithms presented in this chapter could also be called projection pursuit
“indices” and algorithms.

It should be noted that in the formulation of projection pursuit, no data model
or assumption about independent components is made. If the ICA model holds,
optimizing the ICA nongaussianity measures produce independent components; if
the model does not hold, then what we get are the projection pursuit directions.

8.6 CONCLUDING REMARKS AND REFERENCES

A fundamental approach to ICA is given by the principle of nongaussianity. The
independent components can be found by finding directions in which the data is
maximally nongaussian. Nongaussianity can be measured by entropy-based mea-
sures or cumulant-based measures like kurtosis. Estimation of the ICA model can
then be performed by maximizing such nongaussianity measures; this can be done
by gradient methods or by fixed-point algorithms. Several independent components
can be found by finding several directions of maximum nongaussianity under the
constraint of decorrelation.

Which direction is 
more interesting?

Hyvärinen et al., Independent Component Analysis, 2001



Independent Component Analysis 

X1

Xd

observed 
signals

ICA system

output: as 
independent as 

possible
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X = A·S Y = W·X
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Hyvärinen et al., Independent Component Analysis, 2001

Demo: 
▶

https://cnl.salk.edu/~tewon/Blind/blind_audio.html


Independent Component Analysis 
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• Assumptions in ICA

• At most one of Si is Gaussian

• #Source <= # Sensor, and A is of full column rank


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Hyvärinen et al., Independent Component Analysis, 2001

Then A can be estimated up to 
column scale and permutation 

indeterminacies

A
s1
s2

X1
X2



A Demo of 
the ICA 

Procedure







Intuition: Why ICA works?
• (After preprocessing with Z=QX) ICA aims to 

find a rotation transformation Y = U·Z to 
making Yi independent

• How to achieve the independence?
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Darmois-Skitovich Theorem

Darmois-Skitovitch theorem: Define two random variables,
Y1 and Y2, as linear combinations of independent random variables
Si, i = 1, ..., n:

Y1 = ↵1S1 + ↵2S2 + ...+ ↵nSn,

Y2 = �1S1 + �2S2 + ...+ �nSn.

If Y1 and Y2 are statistically independent, then all variables Sj for
which ↵j�j 6= 0 are Gaussian.

Kagan et al., Characterization Problems in Mathematical Statistics. New York: Wiley, 1973

Cool! Can you then see the identifiability of  the ICA problem?



Overcomplete ICA: Illustration
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What if they 
are Gaussian?

*



How ICA works? By Maximum Likelihood

• From a maximum likelihood perspective

• To be maximized by the gradient-based method or natural-gradient 
based method 

• Or by mutual information minimization, or by information 
maximization…

X = A·S

Y = W·X
(Change of variables)

pS = ⇧n
i=1pSi

)pX = ⇧n
i=1pSi(W

|
i X)/|A|

)
TX

t=1

log pX(Xt) =
TX

t=1

nX

i=1

log pSi(W
|
i X

t) + T log |W|

(Xt: the t-th point of X.)

d

d

dn
xtxt

xt

n
log Ln



• Mutual information I(Y1,...,Yd) is the Kullback-Leiber divergence 
from PY to ∏iPYi :

• Nonnegative and zero iff Yi are independent

• H(X) = -E[log pX(X)]: differential entropy--how random the 
variable is?

Hyvärinen et al., Independent Component Analysis...

I(Y1, ..., Yn) =

Z
. . .

Z
pY1,...,Yn log

PY1,...,Yn

pY1 ...pYn

dy1...dyn

=

Z
. . .

Z
pY1,...,Yn logPY1,...,Yndy1...dyn �

Z
pY1,...,Yn

nX

i=1

log pYidyi

=
X

i

H(Yi)�H(Y )

=
X

i

H(Yi)�H(X)� log |W| because Y = WX

d d
d

d

d d d d

d

How ICA works? By Mutual Information 
Minimization

*



How ICA works? Some Interpretation

• Some methods (e.g., FastICA) pre-whiten the data, and then aim 
to find a rotation, for which |W| = 1

• Minimizing I ⇔ minimizing the entropies

• Given the variance, the Gaussian distribution has the largest 
entropy (among all continuous distributions)

• Maximizing non-Gaussianity !

• FastICA adopts some approximations of negentropy of each 
output Yi

I(Y1, ..., Yn) =
X

i

H(Yi)�H(X)� log |W| =
X

i

H(Yi) + const.d



Connecting ICA to Causal 
Analysis

S1...

X1 X2... Xd

Sm
A

• With identifiability of  A (compare it with factor analysis) 

• Can we use it for causal analysis?



Summary: Class 5

• Typical unsupervised multivariate analysis methods: goals, models, 
assumptions, solutions, and relations to causal modeling 

• Principal component analysis 

• Factor analysis 

• Independent component analysis 

• Graphical models 

• Local and global Markov property 

• Markov factorization of   

• d-separation 

• Causal graphical models

F1 …

X1 X2... Xd

Fp

ε1 ε2... εd

A


