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Probabilities & Graphical Models

® Why graphical models!?

® flexible, powerful and compact way to model relationships between
random variables and do inference

® Why probabilities?

The actual science of logic 1s conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately) we
have to reason on. Theretfore the true logic for this world 1s the calculus
of Probabilities, which takes account of the magnitude of the probability

which 1s, or ought to be, 1n a reasonable man’s mind.
James Clerk Maxwell (1850)



Graphical Models

® A graph comprises nodes (also called vertices) connected by links
(also known as edges or arcs)

® Probabilistic graphical models: compactly encoding a complex
distribution

® Node: a random variable (or group of random variables)
® [inks: direct probabilistic interactions between them

® We mainly consider directed acyclic graphs (DAGs)

Probability theory + graph theory
AN

represent uncertainty & L L
intuitively appealing interface for humans

interface models to data



Terms

Terms:
nodes, edge, adjacent, path;
Parents PA(X,), children,
spouses, ancestors,
descendants,




Directed Graphical Models

® Also known as Bayesian networks p(c=) pre=Ty
or belief nets 0s 0
® ‘[wo components
. . . -
Graph structure (qualitative ¢ lesnos (e oo re
specification) e |05 o3 . N .
T | oo o1 @ .

® prior knowledge of causal/modular

relationships .
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® expert knowledge
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® Jlearning from data FT| 0l 09
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® Conditional probability
distributions (CPDs)

® discrete variables : conditional
distribution tables (CPTs)

® continuous variables: SEMs



Tasks Related to Bayesian Networks

® Probabilistic inference:

Calculate P(variables of interest |

observed variables)

® Most common task where we
want to use Bayesian
networks

® How to find P(S=1|W=1)?
P(R=1\W=1)?

® Parameter learning

® Structure learning: Learning the
structure of the graphical model
from observations
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Bayesian Networks: Story

® Breakthrough in early 1980s (by Pearl et al.)

® [n ajoint probability distribution, every variable is, in general,
related to all other variables.

® Pecarl and others realized:

® [t is often reasonable to make the assumption that each variable
is directly related to only a few other variables

® This leads to modularity: Allowing decomposing a complex
model into small manageable pieces

® Giving rise to Bayesian networks



What Independence
Relationships Can You See?
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(Local) Markov Condition

chat®
slippery ground

yellow finger

® Fach variable is independent from its non-descendants given its
parents

falling down



For Instance, What Independence
Relations can You See?
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Factorization According to
Directed Graphs

® (Chain rule of probability gives Cotondy)
P(C,S,R,W) = P(C) P(§|C) P(R|C,S) P(W|C,S,R) @
® According to the CI relationships:

P(C,S,R,W) = P(C) P(S|C) P(R|C) P(W]|S,R)

® The graph structure allows us to represent the joint
distribution more compactly (Markov factorization or
Markov decomposition of the joint distribution):

® P(Xy...Xn) =1PXi| P4y g s

If we aim to represent :

, .causal info, is CI info |
® Remember this example? enough? =

O+ —@~@  wer



Factorization According to
Directed Graphs: Procedure

® Associate a conditional probability with each node

® Then take the product of the local probabilities to yield the
global probabilities

P(DIC)




Is LLocal Markov Condition
Enough?

® (Can we see whether two arbitrary variables, X and Y, are
conditionally independent given an arbitrary set of variables, Z ?
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D-Separation Tells
Conditional Independence

® [f every path from a node in X to a node in Y is d-separated by Z,
then X and Y are always conditionally independent given Z

® d: directional... You will see why
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D-Separation

® A set of nodes Z d-separates two sets of nodes X and Y if every path
from a node in X to a node in Y is blocked given Z.

® A path p is blocked by a set of nodes Z if

® ) contains a chain Z7—>2 e] or a common cause 7 < %] such
that the middle node » is in Z, or

® 5 contains a collider 2—>77 e_7 such that the middle node 7 is in

not Z and no descendant of 7z is in Z

X—pR—pS—> T ¢—U€—V—>Y
X—pR—pS—>T «—Ue—V—>Y l l l

X andY d-separated by {R,V}? W P 0
_ )
S and U d-separated by {R,V}? X and Y d-separated by {R, P}



D-Separation

® A set of nodes Z d-separates two sets of nodes X and Y if every path
from a node in X to a node in Y is blocked given Z.

® A path p is blocked by a set of nodes Z

if -
e

® 5 contains a chain z’%mej or a

common cause Z e7729] such that
the middle node 72 is in Z, or

® ) contains a collider 7 %me] such
that the middle node 7 is not in Z.
and no descendant of 72 is in Z

A and E d-separated by B ?
A and E d-separated by {B, M} ?



D-Separation: Intuition

. Born an
(Peer Pressure
ven Day

® Suppose X and Y are d-
separated by Z

® ThenifyoufixZ,Xand Y

Attention
Disorder
Coughing . @

® do not cause each other and

® do not share a common

4+—U
cause X\ - N\ e
R=—=T V
® X and Y are independent \Y/

. '
(conditional on Z)! 1. X and Y d-separated by {R}?

2. X and Y d-separated by {R, T}?
3. X and Y d-separated by {T, V}?
4. X and V d-separated by & ?




Local & Global Markov
Conditions

® l.ocal Markov condition:

® In a DAG, a variable X is
independent of all its non-
descendants given its parents

® (Global Markov condition:

® Given a DAG, let X and Y be
two variables and Z be a set of

variables that does not contain
XorY. It Z d-separates X and

Y, then XULYI|Z.

® Actually equivalent on DAGs!

20



Markov Blanket

® In a DAG, the Markov Blanket of a node X is the set consisting of
® Parents of X
® Children of X
® Parents of children (i.e., spouses) of X

® In a DAG, avariable X is conditionally independent from all other
variables given its Markov Blanket

® Implied by d-separation... % (e . ﬁ\
® The Markov blanket of I? ? E ?
ﬁ:) (1)
(m)



Causality vs. Dependence

® (lausality =» dependence ! Dependence =¥ causality

(http://imgs.xkcd.com/comics/correlation.png)

X and Y are associated iff X 1s a cause of Y 1ff
3x, # x, P(Y|X=x,) # P(Y|X=x,) 3x, # X, P(Y|do X=x,) # P(Y|do X=x.,)



http://imgs.xkcd.com/comics/correlation.png

Representing CGausal Relations with

Directed Graphs

® A directed graph represents a causally sutficient causal

structure
s \
Smoking > Cancer

(adapted from “Causation, Prediction, and Search” by SGS, 1995)

® Directed edge from A to B means 4 1s a direct cause of
B relative to the given variable set V'

23



Causal Bayesian Networks (CBN’s)

SEASON

® Bayesian networks: DAGs SPRINKLER '/ \ RAIN
® (Causal Bayesian networks WET
® More meaningful & able to represent and SLIPPERY
respond to external or spontaneous changes
Let P«(V) be the distribution of J resulting from @ SEASON
intervention do(X=x). A DAG G 1s a CBN 1f SP‘E%‘IE;LER . @ RAIN
1. P«(V) 1s Markov relative to G; . WET
2. P«(Vi=vi)=1 for all V;&X and v, consistent
with X=x: ‘ SLIPPERY
3. P«(Vi| PAi) = P(Vi| PA;) for all Vi€£X, i.e., .
P(Vi| PA;) remains invariant to interventions What1s
¢ £441) TCMAInS THvatiaht 1o ety Pxs=on(X1,X2,X4,X5)?
not involving V;

24



Structural Causal Models

o X;=fi(P4, E), i=1,...n /@\TEASON
SPRINKLER RAIN
N/

® [ exogenous variables / errors /

disturbances B!
® Fach equation represents an autonomous SRR
mechanism
PAi — X

® Describes how nature assigns values to

variables of interest X1 =E|,
o , X2 =f2(X1, E2),
® Distinction between structural equations & | X; =/3(X;, Es),

algebraic equations Xe = f2(X5, X2, E9),
Xs =f5 (X4, E5)

® Associated with graphical causal models

25



Three Types of

Problems in Current Al

ellow fingers Cough

e Three questions:

e Prediction: Would the person cough 1f we find he/she

has yellow fingers? _

e Intervention: Would the person cough 1f we make sure
that he/she has yellow fingers?

PX3|  (X2=1))

e Counterfactual: Would George cough /ad he had
yellow fingers, given that he does not have yellow

fingers and coughs’! P(X3 xo-i ﬂ)@ =0, X3 =1)

-

1
0
0
1
0
0
1
1
0
1
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Summary: Graphical Models

Directed acyclic graph
d-separation
Local and global Markov condition

Causal graphical representation
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