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Identification of Causal Effects &
Counterfactual Inference: Outline

® Problem definition
® Potential outcome tramework
® Propensity score
® Backdoor criterion and tront door criterion

® (ounterfactual inference



Three Types of

Problems in Current Al

ellow fingers Cough

® Three questions:

e Prediction: Would the person cough if we find he/she

has yellow fingers? _

e Intervention: Would the person cough 1f we make sure
that he/she has yellow fingers?

P(X3|  (X2=1))

e Counterfactual: Would George cough /ad he had
yellow fingers, given that he does not have yellow
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Identification of Causal Effects
P(Recovery | do(Treatment=A)) ?

® “Gold standard”: randomized controlled experiments

® All the other factors that influence the outcome
variable are either fixed or vary at random, so any
changes in the outcome variable must be due to the
controlled variable

/ \
/ \

® Usually expensive or impossible to do!



Identification of Causal Eftects: Example

Treatment A Treatment B

G 1 G 2
Small Stones foup P
93% (81/87) 87% (234/270)

Group 3 Group 4
73% (192/263) 69% (55/80)

Both  78% (273/350) 83% (289/350) P(R|T) = Z P(R|T,S)P(S|T)
S

Large Stones

P(R|do(T))=» P(R|T,S)P(S)
S

5



Identification of Causal Eftects: Example

Treatment A Treatment B

O Small stones
4 Large stone

Group 1 Group 2

Small Stones 03% (B1/87) | 87% (234/270) 0.95¢
Group 3 Group 4 0.9}
Large SIones ;v (192/263) 69% (s5%80) P (R | do(T)) =
Both 78% (273/350) 83% (289/350) ‘cj_s' 0.85¢
(7))
o 0.8
(&)
— S
n 0.75]
0.7
0.65

17 All patients

Treatment A

Treatment B

conditioning vs. manipulating



Identifiability of Parameters in
Statistical Models

® Jdentifiability, in simple words, means that different values of a
parameter must produce different probability distributions.

® Mathematically, a parameter O is said to be identifiable if and

only
0+#60=>P,#P,, or equivalently P,=P,=>0=10

® Js the mean of a Gaussian distribution identifiable?



Identifiability of Causal Effects

Sometimes written as P(y | X)

® s causal effect, denoted by P(Y | do(X)), identifiable given

complete or partial causal knowledge?

® ‘Two models with the same causal
structure and the same distribution
for the observed variables give the
same causal effect?

® How?

® Key issue: Controlling confounding effects

Examples.: Average causal effect (ACE)...



Key Issue: Controlling Confounding Bias

® [Exercise-cholesterol study: identifiable if age is not observed?

exercise exercise

Cholesterol Cholesterol

Exercise Exercise



Potential Outcome

® Causal inference: Inferring the eftect of treatment/

policy on some outcome

do(T =1) ¥ |ao@=1) = Ya(1)
o
4 s
Y;|do(r=0) = Yi(0
>

&

Causal effect:
Yi(1) - Yi(0)

M
5
N

(Adapted from Brady Neal, 2020)

T: observed treatment
Y: observed outcome
1: denote a specific subject or unit

Yi(1): potential outcome if the patient had
been treated

Yiaoer=1) = Y1)

Yi(0): potential outcome if the patient had
not been treated

Yiiio(r=0) = Y/(0)




Fundamental Problem
of Causal Inference

® Missing data issue

Unobserved:
Counterfactual
do(T = 0) Y\g? =

Observed: )
Factual @ NN R
A\Y4

T: observed treatment

Y: observed outcome

1: denote a specific subject or unit

Yi(1): potential outcome under treatment
Yidocr=1) = Y{(1)

Yi(0): potential outcome without treatment
Yiidor=0) = Y(0)

Causal effect:
- Yi(0)




Fundamental Problem
of Causal Inference

® Missing data issue

dofd — I
Observed:

Yi(1) =1
U

>

&

Factual

Unobserved:
Counterfactual

T: observed treatment
Y: observed outcome
1: denote a specific subject or unit
Yi(1): potential outcome under treatment
A
Yidor=1) = Y1)
Yi(0): potential outcome without treatment
A
Y do(r=0) = Y«(0)

Causal ettect:
Yi(l) -




Fundamental Problem
of Causal Inference

® Missing data issue

bW W) ) =
e 0 [ 0 i
2 1 1 1 1 i
3 10 0 ? ?
i 0 0 7 0 ?
H ) 1 o 1 ?
O it 1 i i

T: observed treatment
Y: observed outcome
1: denote a specific subject or unit
Yi(1): potential outcome under treatment
A
Yidor=1) = Y1)
Yi(0): potential outcome without treatment
A
Y do(r=0) = Y«(0)

Causal effect:
Yi(1) - Yi(0)




Formally, Potential Outcome Framework

e For aset of 1.1.d. subjects i = 1,---, n, we observed a tuple
(X;, T, Y,), comprised of

| R A
¢ A feature vector X; € R”
e A treatment assignment 7; € {0,1}

e Aresponse ¥; € R

e Yi(1) and Y:i(0) are potential outcomes in that they represent the
outcomes for individual i had they received the treatment or control
respectively.

e Missing data issue: we only get to see Y, with
Y, = Y(T) = Y,0)(1 - T) + Y(I)T,




Potential Outcome Framework

® Our first goal 1s to estimate the average treatment effect (ATE)
T =E[Y(1)— Y,(0)] (formally, i should be dropped.)

e However, we cannot find Y;(1) — Y,(0) because of the unobserved
potential outcome

¢ Then what assumptions do we need 1n order to estimate ATE from
observational data?



# Assumptions in the Potential-Outcome
Framework

Assumptions that make the ATE be estimated from observational data
e Ignorability: {Y(0), Y(1)} L. T
Conditional ignorability: {Y;(0), Y;(1)} I T;| X;

® Positivity: 0<P(T=1|X=x)<1

Stable Treatment Value

o No imnterference: Yi(t, -, 6, 1,8, by 1, o, 1,) = Yi(2,)
} Assumption (SUTVA)

o Consistency: T=t= Y= Y@



® Assumption 1: Ignorability

e The ignorability assumption: {¥(0), Y(1)} LT

That is, the potential outcomes of subjects had they been treated
or not does not depend on whether they have really been
(observable) treated or not

e Corresponding graphical model: there 1s no other path
from 7T to Y, except the direct edge X

e ATE = E[Y(1)] — E[Y(0)] \

= E[Y(1)| T = 1] — E[Y(0)| T = 0] (Ignorability)

=E[Y|T=1]—-E[Y|T=0]| (Consistency)

Only contains observable moments



® Assumption 1: Ignorability

¢ The 1ignorability assumption: {Y;(0), Y, (1)} L T,

ETY(D] = E[Y(0)] = E[Y(D)|T = 1] - E[Y(0)| T = O]

= E[Y|T=1]—-|E[Y|T = 0]

Yoy )y 7
i) m = 100.52 — 100.59
135.0/ e

—| |117.68 | —
—|| 95.08| —
—| (146.73 | —
117.89 = =
—| | 75.59 | —
—| | 65.68| —
g
=

110.59| 1100.52




£y

Assumption 1: Conditional ignorability

e The conditional ignorability assumption: {¥(0), Y(1)} LT|X

That is, given the covariates, the potential outcomes of subjects
had they been treated or not does not depend on whether they
have really been (observable) treated or not

e Corresponding graphical model: X blocks all paths from T to
Y, except the direct edge

X
e Conditional average treatment effect: / \
CATE = E[Y(1) — Y(0)| X] T Y

= ETY(1) | X] — ETY(0) | X]
=E[Y(1)|T=1,X]—-E[Y(0)|T=0,X] (Conditional ignorability)

=|E[Y|T=1X]—-E|Y|T=0,X]| (Consistency)

Only contains observable moments




~ From CATE to ATE

¢ Adjustment formula to identifying ATE

ATE = E[Y(1) — Y(0)] / \

= EyE[Y(1) — Y(0)| X]

= Ex|E[Y|T = 1.X] - E[Y|T = 0,X]]

We will see how to estimate it later (why?)



Assumption 2: Positivity

® The positivity assumption

For all values of covariates x present in the population of
interest (i.e., x such that P(X = x) > 0),

O<PT=1|X=x)<1

e A case where the positivity assumption violates
T=0 Suppose X = {Female, Male} T=1

Male
Male Male

Mal
Male e




Assumption 3: No Interference

e The no interference assumption: treatments of other
units do not affect one’s potential outcome, so

Y(tl, l lat t_|_19 9tn) — Yl(tl)

That is, unit i s potential outcome is only a function of its own
treatment, but will not be affected by other units’ treatment

e A case where the assumption holds: ® Violation:

Job training for too many people
may flood the market with qualified
job applicants (interference)

Jack’s recovery 1s not affected by
others’ taking aspirin.

Other’s Taking  Taking  Others’ Taking
aspirin aspirin aspirin

Tl Ti-l Ti Ti+1 Tn

Jack’s
Yi recovery



Assumption 4: Consistency

e The consistency assumption: the potential outcome under
treatment T=t, Y (t), 1s equal to the observed outcome 1f the

actual treatment received 1s T=t, 1.e.,
T=t=— Y=Y, forall

That is, the observed outcome is equal to the potential outcome Y(t),
when the actual treatment received is T =t; there is no variation in

[reatment

T'=1 =0
“I get a dog” “I don’t get a dog”

Q
l‘ (T'=1) = Y =1 (Pm happy)
EE— R — R (ko happy)

(Adapted from Brady Neal, 2020)

Consistency assumption violated



Recall the Assumptions

Assumptions that make the ATE be estimated from observational data

e Ignorability: {Y;(0), Y(1)} 1L T;| X,
Conditional ignorability: {Y;(0),Y,(1)} L T;[X;

® Positivity: 0<P(T=1|X=x) <1

e No imterference: Yi(t;, -, t;_, 8, by, o t,) = Yi(t)
Stable Unit Treatment
: Value Assumption
o Consistency: T=t= Y = Y(¢) SUTVA)

Stable Unit Treatment Value Assumption (SUVTA): No
interference assumption + Consistency assumption

SUVTA allows to write potential outcome for the 1th person
in terms of only that person’s treatments



Derivation of ATE

No interference:

7N\

ATE = E[Y(1) — Y(0)] = E[Y(1)] — E[Y(0)] (Linearity of expectation)
= E,[E[Y(1)| X] — E[Y(0) | X]1] (Law of iterated expectations)

= EEIY(1)|T= 1X] - E[YO)| 7= 0X])]  {efpranioy and

= E[ELY|T=1,X]—-E[Y|T=0,X]] (Consistency)

We will see how to estimate it later (why?)






Estimands, Estimates, and
Estimation

¢ Estimand: any quantity we want to estimate
® Causal estimand (e.g. E[Y(1) — Y(0)]
® Statistical estimand (e.g. Ex[E[Y|T = 1,X] — E[Y|T = 0,X]])

e Estimate: approximation of some estimand, using data

e Estimation: process for getting from data + estimatand to estimate

The Identification-Estimation Flowchart

Identification Estimation

Causal Estimand > Statistical Estimand » Estimate




Example: Effect of Sodium Intake on Blood Pressure

Data (Epidemiological example taken from Luque-Fernandez et al. (2018)):

e Outcome Y: (systolic) blood pressure (continuous)
e Treatment T: sodium intake (1 1f above 3.5 mg and 0 if below)
e Covariates X: age and amount of protein excreted 1n urine

e Simulation: so we know the “true” ATE 1s 1.05

Estimation of ATE

True ATE: E[Y (1) — Y(0)] = 1.05
Identification: E[Y (1) =Y (0)] =Ex [E[Y | T =1, X] —E[Y | T =0, X]]

: : 1
Estimation: — zx: [{E[Y IT—1 :1:]} - \IE[Y | T =0, :1:],] Why?

Model (linear regression)

Bt 0135 '0'851?)51'0“ % 100% = 19%
Naive: E[Y | T =1] - E[Y | T = 0]
5.33 — 1.05 (Adapted from

Naive estimate: 5.33 x 100% = 407%

1.05 Brady Neal, 2020)




How to estimate causal effect in the
Presence of confounders?

¢ In many cases, treatment assignment 1s associated with

| X
covariates X, so \
E[Y(1) — Y(O)] XE[Y|T = 1] — E[Y|T = 0] 5 Ly

e We want to estimate average treatment effects with associational
difference

e How can we flexibly “control” for X
e Under what conditions 1s “controlling” for X enough

e The Assumption: Controlling for X 1s enough 1f treatment 1s as
good as random

e The Question: What methods enable inference about the ATE
given this assumption



How to Estimate Causal Effect With
Confounders?

1) Randomization
E[Y(1)-Y(0)] =E[Y|T=1]-E[Y|T=0]
X\ Interventionon T X\
T >Y

T >Y

2) Statistical adjustment

ATE = E[E[Y|T = 1,X] — E[Y|T = 0.X]]



Covariates Adjustments

ATE = E(JE[Y|T = 1,X] - E[Y|T = 0,X]]
e Regression adjustments

® Matching

® Mahalanobis distance matching

® Propensity Score matching



Covariates Adjustments

ATE = Ey[E[Y|T = 1,X] - E[Y|T = 0,X]]
® Regression adjustments

® Matching

® Mahalanobis distance matching

® Propensity Score matching



Regression Adjustments

e Regression adjustments under 1gnorability / unconfoundedness

(Y,0), Y1)} L T;|X,

¢ We can express the ATE 1n terms of conditional response,
ATE = E[Y(1) — Y(0)] = E[Y(1)] — E[Y,(0)] (“i” should be
dropped;, it is
kept for clarity.)

= E[E[Y,(1)| X]] — E[Y{0) | X]]]

= E[E[Y(]1)|T, = 1.X;] — E[Y(0)|T; = 0.X]]
= E[E[Y,| T, = 1,X;] — E[Y;| T; = 0,X/]]

= Elpy(X)] — Elp)(X))]

where i, (x) = EIY,| T, = 1, X, = x]




Regression Adjustments

e Given ignorability, we have 7 = E[p1,(X)] — E[p,/(X)],

with p,(0) = ELY;| X,

:x_)]:.:t]

o Fit /i (x) via linear regression

o Fit /i,(x) via non-parametric approach

® One may use the following estimation strategy

1. Learn fig(x) by

predicting Y from X on controls

2. Learn fi;(x) by

1
3. Estimate 7 = —
n

7 1s consistent 1f /,(x) 1s

predicting Y from X on treated units
n

D (@) — Ag(X)

i=1

consistent for p(x)...



Regression Adjustments with Linear
Regression

o A classical approach to the ATE is to estimate py(x) and p,(x) via
ordinary least-squares regression (OLS)

e We first posit a linear model,
ﬂ(w)(x) = xﬁ(w)
and estimate ,BA(O) and ﬁA(l) by fitting the model

e Finally, we make predictions fi,,,(x) = xﬁA(W), and the estimated ATE is

|
2 == 3 niaX) ~ (X))
i=1

= (ﬁ(l) B ﬁA(O)>X



Matching 1: Mahalanobis Distance
Matching

e Mahalanobis distance matching: match the feature of each
treated unit to the nearest control unit, with the distance

D(X,, X)) = 1/((X; = X)"S!(X; - X))

® Control units: pruned 1f unused

® Prune matches 1f distance > threshold

80 — 80 -
W T C 70 { € c
C T C T
60 4 ©C €C T 60 \ T-¢ &/
cC G € C.T¢c ¢ c - C ¢ ¢ € &
50 4 C Cc or e T(_:rT C C Age 50 — CTﬁTgT ¢
€ C c 1T ¢ c 1 6. 37 | ¢
40 — T 40 \ -
T C T 61. . C
c (T C TG\ .
30 — e 30 — el
T 7T
20 | | | | | | | | [ 20 | I | | l | | [ |
12 14 16 18 20 22 24 26 28 12 14 16 18 20 22 924 96 78

Education (years) Education (years)



Propensity Score

® The propensity score measures the probability of being
treated conditionally on Xj | ie.,

e(x)=P(T,=1|X =x)
® In a randomized trial, the propensity score 1s constant
e(x) = ¢y € (0,1)

e At least qualitatively, the variability of the propensity score
gives a measure of how far we are from a randomized trial



Propensity Score Matching

® One way 1s to match covarnates X, but it is hard especially for
high-dimensional X

® Propensity Score

® [cte(X)=P(T=1|X), TILX| e(X)

® Then e(X) and X are (confounding)-equivalent
o {Y(0),Y(D}LT|X {Y/0), Y(1)} L T;|e(X))

® Unconfoundness given X implies unconfoundness given e(X)

¢ X may be high-dimensional, while e(X) 1s one-dimension



Propensity Score Matching:
Equivalence

® Propensity SCOI’C/v The probability of T=1, given X
o Lete(X)=P(T=1|X); TLX|e(X)

® Then e(X) and X are (confounding)-equivalent:
Y P(Y|t,x)P(x) = ) ) P(Y|t,x)P(e)P(x|e)
= 2 Z P(Y|t, x,e)P(e)P(x|t, e) = 2 Z P(Y,x|t, e)P(e)

X

— 2 P(Y|t,e)P(e)



Propensity Score Matching:
Procedure

General procedures of propensity score matching:

1. Estimate propensity scores c(X) = P(T=1 | X), e.g. with logistic regression

2. Match each treated to the nearest untreated on propensity score

e Nearest neighbor matching
e Optimal full matching ...

80 80
1 1
70 4 70 —
‘ 1S C
60 - _ exee > 60 c' & ‘
Age 50 — < Age 50 — Cr fCTC;T o C it
: = CC C-F—=¢
40 40 — GF TC : T
CT i
. | A
30 T T
e oo Tt st e (e R PR W 0 20 T -0 =0 O T [
12 16 20 24 28 12 16 20 24 28 .
: Propensity Propensity
Education (years) Score Education (years) Score

LEstimate propensity scores Matching



Identification of Causal Effects &
Counterfactual Inference: Outline

® Backdoor criterion and front door criterion

® (ounterfactual inference



Graphical Criterion: Back-Door Criterion

Definition 3.3.1 (Back-Door)
A set of variables Z satisfies the back-door criterion relative to an ordered pair of vari-
ables (X;, X;) in a DAG G if:

(1) nonodeinZis adescendant of X;; and

(11) Z blocks every path between X; and X; that contains an arrow into X;.

- What if Z = {X3, X4}?
Z=1{Xy X5}?
Z = {X4}?

- What 1f there 1s a confounder?

Theorem 3.3.2 (Back-Door Adjustment)
If a set of variables Z satisfies the back-door criterion relative to (X, Y ), then the causal
effect of X on Y is identifiable and is given by the formula

[P(y %)= Z P(y | x,2)P(2).

Or P(Y=y | do(X=x))




Front-Door Criterion

@ (Unobserved)

s ~

V4 AN

/ 0 p—\
Definition 3.3.3 (Front-Door) X z Y

A set of variables Z is said to satisfy the front-door criterion relative to an ordered pair
of variables (X, Y) if:

(1) Zintercepts all directed paths from XtoY;
(11) there is no back-door path from X to Z; and
(i11) all back-door paths from Z to Y are blocked by X.

Theorem 3.3.4 (Front-Door Adjustment)
If Zsatisfies the front-door criterion relative to (X, Y ) and if P(x, 2) > O, then the causal
effect of X on Y is identifiable and is given by the formula

P(y|£)=) P(z|x)) P(y|x,2P(x"). (3.29)



' Example: Smoking & Genotype Theory

_ P(x, 2) P(Y=1]|x,2
':f;'\( genOtype Group Size % of Cancer Cases
| Group Type (% of Population)  in Group
smoking \ X =0, Z=0 Nonsmokers, Notar 47.5 10
X ~% =%y X=12Z=0 Smokers, No tar 2.5 90
tar lung cancer X=0,Z=1 Nonsmokers, Tar 2.5 5
X=17Z=1 Smokers, Tar 47.5 85

P(Y =1]|do(X =1)) =.05(10 x .50 + 90 x .50)
+.95(.05 x .50 + .85 x .50)
= .05 x .50 + .95 x .45 = 4525,

P(Y =1|do(X =0))

95(.10 x .50 + 90 x .50)
+.05(.05 x .50 + .85 x .50)
= .95 x .50 + .05 x .45 = .4975.



Remember Structural Causal

Models?

SEASON

: .. N
e For simplicity, suppose we have X and Y- SPRINKLER RAIN

N/
e SEM: X = Eyx; Y = f(X, Ey) weT
® A particular experimental unit (e.g., a SLIPPRRY
patient) u has 1ts values for exogenous
variables Ex and EYy, say, ex and e, P4 —— X;

® Do interventionon X: X =x;, Y =f(x, Ey) X - £

Xo = (X1, E»),
X3 = f3(X1 E3),
X+ = (X3, X2 Ey),
X5 =f5(Xy4 E5)

e Potential outcome Y(x,u) or Yy(u)

® Y(x): counterfactual variable




*  Relation to Ignorability (Potential
Outcome Framework)

Definition 3.3.1 (Back-Door)
A set of variables Z satisfies the back-door criterion relative to an ordered pair of vari-
ables (X;, X;) in a DAG G if: 1 X,

(1) nonodeinZis adescendant of X;; and 4

(11) Z blocks every path between X; and X; that contains an arrow into X;.

X Xg
- (Conditional) 1gnorability assumption in the potential outcome framework:

MEIRDGWA 1 1/): the value attained by Y in unit
u under intervention do(x);

Definition 3.3.3 (Front-Door) Y(x): counterfactual variable (u 1s
A set of variables Z is said to satisfy the front-door criteffSFeusE NS variable)

of variables (X, Y) if:

(1) Zintercepts all directed paths from XtoY
(11) there is no back-door path from X to Z; and
(i11) all back-door paths from Z to Y are blocked by X. X ~ Y

- Y(z,x) = Y(2); {Y(2), X} 1L Z(x).




" A Unification of the Graphical Criteria

- (Pear & Tian, 2002) A sufficient condition for identifying the causal
effect P(y | do(x)) 1s that there exists no bi-directed path (1.e., a path
composed entirely of bi-directed arcs) between X and any of 1ts
children.

- Necessary & sufficient conditions also exist (e.g., Shpitser and
Pearl, 2008)...

- Examples:

(a) (b) (c)

Figure 3.7 (a) A bow pattern: a confounding arc embracing a causal link X — Y, thus preventing
the identification of P(y | X) even in the presence of an instrumental variable Z, as in (b). (c) A
bowless graph that still prohibits the identification of P(y | x).



A Unification: Examples

- Examples: Y

(g)

Figure 3.8 Typical models in whichthe effect of X on Y is identifiable. Dashed arcs represent con-
founding paths, and Z represents observed covariates.



A Unification: Examples

/\,\Z

- Examples:

X

(e) () (2)

Figure 3.9 Typical models in which P(y | x) is not identifiable.



Nonparametric vs. Parametric

X N
® WWhat if the causal relations are linear? \,“

B =rxz (regression coefficient of regressing X on Z)
aff =ryz

SO (¥ = Tyz/’l“Xz.



Identification of Causal Effects &
Counterfactual Inference: Outhne

® (ounterfactual inference



Three Types of

Problems in Current Al

ellow fingers Cough

® Three questions:

e Prediction: Would the person cough 1f we find he/she

has yellow fingers? _

e Intervention: Would the person cough 1f we make sure
that he/she has yellow fingers?

Xi
1
0
0
1
0
0
1
1
0
1

: Oor—*r—*r—*or—*r—*oofﬁ
: oo»—»—xoohw—w—ofs

e (Counterfactual: Would George cough /ad he had
yellow fingers, given that he does not have yellow
fingers and coughs?

P(X3 X2=1 ‘XZ — 0, X3 = ])



Three Types of

Problems in Current Al

ellow fingers Cough

® Three questions:

e Prediction: Would the person cough 1f we find he/she

has yellow fingers? _

e Intervention: Would the person cough if we make sure
that he/she has yellow fingers?

Xi
1
0
0
1
0
0
1
1
0
1

: Oor—*r—*r—*or—*r—*oofﬁ
: oo»—»—xoohw—w—ofs

e Counterfactual: Would George cough /ad he had
yellow fingers, given that he does not have yellow
fingers and coughs’!

P(X3 X2=1 ‘XZ — 0, X3 = ])



Counterfactual Inference vs. Prediction

Example 1: Suppose for human beings, confidence is an effect
of recognition with causal influence confidence = recognition *
noise. Suppose | receive recognition 3 and that my confidence
is 4.4. What would my confidence be if my recognition were 4?

30 Causal model: Confidence = Recognition * Noisé s .-

o5 | . .

N
o
4

Confidence
o

—k
o

Recognition
54



Counterfactual Inference vs. Prediction

attendance grade

® Suppose X—Y with Y = log(X + U + 3). For an individual
with (x,y), what would Y be 1f X had been x’ ?




Counterfactual Inference vs. Prediction

® Suppose X—Y with Y = log(X + U + 3). For an individual
with (x,y), what would Y be 1f X had been x’ ?




Standard Counterfactual Questions

® We talk about a particular situation (or unit) U = u, 1n
which X=xand Y =y

® What value would Y be had X been x’ 1n situation u?
I.e., we want to know Y_,-(u), the value of Y 1n
situation u 1f we do(X=x")

® u1s not directly observable, so P(Yy_.. | X =x, Y =)
instead

For identification of causal effects, U is randomized. It
is fixed for counterfactual inference.



Counterfactual Inference

W,
W=Uy B B B
X/ \Z X — fX (W, UX) P(YXZX’ ‘ X - .X, Y _y, W - W)
\ / Z=1f,(W, U, evidence
Y Y = fY (Xa Za UZ)

® Three steps
® Abduction: find P(U | evidence)
® Action: Replace the equation for X by X =x"’

® Prediction: Use the modified model to predict Y



Counterfactual Inference vs. Prediction

attendance grade

® Suppose X—Y with Y = log(X + U + 3). For an individual
with (x,y), what would Y be 1f X had been x’ ?




Counterfactual Inference vs. Prediction

® Suppose X—Y with Y = log(X + U+ 3). For an individual
with (x,y), what would Y be 1f X had been x’ ?

|
|
| Ly, |{X=xY=y}=logx +ii + 3)
|
|




Recent Advances

® Do we need to assume the SEMs are given?

® Practical implications of counterfactual reasoning?



Counterfactual Reasoning with
Nonlinear Quantile Regression

3.0+
® Feasible without SEMs! // () Yx o)
= 151 rm w5
® '|'he same value of the //"" S
. Quantile = 0.30
noise COI‘l”@SpOIldS to U e Quartiis it
the quantile function e e
of the same perCentﬂe Figure 1: Illustration of our proposed quantile-based counter-

factual estimation (Z is omitted for illustration purpose). For a
. sample of interest (X = x,Z = z, Y = y), we estimate the quantile
@ Can be easﬂy learned 7= P(Y <yl X = x,Z = z) = 0.70 with factual observations. Then
the counterfactual outcome Yy_, is equal to the value y’ which
satisfy P(Y <y X =x",Z=2)=1.

- Shaoan Xie, Biwei Huang, Bin Gu, Tongliang Liu, Kun Zhang,“Advancing Counterfactual Inference through Nonlinear
Quantile Regression,” https://arxiv.org/pdf/2306.0575 |



https://arxiv.org/pdf/2306.05751

Is This CGounterfactual Reasoning

Meaningtul?

\ 4
® Necessary backtracking for @
feasible changes and practical X3 =X, +0.01 - N(O,1)
implications

® lLeasible to do intervention on
X3?

v
® (onstrained optimization for
where to apply (backtracking)

Interventions
- Guang-Yuan Hao, |iji Zhang, Biwei Huang, Hao Wang, Kun Zhang ,“Natural Counterfactuals With Necessary
Backtracking,” NeurlPS 2024




Summary: CGausal Ettect Identification &
Counterfactual Reasoning

® (Lausal inference: Classical problem
® What is taken as input?
® What does identifiability mean?
® Backdoor criterion and unification *
® Difference from counterfactual reasoning
® What do you think of countertactual reasoning?

® How to make 1t more feasible and useful?



