

Causality and Machine Learning (80-816/516)

Classes 8 & 9 (Feb 6 & 11, 2025)

Identification of Causal Effects (Causal Inference) & Counterfactual Reasoning

Instructor:

Kun Zhang (kunzl@cmu.edu)

Zoom link: https://cmu.zoom.us/j/8214572323)

Office Hours: W 3:00-4:00PM (on Zoom or in person); other times by

appointment

Identification of Causal Effects & Counterfactual Inference: Outline

- Problem definition
- Potential outcome framework
 - Propensity score
- Backdoor criterion and front door criterion
- Counterfactual inference

Three Types of Problems in Current AI

• Three questions:

X_{l}	X_2	X_3
1	0	0
0	0	1
0	1	1
1	1	1
0	0	0
0	1	0
1	1	1
1	1	1
0	0	0
1	0	0
•••	• • •	•••

• **Prediction**: Would the person cough if we *find* he/she has yellow fingers?

$$P(X3 \mid X2=1)$$

• **Intervention**: Would the person cough if we *make sure* that he/she has yellow fingers?

$$P(X3 \mid do(X2=1))$$

• Counterfactual: Would George cough *had* he had yellow fingers, *given that he does not have yellow fingers and coughs*?

$$P(X3_{X2=1} | X2 = 0, X3 = 1)$$

Identification of Causal Effects

P(Recovery | do(Treatment=A))?

- "Gold standard": randomized controlled experiments
 - **All the other factors** that influence the outcome variable are either fixed or vary at random, so any changes in the outcome variable must be due to the controlled variable

Stone size

Recovery

Freatment

A/B

• Usually expensive or impossible to do!

Identification of Causal Effects: Example

	Treatment A	Treatment B
Small Stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large Stones	Group 3 73% (192/263)	Group 4 69% (55/80)
Both	78% (273/350)	83% (289/350)

$$P(R|T) = \sum_{S} P(R|T,S)P(S|T)$$

$$P(R \mid do(T)) = \sum_{S} P(R \mid T, S)P(S)$$

conditioning vs. manipulating

Identification of Causal Effects: Example

Stone size

Treatment

A/B

conditioning vs. manipulating

Identifiability of Parameters in Statistical Models

- Identifiability, in simple words, means that different values of a parameter must produce different probability distributions.
- Mathematically, a parameter θ is said to be identifiable if and only

$$\theta \neq \theta' \Rightarrow P_{\theta} \neq P_{\theta'}$$
, or equivalently $P_{\theta} = P_{\theta'} \Rightarrow \theta = \theta'$

• Is the mean of a Gaussian distribution identifiable?

Identifiability of Causal Effects

Sometimes written as $P(y | \hat{x})$

Treatment

A/B

Stone size

Recovery

• Is causal effect, denoted by P(Y | do(X)), identifiable given complete or partial causal knowledge?

• Two models with **the same causal structure** and **the same distribution for the observed variables** give <u>the same causal effect?</u>

• How?

Key issue: Controlling confounding effects

Examples: Average causal effect (ACE)...

Key Issue: Controlling Confounding Bias

• Exercise-cholesterol study: identifiable if age is not observed?

Potential Outcome

 Causal inference: Inferring the effect of treatment/ policy on some outcome

(Adapted from Brady Neal, 2020)

Causal effect: $Y_i(1) - Y_i(0)$

T: observed treatment

Y: observed outcome

i: denote a specific subject or unit

 $Y_i(1)$: potential outcome if the patient had been treated

$$Y_{i|do(T=1)} \triangleq Y_i(1)$$

 $Y_i(0)$: potential outcome if the patient had not been treated

$$Y_{i|do(T=0)} \triangleq Y_i(0)$$

Fundamental Problem of Causal Inference

• Missing data issue

T: observed treatment

Y: observed outcome

i: denote a specific subject or unit

 $Y_i(1)$: potential outcome under treatment

$$Y_{i|do(T=1)} \triangleq Y_i(1)$$

 $Y_i(0)$: potential outcome without treatment

$$Y_{i|do(T=0)} \triangleq Y_i(0)$$

Causal effect: $Y_i(1) - Y_i(0)$

Fundamental Problem of Causal Inference

Missing data issue

T: observed treatment

Y: observed outcome

i: denote a specific subject or unit

 $Y_i(1)$: potential outcome under treatment

$$Y_{i|do(T=1)} \triangleq Y_i(1)$$

 $Y_i(0)$: potential outcome without treatment

$$Y_{i|do(T=0)} \triangleq Y_i(0)$$

Causal effect: $Y_i(1) - Y_i(0)$

Fundamental Problem of Causal Inference

Missing data issue

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

T: observed treatment

Y: observed outcome

i: denote a specific subject or unit

 $Y_i(1)$: potential outcome under treatment

$$Y_{i|do(T=1)} \triangleq Y_i(1)$$

 $Y_i(0)$: potential outcome without treatment

$$Y_{i|do(T=0)} \triangleq Y_i(0)$$

Causal effect: $Y_i(1) - Y_i(0)$

Formally, Potential Outcome Framework

- For a set of i.i.d. subjects $i = 1, \dots, n$, we observed a tuple (X_i, T_i, Y_i) , comprised of
 - A feature vector $X_i \in \mathbb{R}^p$
 - A treatment assignment $T_i \in \{0,1\}$
 - A response $Y_i \in \mathbb{R}$
- $Y_i(1)$ and $Y_i(0)$ are **potential outcomes** in that they represent the outcomes for individual i had they received the treatment or control respectively.
- Missing data issue: we only get to see Y_i , with

$$Y_i = Y_i(T_i) = Y_i(0)(1 - T_i) + Y_i(1)T_i$$

Potential Outcome Framework

• Our first goal is to estimate the average treatment effect (ATE)

$$\tau = E_i[Y_i(1) - Y_i(0)]$$
 (formally, *i* should be dropped.)

- However, we cannot find $Y_i(1) Y_i(0)$ because of the unobserved potential outcome
- Then what assumptions do we need in order to estimate ATE from observational data?

Assumptions in the Potential-Outcome Framework

Assumptions that make the ATE be estimated from observational data

- Ignorability: $\{Y(0), Y(1)\} \perp T$
 - Conditional ignorability: $\{Y_i(0), Y_i(1)\} \perp T_i \mid X_i$
- Positivity: 0 < P(T = 1 | X = x) < 1
- No interference: $Y_i(t_1, \dots, t_{i-1}, t_i, t_{i+1}, \dots, t_n) = Y_i(t_i)$ Stable Treatment Value Assumption (SUTVA)
 - Consistency: $T = t \Longrightarrow Y = Y(t)$

Assumption 1: Ignorability

• The ignorability assumption: $\{Y(0), Y(1)\} \perp T$

That is, the potential outcomes of subjects had they been treated or not does not depend on whether they have really been (observable) treated or not

X

- Corresponding graphical model: there is no other path from *T* to *Y*, except the direct edge
- ATE = E[Y(1)] E[Y(0)]= E[Y(1)|T = 1] - E[Y(0)|T = 0] (Ignorability)

$$= E[Y | T = 1] - E[Y | T = 0]$$
 (Consistency)

Only contains observable moments

Assumption 1: Ignorability

• The ignorability assumption: $\{Y_i(0), Y_i(1)\} \perp T_i$

$$E[Y(1)] - E[Y(0)] = E[Y(1) | T = 1] - E[Y(0) | T = 0]$$

$Y_i(0)$	$Y_i(1)$	$ au_{i}$
154.68		
135.67	_	_
_	117.68	_
_	95.08	_
_	146.73	_
117.89	_	_
_	75.59	—
_	65.68	—
100.07	_	—
_	82.30	—
110.59	100.52	_

$$= E[Y | T = 1] - E[Y | T = 0]$$

$$= 100.52 - 100.59$$

Assumption 1: Conditional ignorability

• The conditional ignorability assumption: $\{Y(0), Y(1)\}$ $\perp T \mid X$

That is, given the covariates, the potential outcomes of subjects had they been treated or not does not depend on whether they have really been (observable) treated or not

- Corresponding graphical model: X blocks all paths from T to Y, except the direct edge χ
- Conditional average treatment effect: CATE = E[Y(1) - Y(0) | X]

$$= E[Y(1)|X] - E[Y(0)|X]$$

$$= E[Y(1) | T = 1,X] - E[Y(0) | T = 0,X]$$
 (Conditional ignorability)

$$= E[Y|T = 1,X] - E[Y|T = 0,X]$$
 (Consistency)

Only contains observable moments

From CATE to ATE

Adjustment formula to identifying ATE

$$ATE = E[Y(1) - Y(0)]$$

$$= E_X E[Y(1) - Y(0) | X]$$

$$= E_X [E[Y|T = 1, X] - E[Y|T = 0, X]]$$

We will see how to estimate it later (why?)

Assumption 2: Positivity

• The positivity assumption

For all values of covariates x present in the population of interest (i.e., x such that P(X = x) > 0),

$$0 < P(T = 1 | X = x) < 1$$

A case where the positivity assumption violates

T = 1

Assumption 3: No Interference

• The no interference assumption: treatments of other units do not affect one's potential outcome, so

$$Y_i(t_1, \dots, t_{i-1}, t_i, t_{i+1}, \dots, t_n) = Y_i(t_i)$$

That is, unit i's potential outcome is only a function of its own treatment, but will not be affected by other units' treatment

• A case where the assumption holds:

Jack's recovery is not affected by others' taking aspirin.

• Violation:

Job training for too many people may flood the market with qualified job applicants (interference)

Assumption 4: Consistency

• The consistency assumption: the potential outcome under treatment T=t, Y(t), is equal to the observed outcome if the actual treatment received is T=t, i.e.,

$$T = t \Longrightarrow Y = Y(t)$$
, for all t

That is, the observed outcome is equal to the potential outcome Y(t), when the actual treatment received is T = t; there is no variation in treatment

$$T=1 \qquad T=0$$
 "I get a dog" "I don't get a dog"
$$(T=1) \implies Y=1 \text{ (I'm happy)}$$

$$Consistency assumption violated
$$(T=1) \implies Y=0 \text{ (I'm not happy)}$$$$

(Adapted from Brady Neal, 2020)

Recall the Assumptions

Assumptions that make the ATE be estimated from observational data

- Ignorability: $\{Y_i(0), Y_i(1)\} \perp T_i \mid X_i$ Conditional ignorability: $\{Y_i(0), Y_i(1)\} \perp T_i \mid X_i$
- Positivity: 0 < P(T = 1 | X = x) < 1
- No interference: $Y_i(t_1, \dots, t_{i-1}, t_i, t_{i+1}, \dots, t_n) = Y_i(t_i)$ Stable Unit Treatment Value Assumption (SUTVA)

Stable Unit Treatment Value Assumption (SUVTA): No interference assumption + Consistency assumption

SUVTA allows to write potential outcome for the ith person in terms of only that person's treatments

*

Derivation of ATE

No interference: ATE = E[Y(1) - Y(0)] = E[Y(1)] - E[Y(0)] (Linearity of expectation) $= E_X[E[Y(1)|X] - E[Y(0)|X]]$ (Law of iterated expectations) $= E_X[E[Y(1)|T = 1,X] - E[Y(0)|T = 0,X]]$ (Ignorability and Positivity) $= E_X[E[Y|T = 1,X] - E[Y|T = 0,X]]$ (Consistency) We will see how to estimate it later (why?)

Estimands, Estimates, and Estimation

- Estimand: any quantity we want to estimate
 - Causal estimand (e.g. E[Y(1) Y(0)]
 - Statistical estimand (e.g. $E_X[E[Y|T=1,X]-E[Y|T=0,X]]$)
- Estimate: approximation of some estimand, using data
- Estimation: process for getting from data + estimatand to estimate

The Identification-Estimation Flowchart

Example: Effect of Sodium Intake on Blood Pressure

Data (Epidemiological example taken from Luque-Fernandez et al. (2018)):

- Outcome Y: (systolic) blood pressure (continuous)
- Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)
- Covariates X: age and amount of protein excreted in urine
- Simulation: so we know the "true" ATE is 1.05

Estimation of ATE

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation: $\frac{1}{n} \sum_{x} \left[\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x] \right]$ Model (linear regression)

Estimate: 0.85 $\frac{|0.85 - 1.05|}{1.05} \times 100\% = 19\%$

Naive: $\mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$

Naive estimate: 5.33

 $\frac{|5.33 - 1.05|}{1.05} \times 100\% = 407\%$

(Adapted from Brady Neal, 2020)

How to estimate causal effect in the Presence of confounders?

X

• In many cases, treatment assignment is associated with covariates X, so

$$E[Y(1) - Y(0)] \times E[Y|T=1] - E[Y|T=0]$$

- We want to estimate average treatment effects with associational difference
 - How can we flexibly "control" for X
 - Under what conditions is "controlling" for X enough
- The **Assumption**: Controlling for X is enough if treatment is as good as random
- The **Question**: What methods enable **inference** about the ATE given this assumption

How to Estimate Causal Effect With Confounders?

1) Randomization

$$E[Y(1) - Y(0)] = E[Y | T = 1] - E[Y | T = 0]$$

2) Statistical adjustment

$$ATE = E_X[E[Y|T=1,X] - E[Y|T=0,X]]$$

Covariates Adjustments

$$ATE = E_X[E[Y|T=1,X] - E[Y|T=0,X]]$$

- Regression adjustments
- Matching
 - Mahalanobis distance matching
 - Propensity Score matching
- Inverse propensity score reweighting
- Doubly robust method

Covariates Adjustments

$$ATE = E_X[E[Y|T=1,X] - E[Y|T=0,X]]$$

- Regression adjustments
- Matching
 - Mahalanobis distance matching
 - Propensity Score matching
- Inverse propensity score reweighting
- Doubly robust method

Regression Adjustments

• Regression adjustments under ignorability / unconfoundedness

$$\{Y_i(0), Y_i(1)\} \perp T_i \mid X_i$$

We can express the ATE in terms of conditional response,

("i" should be

dropped; it is

kept for clarity.)

$$ATE = E[Y_i(1) - Y_i(0)] = E[Y_i(1)] - E[Y_i(0)]$$

$$= E[E[Y_i(1) | X_i] - E[Y_i(0) | X_i]]$$

$$= E[E[Y_i(1) | T_i = 1, X_i] - E[Y_i(0) | T_i = 0, X_i]]$$

$$= E[E[Y_i | T_i = 1, X_i] - E[Y_i | T_i = 0, X_i]]$$

$$= E[\mu_{(1)}(X_i)] - E[\mu_{(0)}(X_i)]$$
where $\mu_{(t)}(x) = E[Y_i | T_i = t, X_i = x]$

Regression Adjustments

- Given ignorability, we have $\tau = E[\mu_{(1)}(X_i)] E[\mu_{(0)}(X_i)],$ with $\mu_{(t)}(x) = E[Y_i | X_i = x, T_i = t]$
 - o Fit $\hat{\mu}_t(x)$ via linear regression
 - o Fit $\hat{\mu}_t(x)$ via non-parametric approach
- One may use the following estimation strategy
 - 1. Learn $\hat{\mu}_0(x)$ by predicting Y from X on controls
 - 2. Learn $\hat{\mu}_1(x)$ by predicting Y from X on treated units
 - 3. Estimate $\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} (\hat{\mu}_1(X_i) \hat{\mu}_0(X_i))$

 $\hat{\tau}$ is consistent if $\hat{\mu}_t(x)$ is consistent for $\mu_t(x)$...

Regression Adjustments with Linear Regression

- A classical approach to the ATE is to estimate $\mu_0(x)$ and $\mu_1(x)$ via ordinary least-squares regression (OLS)
- We first posit a linear model,

$$\mu_{(w)}(x) = x\beta_{(w)}$$

and estimate $\hat{\beta}_{(0)}$ and $\hat{\beta}_{(1)}$ by fitting the model

• Finally, we make predictions $\hat{\mu}_{(w)}(x) = x\hat{\beta}_{(w)}$, and the estimated ATE is

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} n \left(\hat{\mu}_{(1)}(X_i) - \hat{\mu}_{(0)}(X_i) \right)$$
$$= \left(\hat{\beta}_{(1)} - \hat{\beta}_{(0)} \right) \bar{X}$$

Matching 1: Mahalanobis Distance Matching

• Mahalanobis distance matching: match the feature of each treated unit to the nearest control unit, with the distance

$$D(X_i, X_j) = \sqrt{((X_i - X_j)^T S^{-1} (X_i - X_j))}$$

- Control units: pruned if unused
- Prune matches if distance > threshold

Propensity Score

• The propensity score measures the probability of being treated conditionally on Xi, i.e.,

$$e(x) = P(T_i = 1 | X_i = x)$$

• In a randomized trial, the propensity score is constant

$$e(x) = e_0 \in (0,1)$$

• At least qualitatively, the variability of the propensity score gives a measure of how far we are from a randomized trial

Propensity Score Matching

- One way is to match covariates X, but it is hard especially for high-dimensional X
- Propensity Score
 - Let $e(X) = P(T=1 \mid X)$; $T \perp X \mid e(X)$
 - Then e(X) and X are (confounding)-equivalent
 - $\{Y_i(0), Y_i(1)\} \perp T_i | X_i = \{Y_i(0), Y_i(1)\} \perp T_i | e(X_i)$
 - Unconfoundness given X implies unconfoundness given e(X)
 - X may be high-dimensional, while e(X) is one-dimension

Propensity Score Matching: Equivalence

- Propensity Score

 The probability of T=1, given X
 - Let $e(X) = P(T=1 \mid X)$; $T \perp \!\!\! \perp X \mid e(X)$
 - Then e(X) and X are (confounding)-equivalent:

$$\sum_{x} P(Y|t,x)P(x) = \sum_{x} \sum_{e} P(Y|t,x)P(e)P(x|e)$$

$$= \sum_{x} \sum_{e} P(Y|t,x,e)P(e)P(x|t,e) = \sum_{x} \sum_{e} P(Y,x|t,e)P(e)$$

$$= \sum_{e} P(Y|t,e)P(e)$$

Propensity Score Matching: Procedure

General procedures of propensity score matching:

- 1. Estimate propensity scores $c(X) = P(T=1 \mid X)$, e.g. with logistic regression
- 2. Match each treated to the nearest untreated on propensity score
 - Nearest neighbor matching
 - Optimal full matching ...

Estimate propensity scores

Matching

Identification of Causal Effects & Counterfactual Inference: Outline

- Problem definition
- Potential outcome framework
 - Propensity score
- Backdoor criterion and front door criterion
- Counterfactual inference

Graphical Criterion: Back-Door Criterion

Definition 3.3.1 (Back-Door)

A set of variables Z satisfies the back-door criterion relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

- (i) no node in Z is a descendant of X_i ; and
- (ii) Z blocks every path between X_i and X_j that contains an arrow into X_i .

- What if
$$Z = \{X_3, X_4\}$$
?
 $Z = \{X_4, X_5\}$?
 $Z = \{X_4\}$?

- What if there is a confounder?

Theorem 3.3.2 (Back-Door Adjustment)

If a set of variables Z satisfies the back-door criterion relative to (X, Y), then the causal effect of X on Y is identifiable and is given by the formula

$$P(y \mid \hat{x}) = \sum_{z} P(y \mid x, z) P(z).$$
Or $P(Y=y \mid do(X=x))$

Front-Door Criterion

Definition 3.3.3 (Front-Door)

A set of variables Z is said to satisfy the front-door criterion relative to an ordered pair of variables (X, Y) if:

- (i) Z intercepts all directed paths from X to Y;
- (ii) there is no back-door path from X to Z; and
- (iii) all back-door paths from Z to Y are blocked by X.

Theorem 3.3.4 (Front-Door Adjustment)

If Zsatisfies the front-door criterion relative to (X, Y) and if P(x, z) > 0, then the causal effect of X on Y is identifiable and is given by the formula

$$P(y \mid \hat{x}) = \sum_{z} P(z \mid x) \sum_{x'} P(y \mid x', z) P(x'). \tag{3.29}$$

Example: Smoking & Genotype Theory

	Group Type	P(x, z) Group Size (% of Population)	$P(Y = 1 \mid x, z)$ % of Cancer Cases in Group
$X=0,\ Z=0$	Nonsmokers, No tar	47.5	10
X = 1, Z = 0	Smokers, No tar	2.5	90
X = 0, Z = 1	Nonsmokers, Tar	2.5	5
X = 1, Z = 1	Smokers, Tar	47.5	85

$$P(Y = 1 \mid do(X = 1)) = .05(.10 \times .50 + .90 \times .50)$$

$$+ .95(.05 \times .50 + .85 \times .50)$$

$$= .05 \times .50 + .95 \times .45 = .4525,$$

$$P(Y = 1 \mid do(X = 0)) = .95(.10 \times .50 + .90 \times .50)$$

$$+ .05(.05 \times .50 + .85 \times .50)$$

$$= .95 \times .50 + .05 \times .45 = .4975.$$

Remember Structural Causal Models?

- For simplicity, suppose we have *X* and *Y*:
 - SEM: $X = E_X$; $Y = f(X, E_Y)$
 - A particular experimental unit (e.g., a patient) u has its values for exogenous variables E_X and E_Y , say, e_x and e_y
 - Do intervention on X: X = x; $Y = f(x, E_Y)$
 - Potential outcome Y(x,u) or $Y_x(u)$
 - Y(x): counterfactual variable

$$PA_i \longrightarrow X_i$$

$$X_1 = E_1,$$

 $X_2 = f_2(X_1, E_2),$
 $X_3 = f_3(X_1, E_3),$
 $X_4 = f_2(X_3, X_2, E_4),$
 $X_5 = f_5(X_4, E_5)$

Relation to Ignorability (Potential Outcome Framework)

Definition 3.3.1 (Back-Door)

A set of variables Z satisfies the back-door criterion relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

- no node in Z is a descendant of X_i ; and
- Z blocks every path between X_i and X_j that contains an arrow into X_i . (ii)
- (Conditional) ignorability assumption in the potential outcome framework:

Definition 3.3.3 (Front-Door)

A set of variables Z is said to satisfy the front-door crite treated as a variable) of variables (X, Y) if:

- Z intercepts all directed paths from X to Y;
- there is no back-door path from X to Z; and (ii)
- all back-door paths from Z to Y are blocked by X. (iii)

 $Y(x) \perp X \mid Z$. Y(x,u): the value attained by Y in unit u under intervention do(x); Y(x): counterfactual variable (u is

$$- Y(z,x) = Y(z); \{Y(z), X\} \perp Z(x).$$

A Unification of the Graphical Criteria

- (Pear & Tian, 2002) A sufficient condition for identifying the causal effect $P(y \mid do(x))$ is that there exists no bi-directed path (i.e., a path composed entirely of bi-directed arcs) between X and any of its children.
- Necessary & sufficient conditions also exist (e.g., Shpitser and Pearl, 2008)...
- Examples:

Figure 3.7 (a) A bow pattern: a confounding arc embracing a causal link $X \to Y$, thus preventing the identification of $P(y \mid \hat{x})$ even in the presence of an instrumental variable Z, as in (b). (c) A bowless graph that still prohibits the identification of $P(y \mid \hat{x})$.

A Unification: Examples

- Examples:

Figure 3.8 Typical models in which the effect of X on Y is identifiable. Dashed arcs represent confounding paths, and Z represents observed covariates.

A Unification: Examples

Figure 3.9 Typical models in which $P(y \mid \hat{x})$ is not identifiable.

Nonparametric vs. Parametric

What if the causal relations are linear?

$$\beta=r_{XZ}$$
 (regression coefficient of regressing X on Z) $\alpha\beta=r_{YZ}$ so $\alpha = r_{YZ}/r_{XZ}$.

Identification of Causal Effects & Counterfactual Inference: Outline

- Problem definition
- Potential outcome framework
 - Propensity score
- Backdoor criterion and front door criterion
- Counterfactual inference

Three Types of Problems in Current AI

• Three questions:

X_{l}	X_2	X_3
1	0	0
0	0	1
0	1	1
1	1	1
0	0	0
0	1	0
1	1	1
1	1	1
0	0	0
1	0	0
•••	•••	•••

• **Prediction**: Would the person cough if we *find* he/she has yellow fingers?

$$P(X3 \mid X2=1)$$

• **Intervention**: Would the person cough if we *make sure* that he/she has yellow fingers?

$$P(X3 \mid do(X2=1))$$

• Counterfactual: Would George cough had he had yellow fingers, given that he does not have yellow fingers and coughs?

$$P(X3_{X2=1} | X2 = 0, X3 = 1)$$

Three Types of Problems in Current AI

• Three questions:

X_{l}	X_2	X_3
1	0	0
0	0	1
0	1	1
1	1	1
0	0	0
0	1	0
1	1	1
1	1	1
0	0	0
1	0	0
•••	• • •	•••

• **Prediction**: Would the person cough if we *find* he/she has yellow fingers?

$$P(X3 \mid X2=1)$$

• **Intervention**: Would the person cough if we *make sure* that he/she has yellow fingers?

$$P(X3 \mid do(X2=1))$$

• Counterfactual: Would George cough *had* he had yellow fingers, *given that he does not have yellow fingers and coughs*? $P(X3_{X2=1} | X2 = 0, X3 = 1)$

Example 1: Suppose for human beings, confidence is an effect of recognition with causal influence *confidence* = *recognition* * *noise*. Suppose I receive recognition 3 and that my confidence is 4.4. What would my confidence be if my recognition were 4?

• Suppose $X \rightarrow Y$ with Y = log(X + U + 3). For an individual with (x,y), what would Y be if X had been x'?

• Suppose $X \rightarrow Y$ with Y = log(X + U + 3). For an individual with (x,y), what would Y be if X had been x?

Standard Counterfactual Questions

- We talk about a particular situation (or unit) U = u, in which X = x and Y = y
- What value would Y be had X been x' in situation u? I.e., we want to know $Y_{X=x'}(u)$, the value of Y in situation u if we do(X=x')
- *u* is not directly observable, so $P(Y_{X=x'} | X = x, Y = y)$ instead

For identification of causal effects, U is randomized. It is fixed for counterfactual inference.

Counterfactual Inference

$$X = f_{X}(W, U_{X})$$

$$X = f_{X}(W, U_{X})$$

$$Z = f_{Z}(W, U_{Z})$$

$$Y = f_{Y}(X, Z, U_{Z})$$

$$P(Y_{X=x'} | X = x, Y = y, W = w)$$

$$evidence$$

- Three steps
 - Abduction: find P(U | evidence)
 - Action: Replace the equation for X by X = x'
 - Prediction: Use the modified model to predict Y

• Suppose $X \rightarrow Y$ with Y = log(X + U + 3). For an individual with (x,y), what would Y be if X had been x'?

• Suppose $X \rightarrow Y$ with Y = log(X + U + 3). For an individual with (x,y), what would Y be if X had been x?

Recent Advances

• Do we need to assume the SEMs are given?

Practical implications of counterfactual reasoning?

Counterfactual Reasoning with Nonlinear Quantile Regression

- Feasible without SEMs!
- The same value of the noise corresponds to the quantile function of the same percentile
 - Can be easily learned

Figure 1: Illustration of our proposed quantile-based counterfactual estimation (Z is omitted for illustration purpose). For a sample of interest (X = x, Z = z, Y = y), we estimate the quantile $\tau = P(Y \le y | X = x, Z = z) = 0.70$ with factual observations. Then the counterfactual outcome $Y_{X=x'}$ is equal to the value y' which satisfy $P(Y \le y' | X = x', Z = z) = \tau$.

- Shaoan Xie, Biwei Huang, Bin Gu, Tongliang Liu, Kun Zhang, "Advancing Counterfactual Inference through Nonlinear Quantile Regression," https://arxiv.org/pdf/2306.05751

Is This Counterfactual Reasoning Meaningful?

- Feasible to do intervention on X_3 ?
- Necessary backtracking for feasible changes and practical implications
 - Constrained optimization for where to apply (backtracking) interventions

⁻ Guang-Yuan Hao, Jiji Zhang, Biwei Huang, Hao Wang, Kun Zhang, "Natural Counterfactuals With Necessary Backtracking," NeurlPS 2024

Summary: Causal Effect Identification & Counterfactual Reasoning

- Causal inference: Classical problem
 - What is taken as input?
 - What does identifiability mean?
 - Backdoor criterion and unification *
- Difference from counterfactual reasoning
 - What do you think of counterfactual reasoning?
 - How to make it more feasible and useful?