
98-174 F17
Modern Version Control with Git

Aaron Perley (aperley@andrew.cmu.edu)
https://www.andrew.cmu.edu/course/98-174/

mailto:aperley@andrew.cmu.edu

Why should you take this course?

“Version control software is an
essential part of the every-day of
the modern software team's
professional practices.”
-- Atlassian Git Tutorial

Why should you take this course?

From a 2013 Fox News report:

Git ≠ Github

≠

What this course isn’t

• For seasoned Linuxbeards

What this course isn’t

• A crashcourse on git commands

What this course is about

• Forming a mental model for how git interacts with versions of files
• Understanding how to use git (and a bit of Github) in a collaborative

setting

https://www.andrew.cmu.edu/course/98-174/

Last semester’s schedule: https://www.andrew.cmu.edu/course/98-174/s17/

Course Website

https://www.andrew.cmu.edu/course/98-174/
https://www.andrew.cmu.edu/course/98-174/s17/

Grade Breakdown

Pass/No Credit, like every StuCo. To pass, get 70% out of:
• 20% Weekly Lecture Attendance

(Tuesdays 6:30PM – 7:20PM, Baker Hall 140F)
• 30% Submitted work (often in-class)
• 20% Midterm (Date TBA)
• 30% Final (Date TBA)

More Course Details

• No prerequisites

• 3 Free Elective credits

• No official textbook, but we recommend Pro Git by Scott Chacon
(free, online)

• No office hours unless specifically requested

• Email Aaron (aperley@andew.cmu.edu) if you have questions

• Slides and lecture notes posted online

mailto:aperley@andew.cmu.edu

Course Policy

• By StuCo Policy, students with more than 2 unexcused absences must
be given a No Pass in the course. Thus, email us if you’re going to miss
class for a legitimate reason, and you might get an excused absence.

• More than 15 minutes late = unexcused absence. Don’t be late.

• Academic integrity applies. Don’t cheat.

• No late homework.

Waitlist

• If you are on the waitlist, please keep coming to class.

• There is a 99.9% chance you will be able to get in off the waitlist

What is Version Control?

Goals of Version Control

• Be able to search through revision history and retrieve previous
versions of any file in a project

• Be able to share changes with collaborators on a project

• Be able to confidently make large changes to existing files

https://www.atlassian.com/git/tutorials/what-is-version-control

Named Folders
Approach

• Easy
• Familiar
• …

• Can be hard to track
• Memory-intensive
• Can be slow
• Hard to share
• No record of authorship

Centralized Version Control Systems

• A central repository determines the
order of versions of the project

• Collaborators “push” changes to the
files to the repository

• Any new changes must be
compatible with the most recent
version of the repository. If it isn’t,
somebody must “merge” it in.

• Examples: SVN, CVS, Perforce

Dev
A’s
Repo

Dev
B’s
Repo

Dev
C’s
Repo

Dev
D’s
Repo

Commit Commit

Commit

Commit

Push/Fetch

Push/Fetch

Push/Fetch

Push/Fetch
Push/Fetch

Push/Fetch

Distributed
Version Control

System

Distributed Version Control Systems (DVCS)

• No central repository, each
developer has their own copy

• Developers work on their own
copy of the repository locally and
sync changes with others

• Examples: Git, Mercurial

Git
• Created in 2005 by Linus Torvalds to maintain the Linux kernel.

Oh, and he created that too.
• Distributed VCS

https://www.git-scm.com/

https://www.git-scm.com/

Installing Git

https://www.andrew.cmu.edu/course/98-174/lecturenotes/installing_git.html

https://www.andrew.cmu.edu/course/98-174/lecturenotes/installing_git.html

Git Init

Initializes a new git repository in an existing folder

• The folder is now called a git repository

• Changes to any files in the folder (and its subfolders) can be tracked
by git

• Git stores its metadata in a hidden .git folder in the repository root

$ mkdir myrepo

$ cd myrepo

$ git init

Git Clone

• Download an existing repository (and all of its history!)

$ git clone https://github.com/autolab/Autolab.git

$ cd Autolab

https://github.com/autolab/Autolab.git

Git Log

List the history of a repository

$ git log

Press ‘q’ to exit, use arrow keys (or j,k) to
scroll

What is fad72e4?

• Commits are uniquely represented by SHA-1 hashes

• The first 6-7 characters of a hash are usually enough to identify it
uniquely from all the other commits in the repository

• This is called the short hash

https://en.wikipedia.org/wiki/SHA-1

Okay, so what is a commit?

1. A snapshot of all the files in a project
at a particular time.

2. A checkpoint in your project you can
come back to or refer to.

Anything else?

3. The changes a commit makes over the
previous commit

Homework

• One hour or less a week

• Released on Tuesdays after class, due next Tuesday at beginning of
class

• Posted on the course website

• Email me (aperley@andrew.cmu.edu) if you have questions, I’ll be
happy to help you out!

mailto:aperley@andrew.cmu.edu

