
Lecture 2
Making Simple Commits

Sign in on the
attendance

sheet!

credit: https://xkcd.com/1296/

Homework Reminders

• Great job gitting the homework done this week!

• Future homework will be submitted through Autolab:
https://autolab.andrew.cmu.edu/courses/98174-f17

Remember not to do this:

Andrewid.zip/

question-2/

left-pad/

question-4.txt

https://autolab.andrew.cmu.edu/courses/98174-f17

Review of Last Lecture

• git init – creates a git repo in the current directory

• git clone <git url> – copies the remote git repo into the current
directory

• git log [--oneline] – lists all commits in the git repo, starting with the
most recent one

• git help <command>, git <command> --help, man git <command> –
brings up the man help page for the git command

The .git folder

• Every git repository has a .git directory in the toplevel project
directory

• This is where all git commit objects and metadata are stored

• Don’t delete it! Doing so deletes the repository

• Folders starting with a dot are hidden on UNIX

Today: The Git Commit Workflow

• Review: git log

• git diff

• git status

• git add

• git commit

• git show

From Last Time: git log

Also try git log --oneline:

What is 2eae45f?

• Commits are uniquely represented by SHA-1 hashes

• The first 6-7 characters of a hash are usually enough to identify it
uniquely from all the other commits in the repository

• This is called the short hash

https://en.wikipedia.org/wiki/SHA-1

What is a commit?

1. A snapshot of all the files in a project
at a particular time

2. A checkpoint in your project you can
come back to or refer to

3. The changes a commit makes over the
previous commit

Commits are identified by their SHA-1 hash

Git Diff
demo.txt

This is an example of how git diff works!

Git diff is my favorit command!
Here is a new line of text!

Here is a new line of text!

Git diff is my favorite command!

Git Diff

Commits: Revisited

• Editing a file takes its state from 1 particular
snapshot to the next

• When we edit a file, we can see it as a set of
changes (a “diff”) from the snapshotted state
of that file

• Commits bundle up sets of changes to a list
of files

file1.txt (v2)
file2.txt (v1)
file3.txt (v1)

List of commits

file1.txt (v1)
file2.txt (v1)
file3.txt (v1)

file1.txt (v1)
file2.txt (v1)

ab628cc

782cb4f

bb2df1a
(HEAD)

git show <commit hash>

The Git Commit Workflow: Edit

file1.txt (v1)
file2.txt (v1)
file3.txt (v1)

Make changes to files
vim file1.txt file3.txt

Working Directory

file1.txt (v2)
file2.txt (v1)
file3.txt (v2)

List of Changes

In file1.txt: add the line “here is a new line!”
between lines 3 and 4

In file3.txt: delete line 27

Staging Area

The Git Commit Workflow: Add
Working Directory

file1.txt (v2)
file2.txt (v1)
file3.txt (v2)

List of Changes

In file1.txt: add the line “here is a new line!”
between lines 3 and 4

In file3.txt: delete line 27

Add the current differences
git add file1.txt file3.txt

Staging Area

The Git Commit Workflow: Commit
List of Changes

In file1.txt: add the line “here is a new line!”
between lines 3 and 4

In file3.txt: delete line 27

Commit the currently staged differences
git commit –m "fixed bug in file1 and file3"

file1.txt (v2)
file2.txt (v1)
file3.txt (v2)

List of commits

file1.txt (v1)
file2.txt (v1)
file3.txt (v1)

file1.txt (v1)
file2.txt (v1)ab628cc

782cb4f

bb2df1a

HEAD

git add

Example use:

git add file1.txt file2.txt

(or)

git add . (adds changes to all files in directory)

• Creates a commit out of a snapshot of the staging area, and updates
HEAD.

git commit

Example use:

git commit

(or)

git commit –m “commit message goes here”

• Creates a commit out of a snapshot of the staging area, and updates
HEAD.

Aside: commit HEAD

• The “most recent commit” has a special name: HEAD

Good commit messages

• Good:

Build: Don't install jsdom3 on Node.js 0.10 & 0.12 by default

• Bad:

bugfix lol get rekt

http://whatthecommit.com

http://whatthecommit.com/

git status
Shows files differing between the staging area and the working
directory (i.e. unstaged changes), the staging area and HEAD (i.e.
changes ready to commit), and untracked files

git diff

Example use:

(show unstaged changes)

git diff

(show staged changes)

git diff --cached

• Shows unstaged changes or staged changes

git show

Example use:

git show [commit hash (default is HEAD)]

• Shows the changes in the specified commit

Activity: Practicing Making Commits

1. Make a new folder, and create a new git repository inside.

2. Create a file called “me.txt”. Inside, write your name and
hometown.

3. Make a commit with this new file.

4. Make a new file called “neighbors.txt”.

5. Now, find 3 people sitting near you. For each person,
1. Find out their name and hometown, and put it in neighbors.txt.
2. Check the output of git status and git diff and verify it makes sense.
3. git add neighbors.txt
4. Check the output of git status and git diff and verify it makes sense.
5. Commit the change.
6. Check the output of git show and verify it makes sense.

