_ecture 2
Making Simple Commits

COMMENT DATE
% CREATED MAIN LOOP & TIMING CONTROL

. . ENABLED CONFIG FILE PARSING
Sign in on the MI5C BUGFIXES
attendance CODE Eggéﬁmaﬁorra
ShEEt! HERE HAVE CODE.

} ARAPABAA

ADKFISLKDFISDKLET
MY HANDS ARE TYPING LJORDS
HAAARAAAAANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

credit: https://xkcd.com/1296/

Homework Reminders

* Great job gitting the homework done this week!

* Future homework will be submitted through Autolab:
https://autolab.andrew.cmmu.edu/courses/98174-f17

Remember not to do this:
Andrewid.zip/
question-2/
left-pad/
guestion-4.txt

https://autolab.andrew.cmu.edu/courses/98174-f17

Review of Last Lecture

* git init — creates a git repo in the current directory

* git clone <git url> — copies the remote git repo into the current
directory

* git log [--oneline] — lists all commits in the git repo, starting with the
most recent one

* git help <command>, git <command> --help, man git <command> —
brings up the man help page for the git command

The .git folder

* Every git repository has a .git directory in the toplevel project
directory

* This is where all git commit objects and metadata are stored
* Don’t delete it! Doing so deletes the repository
* Folders starting with a dot are hidden on UNIX

$ 1s -a

.g1t css f16 homework 1index.html Tlecturenotes slides

$ 1s .git B . _ _
COMMIT_EDITM5G config hooks 1info objects refs
HEAD description 1index Jlogs packed-refs

Today: The Git Commit Workflow

* Review: git log
* git diff

* git status

e git add

* git commit

* git show

From Last Time: git log

We

ecue £710- £—Imaster Fremotes/originimaster| Fixlssue #710: Version Penalty TJ <teddyjo@live.com= 2017-01-04 20:42:21

Fixissue #609: ‘Edit Information’ button visible TJ =teddyjo@live.com= 2016-12-30 22:03:49

Fixnumbering issue Aatish MNayak =aatishn@andrew.cmu.¢ 2016-12-30 22:023:27

Remove references to “develop” branch Aatish Nayak =aatishn@andrew.cmu.s 2016-12-30 22:01:14

i P ~ o . # Don'treturn HTML errors to non-html requests Chaskiel Grundman =cg2v@andrew.c 2016-02-11 10:25:31
issue #609: 'Edit Information’ button visible # Trap and report scheduler exceptions Chaskiel Grundman =cg2v@andrew.c 2016-05-31 16:00:42
B # Disconnect from database before running Moss Chaskiel Grundman =cg2v@andrew.c 2016-06-07 13:06:03

1. edu= # Include some useful metadata in exception reports Chaskiel Grundman =cg2vi@andrew.c 2016-05-31 16:44:48

@ Merge remote-tracking branch ‘origin/gradesheet_post-deploy_fixes' into dt = Chaskiel Grundman =cg2vi@andrew.c 2016-04-23 14:14:45

Gradesheet save on change only (#651) Billy Zhu =z billy@gmail.coms= 2016-04-07 17:51:46

#® fix error caused by manually typing new date Billy Zhu =yuxiangzi@andrew.cmu.edu: 2016-04-05 15:05:11

u.edus

elop™ branch

Also try git log --oneline:

Remo - e ’ lop™ branch
Don't return H arr to non-htm]l
Trap and report ~-}; uler ptions
. e running Moss
(ception r
_L1ng branch 'or 31n_gr1de3 at : : y_fixes' into dt

on change only

1 by manually t
F et_fe n_demand
from autola " Op creating_subm
from autolab/create_extension_w ew_due_date

pT'ICl
E the T'GI ,
end the subpr ptions to

ely open
Hlﬁ'ngr ade_done url

What is 2eae45f"?

 Commits are uniquely represented by SHA-1 hashes

* The first 6-7 characters of a hash are usually enough to identify it
uniquely from all the other commits in the repository

* This is called the short hash

https://en.wikipedia.org/wiki/SHA-1

What is a commit?

1. A snapshot of all the files in a project
at a particular time

2. A checkpoint in your project you can
come back to or refer to

3. The changes a commit makes over the
previous commit

Commits are identified by their SHA-1 hash

Git Diff

demo.txt

This is an example of how git diff works!

Here is a new line of text!
Git diff is my favorit command!

Git diff is my favorite command!
Here is a new line of text!

Git Diff

T gt diff

ditf --git a/demo.txt b/demo.txt
index 4td054e..TF58225 100644
--- a/demo.txt

++ b/demo.txt

This 15 an example of how git diff works!

Commits: Revisited

List of commits

* Editing a file takes its state from 1 particular

ohaafta [2
snapshot to the next (HEAD) files.txt (v1)
* When we edit a file, we can see it as a set of l
changes (a “diff”) from the snapshotted state
. filel.txt (v1)
Of that flle 782cb4f file2.txt (v1)
. . file3.txt (v1)
 Commits bundle up sets of changes to a list
of files l
ab628cc filel.txt (v1)

file2.txt (v1)

git show <commit hash>

$ git show 13586

: T] <teddyjo@live.com:
Fri Dec 30 19:08:49 2016 -0800

Fix 1ssue #609: "Edit Information' button wvisible

diff --git a/app/views/course_user_data/show.html.erb b/app/views/course_user_data/show.html.erb
index 942e9e3..9%ecaala 100755

-—- a/app/views/course_user_data/show.html.erb

++ b/app/views/course_user_data/show.html.erb

<lisCourse Average Tweak of <¥=raw tweak(@requestedlUser.tweak) ¥=</l1=
<% end %=
</ul=

<%= link_to raw('<span class="btn primary"=Edit Information</span='), edit_course_course_user_datum_g

diff --git afapEfviEWEfcnur5E_u5er_datafuﬁer.htm].Erb b/app/views/course_user_data/user.html.erb

index aZae9e3..bel513a 100755
-—- a/app/views/course_user_data/user.html.erb
++ b/app/views/course_user_data/user.html.erb

<lisCourse Average Tweak of <¥=raw tweak(@requestedlUser.tweak) ¥=</l1=
<% end %=
</ul=

<%= Tink_to raw('Edit Information</span:'), edit_course_user_path(@course,

The Git Commit Workflow: Edit

Working Directory

fi
fi
fi

el.txt (v2)
e2.txt (v1)
e3.txt (v2)

Make changes to files
vim filel.txt file3.txt

List of Changes

In filel.txt: add the line “here is a new line!”
between lines 3 and 4

The Git Commit Workflow: Add

Working Directory

fi
fi
fi

el.txt (v2)
e2.txt (v1)
e3.txt (v2)

Add the current differences
git add filel.txt file3.txt

List of Changes

In filel.txt: add the line “here is a new line!”
between lines 3 and 4

Staging Area

The Git Commit Workflow: Commit

List of Changes

Staging Area

In filel.txt: add the line “here is a new line!”
between lines 3 and 4

A In file3.txt: delete line 27

Commit the currently staged differences
git commit -m "fixed bug in filel and file3"

List of commits

HEAD gy

filel.txt (v2)
bb2dfla file2.txt (v1)

file3.txt (v2)

}

filel.txt (v1)
782cb4f file2.txt (v1)
file3.txt (v1)

!

filel.txt (v1)
ab628cC ey txt (v1)

git add

Example use:

git add filel.txt file2.txt

(or)

git add . (adds changes to all files in directory)

working directory

f‘
staging area
ging —\
git commit
repository ‘—J

* Creates a commit out of a snapshot of the staging area, and updates

HEAD.

. . working directory
IT commiIt
g git add
Lv staging area —\
Example use: git commit
git commit repository <J
(or)

git commit —m “commit message goes here”

* Creates a commit out of a snapshot of the staging area, and updates
HEAD.

Aside: commit HEAD

* The “most recent commit” has a special name: HEAD

Build: Drop io.js testing
Tests: Provide equal() arguments in correct order (actual, expected)
Data: avoid using delete on DOM nodes

Manipulation: Switch rnoInnerhtml to a version more performant in IE
Tests: Really fix tests in IE 8 this time
Tests: Make basic tests work in IE 8

Good commit messages

* Good:
Build: Don't install jsdom3 on Node.js 0.10 & 0.12 by default

* Bad:
bugfix lol get rekt

http://whatthecommit.com

http://whatthecommit.com/

git status

Shows files differing between the staging area and the working
directory (i.e. unstaged changes), the staging area and HEAD (i.e.
changes ready to commit), and untracked files

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file=..." to unstage)

Changes not staged for commit:

Chang t staged f t
TP 14~ €3 T ax~ " o -~ wh L : L
(use "git add «file=..." to update what will be committed) . _
(use "git checkout -- <file>..." to discard changes in working directory)

Untracked files:
(use "git add <file=... include 1n what w11l be committed)

git diff

Example use:

(show unstaged changes)
git diff

(show staged changes)
git diff --cached

* Shows unstaged changes or staged changes

git show

Example use:
git show [commit hash (default is HEAD)]

* Shows the changes in the specified commit

Activity: Practicing Making Commits

1. Make a new folder, and create a new git repository inside.

2. Create a file called “me.txt”. Inside, write your name and
hometown.

3. Make a commit with this new file.
4. Make a new file called “neighbors.txt”.

5. Now, find 3 people sitting near you. For each person,

Find out their name and hometown, and put it in neighbors.txt.
Check the output of git status and git diff and verify it makes sense.
git add neighbors.txt
Check the output of git status and git diff and verify it makes sense.
Commit the change.

Check the output of git show and verify it makes sense.

ok whN e

