
Lecture 3
More on Git Commits

Sign in on the 
attendance 

sheet!



Review: The Git Commit Workflow (Edit, Add, Commit)

file1.txt (v2)
file2.txt (v1)
file3.txt (v2)

1. Make changes to files
vim file1.txt file3.txt

Working Directory

file1.txt (v2)
file2.txt (v1)
file3.txt (v1)

2. Add changes to the staging area
git add file1.txt

Staging Area

file1.txt (v2)
file2.txt (v1)
file3.txt (v1)

3. Commit changes in staging area
git commit -m “fixed bug in file1.txt”

List of commits

git add 
file1.txt

file1.txt (v1)
file2.txt (v1)
file3.txt (v1)

file1.txt (v1)
file2.txt (v1)

ab628cc

782cb4f

bb2df1a 
(HEAD)



What about new files?

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

Working Directory

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

Staging Area

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

List of commits

git add 
newfile.txt

file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

No difference from an edit, use git add newfile.txt.



What about removing files?

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

Working Directory

___
file1.txt (v1)
file2.txt (v1)

Staging Area

file1.txt (v1)
file2.txt (v1)

List of commits

git rm
newfile.txt

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

git rm newfile.txt (also deletes newfile.txt from working directory!)



What about renaming files?

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

Working Directory

betterfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

Staging Area

betterfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

List of commits

git mv 
newfile.txt
betterfile.txt

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

git mv newfile.txt betterfile.txt



What if I want to ‘unstage’ a file?

coolfile.txt (v2)
file1.txt (v1)
file2.txt (v1)

Working Directory

coolfile.txt (v2)
coolfile.txt (v1)

file1.txt (v1)
file2.txt (v1)

Staging Area

coolfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

List of commits

git reset
HEAD 
coolfile.txt

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

git reset HEAD coolfile.txt (Note WD is unaffected)



What if I want to start over on a file (in the WD)?

coolfile.txt (v2)
coolfile.txt (v1)

file1.txt (v1)
file2.txt (v1)

Working Directory

coolfile.txt (v2)
coolfile.txt (v1)

file1.txt (v1)
file2.txt (v1)

Staging Area

coolfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

List of commits

git checkout 
HEAD 
coolfile.txt

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

git checkout HEAD coolfile.txt



What if I want to start over (in both WD and SA)?

coolfile.txt (v2)
coolfile.txt (v1)

file1.txt (v2)
file1.txt (v1)
file2.txt (v1)

Working Directory

coolfile.txt (v2)
coolfile.txt (v1)

file1.txt (v2)
file1.txt (v1)
file2.txt (v1)

Staging Area

coolfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

List of commits

git reset --hard HEAD

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

git reset --hard HEAD (overwrites entire WD!)



Summary: Manipulating the Staging Area

• To update the staging area with files from your working directory, use 
“git add”.

• To update the staging area with files from HEAD, use “git reset”.

• To delete files from the staging area, use “git rm”.

That’s how you manipulate the staging area. How about the working 
directory?



Summary: Manipulating the Working 
Directory
• To update files in the working directory, edit files with vim or your 

preferred text editor.

• To reset files in the working directory to how they were in a particular 
commit, use “git checkout”.

• If you want to reset the staging area at the same time (which is often 
the case), use “git reset --hard” (but with caution).



Ignoring files
• By default Git tracks everything in your repository

• Not always a good thing – log files, compiled files, cache files, etc.

• Tell git to ignore these files using a .gitignore file

• https://github.com/github/gitignore for examples

*.log

logs
Build

*.jar

.gitignore

“*” means anything, so any file 
that ends with .log

Standalone words are (usually) 
folders, so anything in logs/ or 
Build/ is ignored

https://github.com/github/gitignore


Configuring Git
• Git has certain settings by default

• Provide Git with your name, email

• Customize Git to take advantage of its features, integration with other 
tools, different settings with special powers, etc.

• git config --global user.name "John Doe"

• git config --global user.email johndoe@example.com



Activity

• Groups of two or three

• One person create a new Git repository using “git init” in a new folder

• Add some files and make some commits, write down your steps if you 
won’t remember

• Ask the other person to try to work backwards and figure out a 
possible set of steps that brought the repository to this state

• Switch places and do this one more time



Where we are

• This wraps up our discussion of “how to make commits”.

• So far, our commits were made in a very linear fashion – every 
commit had exactly one parent, and had a maximum of one child.

• In larger projects, this probably won’t happen – the commits will 
begin branching off each other.

• Next week: branches


