
Lecture 4
Branches

Sign in on the 
attendance 

sheet!



Last Time



Scenario: You work on two features at once in 
a project

b4e2c29: initial 
commit

b5f3729: even more 
work on feature A

8277e09: even more 
work on feature B

8b7d883: begin work on 
feature B

8fc42c6: begin work on 
feature A

6f96cf3: more work on 
feature A

e167179: more work on 
feature B

master, 
HEAD



Scenario: You work on two features at once in 
a project

b4e2c29: initial 
commit

b5f3729: even more 
work on feature A

8277e09: even more 
work on feature B

8b7d883: begin work on 
feature B

8fc42c6: begin work on 
feature A

6f96cf3: more work on 
feature A

e167179: more work on 
feature B

master, 
HEAD

- Hard to distinguish the two different features 
that are being worked on based on the git
history

- If the features are related, the commits might 
interfere with each other



Solution: Non-linear development via 
branches

8b7d883: begin work on 
feature B

8fc42c6: begin work on 
feature A

6f96cf3: more work on 
feature A

e167179: more work on 
feature B

b4e2c29: initial 
commit

b5f3729: even more 
work on feature A

8277e09: even more 
work on feature B

master

featureA

featureB, 
HEAD



git branch

Example use:

git branch

• Lists all the local branches in the current repository and marks which 
branch you’re currently on
• Where are “you”? Well, you’re always at HEAD. Usually, you’re also at a 

branch as well.

• The default branch in a repository is called “master”



git branch <newbranchname>

Example use:

git branch develop

• Creates a new branch called “develop” that points to wherever you 
are right now (i.e. wherever HEAD is right now)



git checkout <branchname>

Example use:

git checkout develop

• Switches to the branch named “develop”

• Instead of a branch name, you can also put a commit hash

• Very different from “git checkout <commitname> <filename>” (from 
last week)! That checkouts a single file, this checkouts the entire 
branch, including all of its files



Commits are made on whatever branch 
you’re on

A

1. git commit –m “A”

master HEAD



Commits are made on whatever branch 
you’re on

B

A

1. git commit –m “A”

2. git commit –m “B”

master HEAD



Commits are made on whatever branch 
you’re on

B

A

1. git commit –m “A”

2. git commit –m “B”

3. git branch experiment

master HEAD

experiment



Commits are made on whatever branch 
you’re on

B

A

1. git commit –m “A”

2. git commit –m “B”

3. git branch experiment

4. git checkout experiment

master

HEADexperiment



Commits are made on whatever branch 
you’re on

B

A

C

1. git commit –m “A”

2. git commit –m “B”

3. git branch experiment

4. git checkout experiment

5. git commit –m “C”

master

HEADexperiment



Commits are made on whatever branch 
you’re on

B

A

C

D

1. git commit –m “A”

2. git commit –m “B”

3. git branch experiment

4. git checkout experiment

5. git commit –m “C”

6. git commit –m “D”
master

HEADexperiment



Commits are made on whatever branch 
you’re on

B

A

C

D

1. git commit –m “A”

2. git commit –m “B”

3. git branch experiment

4. git checkout experiment

5. git commit –m “C”

6. git commit –m “D”

7. git branch wildidea master

HEADexperiment

wildidea



Commits are made on whatever branch 
you’re on

B

A

C

D

1. git commit –m “A”

2. git commit –m “B”

3. git branch experiment

4. git checkout experiment

5. git commit –m “C”

6. git commit –m “D”

7. git branch wildidea

8. git checkout wildidea

master

HEAD

experiment

wildidea



Commits are made on whatever branch 
you’re on

B

A

C

D

E

1. git commit –m “A”

2. git commit –m “B”

3. git branch experiment

4. git checkout experiment

5. git commit –m “C”

6. git commit –m “D”

7. git branch wildidea

8. git checkout wildidea

9. git commit –m “E”

master

HEAD

experiment

wildidea



Commits are made on whatever branch 
you’re on

B

A

C

D

E

1. git commit –m “A”
2. git commit –m “B”
3. git branch experiment
4. git checkout experiment
5. git commit –m “C”
6. git commit –m “D”
7. git branch wildidea
8. git checkout wildidea
9. git commit –m “E”
10. git checkout master

master HEAD

experiment

wildidea



Commits are made on whatever branch 
you’re on

B

A

C

D

E

F

1. git commit –m “A”

2. git commit –m “B”

3. git branch experiment

4. git checkout experiment

5. git commit –m “C”

6. git commit –m “D”

7. git branch wildidea

8. git checkout wildidea

9. git commit –m “E”

10. git checkout master

11. git commit –m “F”

master HEAD

experiment

wildidea



Exercise: What [directed, acyclic] graph do the following 
git commands produce?

1. git commit –m “A”

2. git commit –m “B”

3. git branch stable

4. git branch experiment

5. git checkout experiment

6. git commit –m “C”

7. git checkout master

8. git commit –m “D”

9. git branch goodidea

10. git checkout experiment

11. git branch whereami

12. git commit –m “E”

13. git checkout goodidea

14. git checkout master

15. git commit –m “F”

16. git checkout whereami

17. git commit –m “G”

18. git checkout master

B

A

C
D

E
F

stable

experiment

goodidea

master, 
HEAD

G

whereami



What branch am I on if I checkout some 
commit’s hash?

stable

B

A

C

D

E
F

experiment
master HEAD



How to start a new branch from this commit?

git branch new-feature

git checkout new-feature

How to get back to experiment?

git checkout experiment



How do we bring branches back together?

8b7d883: Bob: begin 
work on feature B

8fc42c6: Alice: begin 
work on feature A

6f96cf3: Alice: more 
work on feature A

e167179: Bob: more 
work on feature B

b4e2c29: initial 
commit

b5f3729: Alice: even 
more work on feature A

8277e09: Bob: even 
more work on feature B

master

featureA,
head

featureB



How do we bring branches back together?

8b7d883: Bob: begin 
work on feature B

8fc42c6: Alice: begin 
work on feature A

6f96cf3: Alice: more 
work on feature A

e167179: Bob: more 
work on feature B

b4e2c29: initial 
commit

b5f3729: Alice: even 
more work on feature A

8277e09: Bob: even 
more work on feature B

featureA

featureB

db82ca7: Merge branch 
‘featureA’ into master

HEAD

master

git checkout master

git merge featureA



How do we bring branches back together?

8b7d883: Bob: begin 
work on feature B

8fc42c6: Alice: begin 
work on feature A

6f96cf3: Alice: more 
work on feature A

e167179: Bob: more 
work on feature B

b4e2c29: initial 
commit

b5f3729: Alice: even 
more work on feature A

8277e09: Bob: even 
more work on feature B

master, 
HEAD

featureA

featureB

db82ca7: Merge branch 
‘featureA’ into master

29ca3b3: Merge branch 
‘featureB’ into master



git merge <branch_to_merge_in>

Example use:

git merge featureA

• Makes a new merge commit on the CURRENT branch that brings in 
changes from featureA



How does git know how to merge changes 
from another branch into yours?



How does git know how to merge changes 
from another branch into yours?
• It doesn’t.



Most cases: Merging with possible conflicts

B

A

C

D

E

F
goodidea

master, 
HEAD

• Let’s say I’m on master (as 
denoted by HEAD) and I want to 
merge goodidea into master.

• git merge goodidea



Most cases: Merging with possible conflicts

B

A

C

D

E

F
goodidea

master, 
HEAD

• Let’s say I’m on master (as denoted 
by HEAD) and I want to merge 
goodidea into master.

• git merge goodidea

• At this point, if bringing in all the 
changes from goodidea do not 
conflict with the files in master, 
then a new commit is created 
(you’ll have to specify a commit 
message) and we’re done.

• Otherwise…git just goes halfway 
and stops.

G

master, 
HEAD



MERGE CONFLICT

B

A

C

D

E

F
goodidea

master, 
HEAD

master, 
HEAD G



MERGE CONFLICT

This file is demo.txt

<<<<<<< HEAD
Here is another line. modified in master
=======
Here is another line. modified in goodidea
>>>>>>> goodidea



“How to fix a merge conflict”

• Run `git status` to find the files that 
are in conflict.

• For each of these files, look for lines 
like “<<<<<< HEAD” or “>>>>>> 
3de67ca” that indicate a conflict.

• Edit the lines to match what you 
want them to be.

• After you finish doing this for each 
conflict in each file, `git add` these 
conflicted files and run `git commit` 
to complete the merge.



Special Case: Fast-forward merges

B

A

C

D

E

F

master, 
HEAD

experiment

wildidea

badidea

git merge experiment



Special Case: Fast-forward merges

B

A

C

D

E

F

HEAD, 
master, 
experiment

wildidea

badidea

master, 
HEAD

Git doesn’t bother creating 
another commit to combine the 
changes because this kind of 
merge is guaranteed to not have 
conflicts.

git merge experiment



Special Case: Fast-forward merges

B

A

C

D

E

F
master, 
HEAD

wildidea

badidea

G

experiment
Some people like creating a 
new commit anyway to 
document the fact that the 
merge occurred. To do so, do

git merge --no-ff



Summary

• git branch – list all branches

• git branch <branchname> - make a new branch

• git checkout <branchname> - switch to another branch or commit

• git merge <branchname> - make a commit merging in a branch



Activity!

In pairs:

1. Create a git repository

2. Make a new file called file1.txt, add some lines to it, and commit it

3. Create two branches called branch1 and branch2

4. Edit the same line in the text file and make a commit in each branch

5. Merge both branches back to master (merging the second branch 
back will require resolving the conflicts).

6. What do we call the merge that occurred when merging the first 
branch back to master?


