
Lecture 5
More on Branches and Merging

Sign in on the 
attendance 

sheet!



Midterm Next Week

• During class

• Very similar to the homework problems

• Don’t stress!

• No homework this week, but practice all of the commands we’ve 
learned.



Last Time

B

A

C

D

E

F master HEAD

experiment

wildidea• Branches are pointers to 
specific commits

• Branches allow us to create
commit histories that diverge

• We can merge diverged
histories back together



git branch <newbranchname>

Example use:

git branch experiment

• Creates a new branch called “develop” that points to wherever you 
are right now (i.e. wherever HEAD is right now)

B

A

master HEAD

experiment



git checkout <branchname>

Example use:

git checkout experiment

Switches the HEAD to the branch named “develop”

B

A

master HEAD

experiment



Git Log and Branches

git log does not show all branches well by itself. Use:

git log --graph --decorate --all



git branch

Example use:

git branch

• Lists all the local branches in the current repository and marks which 
branch you’re currently on
• Where are “you”? Well, you’re always at HEAD. Usually, you’re also at a 

branch as well.

• The default branch in a repository is called “master”



Telling if branches are merged

git branch --merged

Lists all branches merged into the current branch

git branch --no-merged

Lists all unmerged branches relative to the current branch

A branch is merged into the current branch if it is an ancestor of that branch!



Deleting Branches

git branch -d <branchname>

Will only delete the branch if it is merged into HEAD

git branch -D <branchname>

Will force delete the branch

Deleting a branch just removes the pointer!



Git Diff with Branches
git diff branch1…branch2

View changes on branch2, starting at 
the common ancestor of branch1 and 
branch2.

$ git diff master…experiment

Shows changes in commits C and D, but 
not F

B

A

C

D

E

F master HEAD

experiment

wildidea



Merging

git merge experiment

“Will replay the changes made on
the experiment branch since it
diverged from master (i.e. B) until
its current commit (D) on top of
master, and record the result in a
new commit along with the
names of the two parent
commits.” (from git help merge)

B

A

C

D

E

F master HEAD

experiment

wildidea



Fast Forward Merges

• Occur when the branch being 
merged onto is an ancestor of the 
branch being in.

• No merge commit is made unless
--no-ff flag is used

• Will never cause conflicts!

git merge experiment

B

A

C

D

E

master HEAD

experiment

wildidea



Three-Way Merges

• Occur when the branch being 
merged onto is not a descendent
of the branch being merged in.

• The branch being merged onto has
“moved on” since the split.

• Creates a merge commit, can
cause conflicts!

git merge experiment

Performs a “three way merge” 
between B, F, and D

B

A

C

D

E

F master HEAD

experiment

wildidea



MERGE CONFLICT

B

A

C

D

E

F
goodidea

master, 
HEAD

master, 
HEAD G



MERGE CONFLICT

This file is demo.txt

<<<<<<< HEAD
Here is another line. modified in master
=======
Here is another line. modified in goodidea
>>>>>>> goodidea



“How to fix a merge conflict”

• Run `git status` to find the files that 
are in conflict.

• For each of these files, look for lines 
like “<<<<<< HEAD” or “>>>>>> 
3de67ca” that indicate a conflict.

• Edit the lines to match what you 
want them to be.

• After you finish doing this for each 
conflict in each file, `git add` these 
conflicted files and run `git commit` 
to complete the merge.



Activity!

1. Create a git repository

2. Make a new file called file1.txt, add some lines to it, and commit it

3. Create two branches called branch1 and branch2

4. Edit the same line in the text file and make a commit in each branch

5. Switch computers with the person next to you and try to merge 
both branches back to master (merging the second branch back will 
require resolving the conflicts).

6. What do we call the merge that occurred when merging the first 
branch back to master?


