
Lecture 7
More Remotes and Working with Github

Sign in on the 
attendance 

sheet!



Today

• Review of basic remotes we 
learned last week

• More practical explanation of 
remotes with Github

• Practice using Github



Remote Tracking Branches

• Usually, we create local branches that have the same names as 
remote branches.

• Local branches can track remote branches. Git will tell you when they 
are “ahead”, “behind”, “diverged”, or “up-to-date”.

• Use git push -u <remote> <branch> to setup.



Centralized Git Workflow

Scenario: We want to contribute a change to a file in a repository on 
Github



Centralized Git Workflow

WHAT?!?!? I thought Git was a 
Distributed Version Control System!



Centralized Git Workflow

Step 1: Make sure the master branch in your repository is up to date with 
origin/master 



Centralized Git Workflow

Step 2: Create a new “topic branch” from master 



Centralized Git Workflow

Step 3: Work and make some commits on that branch



Centralized Git Workflow

Step 4: Merge the branch back into master



Centralized Git Workflow

Step 5: Push master to origin/master



What if someone else pushes to master 
before I do?
• Your push will be rejected:



What if someone else pushes to master 
before I do?
• Git status will indicate 

that your branch and its 
remote tracking branch 
have diverged



What if someone else pushes to master 
before I do?
• We know how to fix diversions! git merge



Integration-Manager Workflow

Local 
Computer

Github/
“The cloud”



Step 1. Fork the public repository
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Step 2. Clone your public repository

$ git clone https://github.com/aperley/Autolab.git
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Repository



Step 3. Create a feature branch and make 
some commits
$ git checkout -b my-feature

$ <do some work>

$ git commit -am "add my feature"

Then push your feature branch to your public repository

$ git push origin my-feature
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Step 4. Create a pull request



The integration manager can inspect and pull 
in your changes 
As the integration manager:

$ git remote add aperleys-fork 
https://github.com/aperley/Autolab.git

$ git checkout aperleys-fork/my-feature

If it looks good:

$ git checkout master

$ git merge aperleys-fork/my-feature

$ git push origin master



The integration manager can inspect and pull 
in your changes 
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You need to keep your fork up to date

In the private developer repo

$ git remote add upstream

https://github.com/autolab/Autolab.git

$ git fetch upstream

$ git checkout master

$ git merge upstream/master

$ git push origin master



You need to keep your fork up to date
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Activity/Homework

Create a fork of 

https://github.com/aperley/squirrel-story

Add a chapter 2 to the story, push it to a branch named chapter-2-
ANDREWID on your fork, and make a pull request.

https://github.com/aperley/squirrel-story

