
Lecture 7
More Remotes and Working with Github

Sign in on the 
attendance 

sheet!



Today

• Review of basic remotes we 
learned last week

• More practical explanation of 
remotes with Github

• Practice using Github



Remote Tracking Branches

• Usually, we create local branches that have the same names as 
remote branches.

• Local branches can track remote branches. Git will tell you when they 
are “ahead”, “behind”, “diverged”, or “up-to-date”.

• Use git push -u <remote> <branch> to setup.



Centralized Git Workflow

Scenario: We want to contribute a change to a file in a repository on 
Github



Centralized Git Workflow

WHAT?!?!? I thought Git was a 
Distributed Version Control System!



Centralized Git Workflow

Step 1: Make sure the master branch in your repository is up to date with 
origin/master 



Centralized Git Workflow

Step 2: Create a new “topic branch” from master 



Centralized Git Workflow

Step 3: Work and make some commits on that branch



Centralized Git Workflow

Step 4: Merge the branch back into master



Centralized Git Workflow

Step 5: Push master to origin/master



What if someone else pushes to master 
before I do?
• Your push will be rejected:



What if someone else pushes to master 
before I do?
• Git status will indicate 

that your branch and its 
remote tracking branch 
have diverged



What if someone else pushes to master 
before I do?
• We know how to fix diversions! git merge



Integration-Manager Workflow

Local 
Computer

Github/
“The cloud”



Step 1. Fork the public repository

Blessed 
Repository

Developer 
Public 

Repository



Step 2. Clone your public repository

$ git clone https://github.com/aperley/Autolab.git

Blessed 
Repository

Developer 
Public 

Repository

Developer 
Private 

Repository



Step 3. Create a feature branch and make 
some commits
$ git checkout -b my-feature

$ <do some work>

$ git commit -am "add my feature"

Then push your feature branch to your public repository

$ git push origin my-feature

Developer 
Public 

Repository

Developer 
Private 

Repository



Step 4. Create a pull request



The integration manager can inspect and pull 
in your changes 
As the integration manager:

$ git remote add aperleys-fork 
https://github.com/aperley/Autolab.git

$ git checkout aperleys-fork/my-feature

If it looks good:

$ git checkout master

$ git merge aperleys-fork/my-feature

$ git push origin master



The integration manager can inspect and pull 
in your changes 

Developer 
Public 

Repository

Developer 
Private 

Repository

Integration 
Manager 

Repository

Blessed 
Repository



You need to keep your fork up to date

In the private developer repo

$ git remote add upstream

https://github.com/autolab/Autolab.git

$ git fetch upstream

$ git checkout master

$ git merge upstream/master

$ git push origin master



You need to keep your fork up to date

Developer 
Public 

Repository

Developer 
Private 

Repository

Integration 
Manager 

Repository

Blessed 
Repository



Activity/Homework

Create a fork of 

https://github.com/aperley/squirrel-story

Add a chapter 2 to the story, push it to a branch named chapter-2-
ANDREWID on your fork, and make a pull request.

https://github.com/aperley/squirrel-story

