
Lecture 9
Interactive Rebasing



Merge vs. Rebase

A

B

D

C

E

M

master

feature
HEAD

git merge feature

master

HEAD

A

B

D

C

E

master

feature
HEAD

git rebase master

C'

E'

HEAD
HEAD

HEADfeature

HEAD



Today

• More powerful rebasing



git rebase master

1. Move HEAD to merge base of 
current branch and feature

2. Calculate diff between D and C 
and apply to D, creating C’

3. Calculate diff between C’ and E
and apply to C’, creating E’

4. Reset feature to E’

A

B

D

C

E

master

feature
HEAD

git rebase master

C'

E'

HEAD
HEAD

HEADfeature

HEAD



What about conflicts?

• Just like merge conflicts, there can be conflicts when applying the 
diffs

• Resolve them like normal and use git rebase --continue



Interactive Rebasing

• Rebasing is super powerful!

• We can reorder, edit, remove, or amend commits!

git rebase -i <commit>

Rebasing onto a commit allows you to change all of the commits in the 
commit history back to that commit.



Interactive Rebasing



Git Reset

• Moves branch pointers

• git reset --soft HEAD~

• git reset –hard HEAD~2



git commit --amend

• Add files or edit the commit message of the most recent commit



Force Pushing

• Rebasing, resetting, and amending commits move branches to point 
to different commits

• Require force pushing, since their changes are not fast-forwards



Activity/Homework

Pull the chapter-3 branch from aperley/squirrel-story into your fork (we 
talked about this last week)

Squash the three commits and fix up the commit messages however
you want.

Push to a chapter-3 branch on your fork and make a pull request!


