Lecture 9
nteractive Rebasing

Merge vs. Rebase

master :]

HEAD

feature
feature

A

git rebase master

git merge feature

Today

* More powerful rebasing

git rebase master feature

1. Move HEAD to merge base of
current branch and feature

2. Calculate diff between D and C
and apply to D, creating C’

3. Calculate diff between C’ and E
and apply to C’, creating E’

feature

4. Reset featureto E’

git rebase master

What about conflicts?

e Just like merge conflicts, there can be conflicts when applying the
diffs

* Resolve them like normal and use git rebase --continue

Interactive Rebasing

* Rebasing is super powerful!
 We can reorder, edit, remove, or amend commits!

git rebase -i <commit>

Rebasing onto a commit allows you to change all of the commits in the
commit history back to that commit.

Interactive Rebasing

pick 084db37 Add simple epilogue
pick 759fb6f Add Table of Contents
pick a4d140c Fix typos

Rebase 690e6cc..a4d140c onto 690e6¢cc (3 commands)

Commands:
pick = use commit
reword = use commit, but edit the commit message
edit = use commit, but stop for amending
, squash = use commit, but meld into previous commit
, Tixup = Tike "squash"™, but discard this commit's log message
, exec = run command (the rest of the 1ine) using shell
, drop = remove commit
These 1ines can be re-ordered; they are executed from top to bottom.
If you remove a 1line here THAT COMMIT WILL BE LOST.

However, i1f you remove everything, the rebase will be aborted.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Note that empty commits are commented out

Git Reset

* Moves branch pointers
* git reset --soft HEAD™
* git reset —hard HEAD~2

git commit --amend

* Add files or edit the commit message of the most recent commit

Force Pushing

* Rebasing, resetting, and amending commits move branches to point
to different commits

* Require force pushing, since their changes are not fast-forwards

Activity/Homework

Pull the chapter-3 branch from aperley/squirrel-story into your fork (we
talked about this last week)

Squash the three commits and fix up the commit messages however
you want.

Push to a chapter-3 branch on your fork and make a pull request!

