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Why should you take this course?

“Version control software is an 
essential part of the every-day of 
the modern software team's 
professional practices.”
-- Atlassian Git Tutorial



Why should you take this course?

From a 2013 Fox News report:



Git ≠ Github

≠



What this course isn’t

• For seasoned Linuxbeards



What this course isn’t

• A crashcourse on git commands



What this course is about

• Forming a mental model for how git interacts with versions of files
• Understanding how to use git (and a bit of Github) in a collaborative 

setting



Last Semester's 
Schedule
https://www.andrew.cmu.edu/course/98-174/f16/

https://www.andrew.cmu.edu/course/98-174/f16/
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Course Website

https://www.andrew.cmu.edu/course/98-174/


Grade Breakdown

Pass/No Credit, like every StuCo. To pass, get 70% out of:
• 20% Weekly Lecture Attendance

(Tuesdays 6:30PM – 7:20PM, Baker Hall 140F)
• 30% Submitted work (often in-class)
• 20% Midterm (Date TBA)
• 30% Final (Date TBA)



More Course Details

• Prerequisite: Basic Unix Survival

• 3 Free Elective credits

• No official textbook, but we recommend Pro Git by Scott Chacon 
(free, online)

• No office hours unless specifically requested

• Email Ilan and Aaron if you have questions

• Slides and lecture notes posted online



Course Policy

• By StuCo Policy, students with more than 2 unexcused absences must 
be given a No Pass in the course. Thus, email us if you’re going to miss 
class for a legitimate reason, and you might get an excused absence.

• More than 15 minutes late = unexcused absence. Don’t be late.

• Academic integrity applies. Don’t cheat.

• No late homework.



Waitlist

• If you are on the waitlist, please keep coming to class.



What is Version Control?



Goals of Version Control

• Be able to search through revision history and retrieve previous 
versions of any file in a project

• Be able to share changes with collaborators on a project

• Be able to confidently make large changes to existing files

https://www.atlassian.com/git/tutorials/what-is-version-control



Named Folders 
Approach

• Easy
• Familiar
• …

• Can be hard to track
• Memory-intensive
• Can be slow
• Hard to share
• No record of authorship



Local Database of Versions Approach

• Provides an abstraction over finding the right versions of files and 
replacing them in the project

• Can’t share with collaborators



Centralized Version Control Systems

• A central, blessed repository 
determines the order of commits 
(“versions” of the project)

• Collaborators “push” changes 
(commits) to this repository.

• Any new commits must be 
compatible with the most recent 
commit. If it isn’t, somebody must 
“merge” it in.

• Examples: SVN, CVS, Perforce
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Distributed Version Control Systems (DVCS)
• No central repository
• Every repository has every commit
• Examples: Git, Mercurial



Git
• Created in 2005 by Linus Torvalds to maintain the Linux kernel. 

Oh, and he created that too.
• Distributed VCS

https://www.git-scm.com/

https://www.git-scm.com/


Installing Git

https://www.andrew.cmu.edu/course/98-174/lecturenotes/installing_git.html  

https://www.andrew.cmu.edu/course/98-174/lecturenotes/installing_git.html

