
98-174 S17
Modern Version Control with Git

Ilan Biala (ibiala@andrew.cmu.edu)
Aaron Perley (aperley@andrew.cmu.edu)

https://www.andrew.cmu.edu/course/98-174/

mailto:ibiala@andrew.cmu.edu
mailto:aperley@andrew.cmu.edu

Why should you take this course?

“Version control software is an
essential part of the every-day of
the modern software team's
professional practices.”
-- Atlassian Git Tutorial

Why should you take this course?

From a 2013 Fox News report:

Git ≠ Github

≠

What this course isn’t

• For seasoned Linuxbeards

What this course isn’t

• A crashcourse on git commands

What this course is about

• Forming a mental model for how git interacts with versions of files
• Understanding how to use git (and a bit of Github) in a collaborative

setting

Last Semester's
Schedule
https://www.andrew.cmu.edu/course/98-174/f16/

https://www.andrew.cmu.edu/course/98-174/f16/

https://www.andrew.cmu.edu/course/98-174/

Course Website

https://www.andrew.cmu.edu/course/98-174/

Grade Breakdown

Pass/No Credit, like every StuCo. To pass, get 70% out of:
• 20% Weekly Lecture Attendance

(Tuesdays 6:30PM – 7:20PM, Baker Hall 140F)
• 30% Submitted work (often in-class)
• 20% Midterm (Date TBA)
• 30% Final (Date TBA)

More Course Details

• Prerequisite: Basic Unix Survival

• 3 Free Elective credits

• No official textbook, but we recommend Pro Git by Scott Chacon
(free, online)

• No office hours unless specifically requested

• Email Ilan and Aaron if you have questions

• Slides and lecture notes posted online

Course Policy

• By StuCo Policy, students with more than 2 unexcused absences must
be given a No Pass in the course. Thus, email us if you’re going to miss
class for a legitimate reason, and you might get an excused absence.

• More than 15 minutes late = unexcused absence. Don’t be late.

• Academic integrity applies. Don’t cheat.

• No late homework.

Waitlist

• If you are on the waitlist, please keep coming to class.

What is Version Control?

Goals of Version Control

• Be able to search through revision history and retrieve previous
versions of any file in a project

• Be able to share changes with collaborators on a project

• Be able to confidently make large changes to existing files

https://www.atlassian.com/git/tutorials/what-is-version-control

Named Folders
Approach

• Easy
• Familiar
• …

• Can be hard to track
• Memory-intensive
• Can be slow
• Hard to share
• No record of authorship

Local Database of Versions Approach

• Provides an abstraction over finding the right versions of files and
replacing them in the project

• Can’t share with collaborators

Centralized Version Control Systems

• A central, blessed repository
determines the order of commits
(“versions” of the project)

• Collaborators “push” changes
(commits) to this repository.

• Any new commits must be
compatible with the most recent
commit. If it isn’t, somebody must
“merge” it in.

• Examples: SVN, CVS, Perforce

Central
Repository

Developer
A’s local
files

Developer
D’s local
files

Developer
C’s local
files

Developer
B’s local
files

Commit

Checkout Checkout

Commit

Commit Commit

CheckoutCheckout

Dev
A’s
Repo

Dev
B’s
Repo

Dev
C’s
Repo

Dev
D’s
Repo

Commit Commit

Commit

Commit

Push/Fetch

Push/Fetch

Push/Fetch

Push/Fetch
Push/Fetch

Push/Fetch

Centralized
Version Control

System

Distributed
Version Control

System

Distributed Version Control Systems (DVCS)
• No central repository
• Every repository has every commit
• Examples: Git, Mercurial

Git
• Created in 2005 by Linus Torvalds to maintain the Linux kernel.

Oh, and he created that too.
• Distributed VCS

https://www.git-scm.com/

https://www.git-scm.com/

Installing Git

https://www.andrew.cmu.edu/course/98-174/lecturenotes/installing_git.html

https://www.andrew.cmu.edu/course/98-174/lecturenotes/installing_git.html

