
Lecture	3
More	on	Git Commits

Sign	in	on	the	
attendance	

sheet!



Homework	policy	(clarified)

• This	course	is	meant	to	be	fun,	but	assignments	still	have	due	dates
• Contact	us	before	Tuesday	if	you	have	issues
• Come	up	to	us	before	or	after	class	if	you	had	issues
• We’ll	be	flexible	- this	isn’t	meant	to	be	stressful
• But	above	all,	please	always	hand	in	your	homework	on	Tuesday	to	
avoid	complications



Review:	The	Git Commit	Workflow	(Edit,	Add,	Commit)

file1.txt	(v2)
file2.txt	(v1)
file3.txt	(v2)

1.	Make	changes	to	files
vim	file1.txt	file3.txt

Working	Directory

file1.txt	(v2)
file2.txt	(v1)
file3.txt	(v1)

2.	Add	changes	to	the	staging	area
git add	file1.txt

Staging	Area

file1.txt	(v2)
file2.txt	(v1)
file3.txt	(v1)

3.	Commit	changes	in	staging	area
git commit	-m	“fixed	bug	in	file1.txt”

List	of	commits

git add	
file1.txt

file1.txt	(v1)
file2.txt	(v1)
file3.txt	(v1)

file1.txt	(v1)
file2.txt	(v1)ab628cc

782cb4f

bb2df1a	
(HEAD)



What	about	new	files?

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

Working	Directory

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

Staging	Area

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

List	of	commits

git add	
newfile.txt

file1.txt	(v1)
file2.txt	(v1)

file1.txt	(v1)ab628cc

782cb4f

bb2df1a	
(HEAD)

No	difference	from	an	edit,	use	git add	newfile.txt.



What	about	removing	files?

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

Working	Directory

___
file1.txt	(v1)
file2.txt	(v1)

Staging	Area

file1.txt	(v1)
file2.txt	(v1)

List	of	commits

git rm
newfile.txt

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

file1.txt	(v1)ab628cc

782cb4f

bb2df1a	
(HEAD)

git rm newfile.txt	(also	deletes	newfile.txt	from	working	directory!)



What	about	renaming	files?

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

Working	Directory

betterfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

Staging	Area

betterfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

List	of	commits

git mv	
newfile.txt
betterfile.txt

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

file1.txt	(v1)ab628cc

782cb4f

bb2df1a	
(HEAD)

git mv	newfile.txt	betterfile.txt



What	if	I	want	to	‘unstage’	a	file?

coolfile.txt	(v2)
file1.txt	(v1)
file2.txt	(v1)

Working	Directory

coolfile.txt	(v2)
coolfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

Staging	Area

coolfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

List	of	commits

git reset
HEAD	
coolfile.txt

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

file1.txt	(v1)ab628cc

782cb4f

bb2df1a	
(HEAD)

git reset	HEAD	coolfile.txt	(Note	WD	is	unaffected)



What	if	I	want	to	start	over	on	a	file	(in	the	WD)?

coolfile.txt	(v2)
coolfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

Working	Directory

coolfile.txt	(v2)
coolfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

Staging	Area

coolfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

List	of	commits

git checkout	
HEAD	
coolfile.txt

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

file1.txt	(v1)ab628cc

782cb4f

bb2df1a	
(HEAD)

git checkout	HEAD	coolfile.txt



What	if	I	want	to	start	over	(in	both	WD	and	SA)?

coolfile.txt	(v2)
coolfile.txt	(v1)
file1.txt	(v2)
file1.txt	(v1)
file2.txt	(v1)

Working	Directory

coolfile.txt	(v2)
coolfile.txt	(v1)
file1.txt	(v2)
file1.txt	(v1)
file2.txt	(v1)

Staging	Area

coolfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

List	of	commits

git reset	--hard	HEAD

newfile.txt	(v1)
file1.txt	(v1)
file2.txt	(v1)

file1.txt	(v1)ab628cc

782cb4f

bb2df1a	
(HEAD)

git reset	--hard	HEAD	(overwrites	entire	WD!)



Summary:	Manipulating	the	Staging	Area

• To	update	the	staging	area	with	files	from	your	working	directory,	use	
“git add”.
• To	update	the	staging	area	with	files	from	HEAD,	use	“git reset”.
• To	delete	files	from	the	staging	area,	use	“git rm”.

That’s	how	you	manipulate	the	staging	area.	How	about	the	working	
directory?



Summary:	Manipulating	the	Working	
Directory
• To	update	files	in	the	working	directory,	edit	files	with	vim	or	your	
preferred	text	editor.
• To	reset	files	in	the	working	directory	to	how	they	were	in	a	particular	
commit,	use	“git checkout”.
• If	you	want	to	reset	the	staging	area	at	the	same	time	(which	is	often	
the	case),	use	“git reset	--hard”	(but	with	caution).



Ignoring	files
• By	default	Git tracks	everything	in	your	repository
• Not	always	a	good	thing	– log	files,	compiled	files,	cache	files,	etc.
• Tell	git to	ignore	these	files	using	a	.gitignore file
• https://github.com/github/gitignore for	examples

*.log

logs
Build

*.jar

.gitignore

“*”	means	anything,	so	any	file	
that	ends	with	.log

Standalone	words	are	(usually)	
folders,	so	anything	in	logs/	or	
Build/	is	ignored



Configuring	Git
• Git has	certain	settings	by	default
• Provide	Git with	your	name,	email
• Customize	Git to	take	advantage	of	its	features,	integration	with	other	
tools,	different	settings	with	special	powers,	etc.
• git config --global	user.name "John	Doe"
• git config --global	user.email johndoe@example.com



Activity

• Groups	of	two	or	three
• One	person	create	a	new	Git repository	using	“git init”	in	a	new	folder
• Add	some	files	and	make	some	commits,	write	down	your	steps	if	you	
won’t	remember
• Ask	the	other	person	to	try	to	work	backwards	and	figure	out	a	
possible	set	of	steps	that	brought	the	repository	to	this	state
• Switch	places	and	do	this	one	more	time



Where	we	are

• This	wraps	up	our	discussion	of	“how	to	make	commits”.
• So	far,	our	commits	were	made	in	a	very	linear	fashion	– every	
commit	had	exactly	one	parent,	and	had	a	maximum	of	one	child.
• In	larger	projects,	this	probably	won’t	happen	– the	commits	will	
begin	branching	off	each	other.
• Next	week:	branches


