
Lecture 5
Remotes

Sign in on the 
attendance 

sheet!



Announcements

• Midterm in-class next week (2/21)
• Git commands we have learned: init, clone, log, show, diff, checkout, reset, 

branch, merge, fetch, pull, push, remote

• Mental model for how git works: the working directory, staging area (index), 
commit log, diffs, branches (local and remote)

• Homework submissions will be through Autolab

• Thanks for filling out the survey!
• More practical questions on the homeworks

• More live examples during class

• Keep doing the group activities at the end of class



Today

• Remotes

• git remote

• git fetch

• git pull

• git push

• Github



Last Time: Branches

8b7d883: Bob: begin 
work on feature B

8fc42c6: Alice: begin 
work on feature A

6f96cf3: Alice: more 
work on feature A

e167179: Bob: more 
work on feature B

b4e2c29: initial 
commit

b5f3729: Alice: even 
more work on feature A

8277e09: Bob: even 
more work on feature B

master, 
HEAD

featureA

featureB

db82ca7: Merge branch 
‘featureA’ into master

db82ca7: Merge branch 
‘featureA’ into master



Scenario: Alice, Bob, and Charlie collaborate 
on a project, but each on their own computer

b4e2c29: initial 
commit

b4e2c29: initial 
commit

b4e2c29: initial 
commit

Alice Bob Charlie

8fc42c6: heapchecker
no longer infloops

8fc42c6: heapchecker
no longer infloops

8fc42c6: heapchecker
no longer infloops



Scenario: Alice, Bob, and Charlie collaborate 
on a project, but each on their own computer

b4e2c29: initial 
commit

b4e2c29: initial 
commit

b4e2c29: initial 
commit

Alice Bob Charlie

8fc42c6: heapchecker
no longer infloops

6f96cf3: don’t create 
headers in free blocks

8fc42c6: heapchecker
no longer infloops

8fc42c6: heapchecker
no longer infloops



Scenario: Alice, Bob, and Charlie collaborate 
on a project, but each on their own computer

b4e2c29: initial 
commit

b4e2c29: initial 
commit

b4e2c29: initial 
commit

Alice Bob Charlie

8fc42c6: heapchecker
no longer infloops

6f96cf3: don’t create 
headers in free blocks

8fc42c6: heapchecker
no longer infloops

8fc42c6: heapchecker
no longer infloops

How does Alice get commit 6f96cf3 to Bob and 
Charlie?



Scenario: Alice, Bob, and Charlie collaborate 
on a project, but each on their own computer

b4e2c29: initial 
commit

b4e2c29: initial 
commit

b4e2c29: initial 
commit

Alice Bob Charlie

8fc42c6: heapchecker
no longer infloops

6f96cf3: don’t create 
headers in free blocks

8fc42c6: heapchecker
no longer infloops

8fc42c6: heapchecker
no longer infloops

How does Alice get commit 6f96cf3 to Bob and 
Charlie?
Idea 1: Bob and Charlie each fetch the commit from 
Alice.
Idea 2: Alice pushes the commit to Bob and Charlie.



Fetching

1. Tell git to set up Alice’s repository as a “remote repository” or a 
“remote”. This only happens once.

2. Tell git to download the commits from the remote repository.



git remote add <remotename> <remoteurl>

Example use:

git remote add origin aperley@unix.andrew.cmu.edu:~/mygitrepo

• Adds a remote repository called “origin” located at 
aperley@unix.andrew.cmu.edu:~/mygitrepo (through SSH)

• “origin” is the default name for a remote, since often times the first 
remote you have is the one you clone from

• If you created the repository using git clone (rather than git
init), the repository you cloned from is called “origin”

STEP 1



git remote -v

• Verbosely lists all your remotes:

• Each remote has a fetch and push url. They are almost always the 
same.

STEP 1



Git Remote URLs

• 4 choices: HTTPS, SSH, local, git

• HTTPS: git objects and commits are transferred over web 
protocols. Pretty easy to set up, unless you need 
authentication.

• SSH: git objects and commits are transferred over the SSH 
protocol. Requires a ssh daemon to be running, allows 
authentication.

STEP 1



git fetch <remotename>

Example use:

git fetch origin

• Downloads and updates all branches published by the remote

• Stores these branches as <remotename>/<branchname>

• Does NOT affect your own branches, like master!

STEP 2



Listing Remote Branches

• git branch –r (only remote) or git branch –a (all branches)



How do you actually bring in the remote 
changes?

b4e2c29: initial 
commit

b4e2c29: initial 
commit

Alice Bob

8fc42c6: heapchecker
no longer infloops

6f96cf3: don’t create 
headers in free blocks

8fc42c6: heapchecker
no longer infloops

6f96cf3: don’t create 
headers in free blocks



How do you actually *merge* 
in the remote changes?

Everything is a branch!

Scenario: Working on the Autolab Project, want to 
update my master branch to origin/master.



How do you actually *merge* 
in the remote changes?

Step 1: git fetch origin



How do you actually *merge* 
in the remote changes?

Git knows that master and origin/master are associated (more on this 
later), and that master can be fast-forwarded up to origin/master



How do you actually 
*merge* in the 
remote changes?

$ git log --graph --oneline \
--decorate --branches \
--remotes



How do you actually *merge* 
in the remote changes?

Step 2:
git merge origin/master



After MergeBefore Merge



git pull <remotename>

Example use:

git pull origin

• Runs git fetch <remotename>, then git merge 
<remotename>/<currentbranch>

• Ex: runs git fetch origin, then git merge origin/master



How do you checkout a branch 
on a remote repository?

Everything is a branch!

Scenario: Working on the Autolab Project, want to 
take a look at a feature someone is developing on a 
separate branch.



How do you checkout a branch 
on a remote repository?

Step 1: Figure out the branch name



How do you checkout a branch 
on a remote repository?

Step 2: Create a local branch pointing to the same 
place as the remote branch



How do you checkout a branch 
on a remote repository?

Step 3: Checkout the local branch you just created



git push <remotename> <branchname>

Example use:

git push origin master

• Updates the remote-tracking branch (<remotename>/<branchname>) 
and uploads the necessary commits for that branch to origin

• You must be fully up-to-date with the remote in order to push! 
Otherwise your push will be rejected.



What happens if you run `git push`?

• pushes current branch to origin (default remote) git2.0 default

• pushes all branches to origin (default remote) pre-git2.0 default

• git config --global push.default simple



Summary
• Configuring remotes:

• git remote [-v] – lists remotes [verbosely]
• git remote add <remotename> <remoteurl> - configure a new remote
• git branch –r or –a – lists branches including remote tracking

• Fetching:
• git fetch <remotename> - downloads updates to all remote-tracking branches 

to match the remote
• git pull <remotename> - runs `git fetch`, then merges in updates to the 

current branch

• Pushing:
• git push <remotename> <branchname> - uploads changes in your branches to 

the remote



Activity!

Clone: 
YOUR_ANDREW_ID@unix.andrew.cmu.edu:/afs/andrew.cmu.e
du/course/98/174/public/lecture5-practice

Create a branch named YOUR_ANDREW_ID

And make a commit to it

Push the branch up to origin


