
Lecture 8
Integration-Manager Workflow and Rebasing

Sign in on the 
attendance 

sheet!



Remember the Centralized Workflow?

Problem: Every developer needs push access to the shared repository!



Integration-Manager Workflow

Local 
Computer

Github/
“The cloud”



Step 1. Fork the public repository

(make your own public copy)



Step 1. Fork the public repository

Blessed 
Repository

Developer 
Public 

Repository



Step 2. Clone your public repository

$ git clone https://github.com/aperley/Autolab.git

Blessed 
Repository

Developer 
Public 

Repository

Developer 
Private 

Repository



Step 3. Create a feature branch and make 
some commits
$ git checkout -b my-feature

$ <do some work>

$ git commit -am "add my feature"

Then push your feature branch to your public repository

$ git push origin my-feature

Developer 
Public 

Repository

Developer 
Private 

Repository



Step 4. Create a pull request



The integration manager can inspect and pull 
in your changes 
As the integration manager:

$ git remote add aperleys-fork 
https://github.com/aperley/Autolab.git

$ git checkout aperleys-fork/my-feature

If it looks good:

$ git checkout master

$ git merge aperleys-fork/my-feature

$ git push origin master



The integration manager can inspect and pull 
in your changes 

Developer 
Public 

Repository

Developer 
Private 

Repository

Integration 
Manager 

Repository

Blessed 
Repository



You need to keep your fork up to date

In the private developer repo

$ git remote add upstream 
https://github.com/autolab/Autolab.git

$ git fetch upstream

$ git checkout master

$ git merge upstream/master

$ git push origin master



You need to keep your fork up to date

Developer 
Public 

Repository

Developer 
Private 

Repository

Integration 
Manager 

Repository

Blessed 
Repository



Git Rebase: Squashing Commits

X X ✔



Squashing Commits

Scenario:

Made some commits on a feature branch but want to “clean it up” 
before making a pull request or merging to master



Squashing Commits

$ git rebase -i master

Begins an interactive rebase of all of the commits since the branch split 
off of master.



Interactive Rebase



Decide what you want to squash onto the 
commit above (before)



Now we need to edit the commit message for 
the first squash group



Same for the second squash group



We are left with a new commit history



What happened?

We rewrote history by replaying the patches for each commit

Base Commit
Implement 

Feature
Bugfix Spelling fix Add tests Fix a test

Base Commit

Implement 
feature and 
bugfix and 
spelling fix

Add tests


