Lecture 9: Classification, Trees

Assessing Performance of Classification Models, Tree-Based methods
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Agenda

* Assessing performance of Classification Models
Calibration plots

Confusion matrices

Sensitivity, Specificity, Accuracy, Precision, Recall

Cost-based criteria
ROC curves
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Assessing the performance of Classifiers

5/39



The confusion matrix

e Let's focus again on the binary classification setting:

o Y = 1: if the event happened
o Y = 0: if the event did not happen

e The primary building block of essentially all approaches to evaluating

a Classifier is the confusion matrix

Predicted

Event Nonevent

Observed

Event

TP

Nonevent FN

FP
TN

¢ In R, it's more natural to form confusion matrices with the

Non-event and Event headings swapped.

Predicted

Observed

No | Yes
No | TN | FN
Yes | FP | TP
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Probabilities as ranking functions

e Suppose we have a probability estimate /()

® We can use ))() to order the observations from most likely to have
the Event to least likely

i (i) | i
45 0975 | |
12 0824 | O
191 | 0.762 | |
77 0.754 | |

® We can think about how well /() performs by asking: When we
order the y; according to (), do most of the observations with
y; = 1 appear at the top of the list?

e A perfect ranking function will score all of the observations where
y; = 1 higher than those where y; =0

e We're now going to discuss various approaches for visualizing how
well /() does at ranking observations
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ROC Curves

As we vary our probability cutoff a, we get different classification
rules and hence different values of all of our performance metrics
You can think of getting a different confusion matrix at each «

It's useful to plot the values of various performance metrics as you
vary the cutoff o

Perhaps the most widely used plot is the ROC Curve
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Fig. 11.6: A receiver operator characteristic (ROC) curve for the logistic
regression model results for the credit model. The dot indicates the value
corresponding to a cutoff of 50% while the green square corresponds to a
cutoff of 30 % (i.e., probabilities greater than 0.30 are called events)

Each point on the curve corresponds to the value of (1—Specificity,
Sensitivity) calculated at a particular choice of cutoff «
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e The diagonal is the ROC you would get from randomly picking
proportion 7 of the observations to classify to class k&

e Higher ROC is better

e The perfect classifier has (1 — Specificity, Sensitivity) = (0, 1)
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Area under the curve
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e The AUC is the area under the ROC curve

e AUC has a nice interpretation: The AUC is the probability that the
classifier will rank a randomly selected observation where y; = 1

higher than a randomly selected observation where y; = 0
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Precision-Recall curves
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e Precision: TP/(TP + FP) (aka, PPV)
e Recall: TP/(TP + FN) (aka, Sensitivity)
* Precision @50% Recall is a common performance metric
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Lift charts

e Lift charts are kind of like ROC curves, but may be more useful
depending on the application

Random —— Perfect ——

100 r

% Events Found

T T T T T T
0 20 40 60 80 100
% Samples Tested

Fig. 11.7: An example lift plot with two models: one that perfectly separates
two classes and another that is completely non-informative

e y-axis: Recall (Sensitivity)
o z-axis: #{i: p(z;) > a}/n= (FP+TP)/n
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e In this example, of the top 40% of observations ordered according to
p(x), essentially all of them have y; = 1. This is great!
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How do we pick the best classifier?
You can overlay the ROC curves from a bunch of different methods.
Here's a facial recognition example.
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e The DeepFace Ensemble method is amazing

e The proposed method, OpenFace nn4.small2.vl does really well. Its
ROC curve is the solid black line.
o 10 are Test Fold ROC curves from 10-Fold CV
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Now which one is better?

Sensitivity

0.0 1 - Specificity 1.0

It depends on what region of the curve you care most about.
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Example: Cancer diagnosis

We can think of two settings: Screening, and Referred examinations
e Screening: E.g., we want annual screening of all people above age 40
© Most people we test will not have cancer (high ratio of non-Events to
Events)
o False positives more costly than False negatives
o Focus on: performance at High Specificity (small z-axis values)

e Referred examination: E.g., your doctor feels a bump under your
skin, and refers you for a biopsy to get it tested for cancer
o Many referred individuals will have cancer (low or equal ratio of
non-Events to Events)
o False negatives are really costly
o Focus on: performance at High Sensitivity (high y-axis values)
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Putting confidence bands on ROC curves

e We like putting standard error bars on our curves so that we can
visually discern which trends/differences are statistically significant

Confidence intervals
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Using Cross-validation

In the Prediction setting, we focussed entirely on MSE as our
performance metric

To validate our model, we would use K -Fold CV to estimate the Test
MSE

In the Classification setting, there are many metrics out there. The
set | presented is by no means exhaustive.

To estimate Test performance:

@ Pick a metric (E.g., Accuracy, profit, AUC, Sensitivity @x% Specificity,
Precision @z% Recall, etc.)

© Calculate the metric on each fold of K-fold CV

© Average over all of the folds

For ROC and Precision-Recall curves, you may want to show the
curve you get from each Test fold. This gives a visual representation

of the variability of the curve estimates.
19/39



Back to methods...

Let's grow some Trees
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Clinical Suspicion of TB

Total =275
p=27.0%
X-Ray: X-Ray:
Normal or Sequelae Typical, possible or
atypical
n =85

Typical or possible X-Ray Atypical X-Ray

v

No Dyspnea Dyspnea

|

n=64

.2%

HIV positive

NaWelgh(IossNesghtloss

[source: Classification and regression tree (CART) model to predict pulmonary

Age<30yrs Age > 30yrs HIV negative/
undeterminate

tuberculosis in hospitalized patients, Aguiar et al] 20739



Overview: Tree-based methods

e Tree-based based methods operate by dividing up the feature space
into rectangles

e Each rectangle is like a neighbourhood in a Nearest-Neighbours
method

e You predict using the average or classify using the most common class
in each rectangle
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Does dividing up the feature space into rectangles look like it would
work here? 22139
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e Trees are built up via a greedy algorithm: Recursive binary
partitioning

* At each step, you pick a new split by finding the input X; and split
point Z; that best partitions the data
o In prediction, you choose splits to minimize the RSS
o In classification, choose splits to maximize node purity (minimize Gini

index)
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Decision trees in Prediction

Here's a Prediction example (Y = Salary in millions)
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Within each of the 3 rectangles, we predict Salary using the average
value of Salary in the training data
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Within each of the 3 rectangles, we predict Salary using the average
value of Salary in the training data
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Recursive binary partitioning

* At each step, you pick a new split by finding the input X; and split
point ; that best partitions the data

e In prediction, you choose splits to minimize the RSS

e |n classification, choose splits to maximize node purity (minimize Gini
index)

K
k=1

where P« is the proportion of training observations in the mth region
that are from the kth class

e (G is small if all the p,,;, are close to 0 or 1
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Why not minimize the misclassification error?
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e Misclassification rate is poor at pushing for really pure nodes

e With Gini: going from P, = 0.8 to Py, = 0.9 is better than going

from P, = 0.5 to Py = 0.6

e With Misclassification error, these are considered equal
improvements
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Tree pruning

Why did we stop here? Why not keep partitioning?
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We could just keep going...

Years < 4.5
T
RBI 4 60.5 Hits <[117.5
Putouls < 82 Years|< 3.5
Years|< 3.5
5.487 5394  6.189
4622 5183
Walks|< 43.5 Walks|< 52.5
Runs  47.5 | RBI 4 80.5
6.407 Years[< 6.5
6015 5571 ) = o
6.459  7.007 ’
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Tree pruning

If we just keep going, we're going to overfit the training data, and get
poor test performance

We could stop as soon as we can't find a split to reduce RSS or Gini
index by at least some pre-specified amount

But this strategy is short-sighted: A seemingly worthless split early
on might be followed by a really good split later

Solution: Grow a very large tree Tj, and then prune it back
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Cost complexity pruning

e Here's the regression tree version of cost complexity pruning aka
weakest link pruning

e For each q, find the subtree T' C Tj that minimizes

|T|
> > Wi—dm,)* +alT]
m=1xz;ERm

where |T| is the number of terminal nodes in tree T', and Ry, is the
rectangle corresponding ot the mth terminal node. §p, . is just the
mean of the training observations in I,

e This is familiar. It has the form:
RSS(T) + «|T|

model error + a penalty on model complexity
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Cost complexity pruning

For each ¢, find the subtree 1" C T}, that minimizes

T
> 2 Wi—ir,)’ +alT|
m=1xz;€ERm

e How do we pick a?

e Use Cross-validation
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Pruning details

. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has
fewer than some minimum number of observations.

. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of «.

. Use K-fold cross-validation to choose «. For each
k=1,..., K:

3.1 Repeat Steps 1 and 2 on the %th fraction of the training

data, excluding the kth fold.
3.2 Evaluate the mean squared prediction error on the data in
the left-out kth fold, as a function of a.

Average the results, and pick o to minimize the average
error.

. Return the subtree from Step 2 that corresponds to the
chosen value of a.
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Tree pruning
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Looks like the small 3-node tree has the lowest CV error.
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Classification trees vs. Linear models
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ISL Figure 8.7. Trees are bad when the boundary is linear, but very good
when the boundary is well-described by a simple rectangular partition.
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A summary of our methods so far

’ Method H Interpretable ‘ Flexible ‘ Makes assumptions?
Logistic regression Yes Extensible Yes
k-NN No Highly No
LDA/QDA Sometimes No Yes
Trees Extremely | Somewhat No

e Decision trees are perhaps the most Interpretable method we've

seen so far

So what's the catch?

Coming soon: Forests and boosted trees

Trees don't assume any particular relationship between the response
Y and the inputs X, and large trees are quite flexible

Turns out, Trees tend to be rather poor predictors/classifiers!

38/39



Acknowledgements

All of the lectures notes for this class feature content borrowed with or
without modification from the following sources:
® 36-462/36-662 Lecture notes (Prof. Tibshirani, Prof. G'Sell, Prof. Shalizi)

® 95-791 Lecture notes (Prof. Dubrawski)

® An Introduction to Statistical Learning, with applications in R (Springer, 2013)
with permission from the authors: G. James, D. Witten, T. Hastie and R.
Tibshirani

® Applied Predictive Modeling, (Springer, 2013), Max Kuhn and Kjell Johnson

39/39



