Lecture 9: Classification, Trees

Assessing Performance of Classification Models, Tree-Based methods

Prof. Alexandra Chouldechova
95-791: Data Mining

April 12,2016

1/39

Course Roadmap

2/39

Course Roadmap

Descriptive
Analytics

2/39

Today's topics

3/39

Agenda

* Assessing performance of Classification Models
Calibration plots

Confusion matrices

Sensitivity, Specificity, Accuracy, Precision, Recall

Cost-based criteria
ROC curves

[¢]

O O O O

¢ Final project

4/39

Assessing the performance of Classifiers

5/39

The confusion matrix

e Let's focus again on the binary classification setting:

o Y = 1: if the event happened
o Y = 0: if the event did not happen

e The primary building block of essentially all approaches to evaluating

a Classifier is the confusion matrix

Predicted

Event Nonevent

Observed

Event

TP

Nonevent FN

FP
TN

¢ In R, it's more natural to form confusion matrices with the

Non-event and Event headings swapped.

Predicted

Observed

No | Yes
No | TN | FN
Yes | FP | TP

6/39

Probabilities as ranking functions

e Suppose we have a probability estimate /()

® We can use))() to order the observations from most likely to have
the Event to least likely

i (i) | i
45 0975 | |
12 0824 | O
191 | 0.762 | |
77 0.754 | |

® We can think about how well /() performs by asking: When we
order the y; according to (), do most of the observations with
y; = 1 appear at the top of the list?

e A perfect ranking function will score all of the observations where
y; = 1 higher than those where y; =0

e We're now going to discuss various approaches for visualizing how
well /() does at ranking observations

7139

ROC Curves

As we vary our probability cutoff a, we get different classification
rules and hence different values of all of our performance metrics
You can think of getting a different confusion matrix at each «

It's useful to plot the values of various performance metrics as you
vary the cutoff o

Perhaps the most widely used plot is the ROC Curve

o

0.6

0.300 (Spec = 0,786, Sens = 0.600)

Sensitivity

0.4
|

0.500 (Spec =0.929, Sens = 0.400)

0.2

T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity
8/39

©
o 0.300 (Spec = 0,786, Sens = 0.600)

2
2
:‘5‘)
=4
[o)
n <]
=} 0.500 (Spec =0.929, Sens = 0.400)
o
s
o
==
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

Fig. 11.6: A receiver operator characteristic (ROC) curve for the logistic
regression model results for the credit model. The dot indicates the value
corresponding to a cutoff of 50% while the green square corresponds to a
cutoff of 30 % (i.e., probabilities greater than 0.30 are called events)

Each point on the curve corresponds to the value of (1—Specificity,
Sensitivity) calculated at a particular choice of cutoff «

9/39

X
(&)
<&
e{\\e‘
‘<\°Qe'°{\
1.0@ % AP
more reliable
2
2 . N
"é less reliable (FO\OQ(\O‘Q *
) 'o"‘e © 1\\
K 6°6\® R
NS F @
& %
1\0‘ b\ N
N “(
0.0 I .1_0
1 - Specificity

e The diagonal is the ROC you would get from randomly picking
proportion 7 of the observations to classify to class k&

e Higher ROC is better

e The perfect classifier has (1 — Specificity, Sensitivity) = (0, 1)

10/39

Area under the curve

X
e&z}
NS
‘\0 ,9":’
1.0g O
more reliable
2
= N
2 less reliable o\c’ o
5 e o\\\\\
& o((\ & \'\
B & \,b"o
"b(\ (: <
\o e (\Q
« @0
0.0 _ i .1.0
1 - Specificity

e The AUC is the area under the ROC curve

e AUC has a nice interpretation: The AUC is the probability that the
classifier will rank a randomly selected observation where y; = 1

higher than a randomly selected observation where y; = 0
11/39

Precision-Recall curves
1.0 -

0.8

0.6

Precision

0.4

0.2

0.0 T T T T
0.0 0.2 04 0.6 0.

Recall

e Precision: TP/(TP + FP) (aka, PPV)
e Recall: TP/(TP + FN) (aka, Sensitivity)
* Precision @50% Recall is a common performance metric

12/39

Lift charts

e Lift charts are kind of like ROC curves, but may be more useful
depending on the application

Random —— Perfect ——

100 r

% Events Found

T T T T T T
0 20 40 60 80 100
% Samples Tested

Fig. 11.7: An example lift plot with two models: one that perfectly separates
two classes and another that is completely non-informative

e y-axis: Recall (Sensitivity)
o z-axis: #{i: p(z;) > a}/n= (FP+TP)/n

13/39

R R,

Lift charts
1 1 1 1 1 1

100 -

80 -
e}
c
=}

£ 60 -
[}
o
Q.

5 404 L
(%]
3?2

20 -

Random Forest E—
0 Quadratic Discriminant Analysis

T T T T T T
0 20 40 60 80 100

% Samples Tested

e In this example, of the top 40% of observations ordered according to
p(x), essentially all of them have y; = 1. This is great!

14/39

How do we pick the best classifier?
You can overlay the ROC curves from a bunch of different methods.
Here's a facial recognition example.

0.8

|/

0.2

o
o

— Human, Cropped [AUC=0.995]
- - DeepFace Ensemble [0.997]
—— OpenBR v1.1.0 [0.828]

o
IS

True Positive Rate

Eigenfaces [0.648] |

OpenFace nn4.small2.v1 [0.973]

OpenFace nn4.small2.v1 folds
s T

0k I S S o e s —
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

e The DeepFace Ensemble method is amazing

e The proposed method, OpenFace nn4.small2.vl does really well. Its
ROC curve is the solid black line.
o 10 are Test Fold ROC curves from 10-Fold CV

15/39

Now which one is better?

Sensitivity

0.0 1 - Specificity 1.0

It depends on what region of the curve you care most about.

16/39

Example: Cancer diagnosis

We can think of two settings: Screening, and Referred examinations
e Screening: E.g., we want annual screening of all people above age 40
© Most people we test will not have cancer (high ratio of non-Events to
Events)
o False positives more costly than False negatives
o Focus on: performance at High Specificity (small z-axis values)

e Referred examination: E.g., your doctor feels a bump under your
skin, and refers you for a biopsy to get it tested for cancer
o Many referred individuals will have cancer (low or equal ratio of
non-Events to Events)
o False negatives are really costly
o Focus on: performance at High Sensitivity (high y-axis values)

17739

Putting confidence bands on ROC curves

e We like putting standard error bars on our curves so that we can
visually discern which trends/differences are statistically significant

Confidence intervals

100
1

80

60

AUC: 73.1% (62.3%—73.5%)

Sensitivity (%)

40

T T T T T T
100 80 &0 40 20 0

Specificity (%)

18/39

Using Cross-validation

In the Prediction setting, we focussed entirely on MSE as our
performance metric

To validate our model, we would use K -Fold CV to estimate the Test
MSE

In the Classification setting, there are many metrics out there. The
set | presented is by no means exhaustive.

To estimate Test performance:

@ Pick a metric (E.g., Accuracy, profit, AUC, Sensitivity @x% Specificity,
Precision @z% Recall, etc.)

© Calculate the metric on each fold of K-fold CV

© Average over all of the folds

For ROC and Precision-Recall curves, you may want to show the
curve you get from each Test fold. This gives a visual representation

of the variability of the curve estimates.
19/39

Back to methods...

Let's grow some Trees

20/39

Clinical Suspicion of TB

Total =275
p=27.0%
X-Ray: X-Ray:
Normal or Sequelae Typical, possible or
atypical
n =85

Typical or possible X-Ray Atypical X-Ray

v

No Dyspnea Dyspnea

|

n=64

.2%

HIV positive

NaWelgh(IossNesghtloss

[source: Classification and regression tree (CART) model to predict pulmonary

Age<30yrs Age > 30yrs HIV negative/
undeterminate

tuberculosis in hospitalized patients, Aguiar et al] 20739

Overview: Tree-based methods

e Tree-based based methods operate by dividing up the feature space
into rectangles

e Each rectangle is like a neighbourhood in a Nearest-Neighbours
method

e You predict using the average or classify using the most common class
in each rectangle

0.8
Cagy ° O
o o
o

x2
0.6
o
®
o nna °
00 22

0.4
&

0.2

0.0

T T T T T T
0.0 0.2 04 0.6 0.8 1.0

x1 . .
Does dividing up the feature space into rectangles look like it would
work here? 22139

X2<.111 o P o RN
1 o b

0.8
I

60/0

0.6

x2

148/0 e P

0.2

0.0
I

39/0 0/71

x1

e Trees are built up via a greedy algorithm: Recursive binary
partitioning

* At each step, you pick a new split by finding the input X; and split
point Z; that best partitions the data
o In prediction, you choose splits to minimize the RSS
o In classification, choose splits to maximize node purity (minimize Gini

index)
23/39

Decision trees in Prediction

Here's a Prediction example (Y = Salary in millions)

Hits

.
[=] o
Q .
. .
° " . .
Q
3 P o$ 'y
. L H e
. v
’ . 28 .
o .
=} %o '
- P .
3t
. .
g 18c N
L]
g ildee,
g8 ° °
.]
o .
T T T T
5 10 15 20

Low salary (blue, Green)
High salary (orange, red)

Years

24/39

L]
Years < 4.5
T o °«®
S L]
N
o - L]
8 ese e
2 0':' .
£ PEL o —
8700:.0
2 ,!, .
L2
g Mo : ’
o | 8 R K10 °
w0 '.ooo . °
L]
L]
Hits <[117.5
5.11 o e
T T T T
5 10 15 20
6.00 6.74 Years

Low salary (blue, Green)
High salary (orange, red)

Within each of the 3 rectangles, we predict Salary using the average
value of Salary in the training data

25/39

Years < 4.5
T

Hits
150 200

100

50

Hits <[117.5
5.11 o

6.00 6.74 Years

Low salary (blue, Green)
High salary (orange, red)

Within each of the 3 rectangles, we predict Salary using the average
value of Salary in the training data

25/39

x2

1.0

0.8

0.6

0.4

0.2

0.0

Recursive binary partitioning

o
Og O oo

©® fele]
00 &o
° 5 %
o
o ? 3%
%@O ©o o
) Q
o8 ooogoo
g o%%
o O
o C:5)0800 -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

x1

26/39

X2

1.0

0.8

0.6

0.4

0.2

0.0

Recursive binary partitioning

x1

26/39

X2

1.0

0.8

0.6

0.4

0.2

0.0

Recursive binary partitioning

x1

26/39

X2

1.0

0.8

0.6

0.4

0.2

0.0

Recursive binary partitioning

@ 0 o0
o © 0y o o, % ® 6 . %%
ol © o O &
0@009 00 9009 OO o0 _ od
0 @ o ®0 o ° o, ©
o) 80 [¢]
paP q4 o e 8 o g 0o
Ooogoooo owo & ° % %o
Ie) o O O .0
d;@o °q 0@ o O & ° %
o) e} O a0 ©
®o refe °F o O
o 80 g@o 3}1 C Q@
&°] o o
5 % 5000 2,08 & o °©
A o o @O . 0oQ
° & PR - 2.0 28
&og 00 oo° © [¢] o

Oc¢
o o o] Qo 8 o ogo
o0 o Jo| g0 o ° ey
© o0 Jo o O:%Q o %5 6%
@ %500 |°0 X®Oo045 o
R 0O C o o Q2 ®Bo o

x1

26/39

X2

1.0

0.8

0.6

0.4

0.2

0.0

Recursive binary partitioning

o] (e} le) an o] o©
© © o9 i"& %bO@ &, o 90)
. C

o® o, 078c8° O 00 T o6&
) ®o 8 © o, © 5

o Pa° q o°F ng 8 o g 0o
0© goooo@ wo @ °° % %o
Ie) o o O =) O .0
Rae Sl o o0

o o [} 85,60 9
o DO

#5@; _"{‘O @ oo
&0 o S o o O 0®
O @ooooi_\ooﬁf & o) o 5
og o) YOO O (o}
¢0gp 0OC™ o C ° o

e @ [e3

0 o. % @2()0 ofp 0o @ ©
o 4 b~ &

0, 00%° &950(800<%%<% oogo
o o ~ zo o 28 oSo
o0 &5 S5 %0 %0

S« o o) B ° o %
o © o o o0 00 o o0 o
3 0,00 0 P oo 6 o
® DO ©o0qo 0o Bo o
? P e P Con D O
X O 0 X Lo Q0 ¢
00 PPPw -0 © Cw 5

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

x1

26/39

X2

1.0

0.8

0.6

0.4

0.2

0.0

Recursive binary partitioning

o o (e} a o o0 O
Cg, © og: % xR ® &, o ®°% €

0@008 00808 o, oo 5. 06

0 @ o ®0 o ° o o

o 8(o

paP q4 o <gm 8 o g 0o
Ooogoooo 000 @ °° 9 0%

Oda l¢] P o © = o 4 O,0
o . 0% o Q > 8

OQO o C%C o %O“ & , 8

& o .
5 $
O@Soooo oo:(jj & g 0 °8
oo oy IO ° o
d o RB® o @ %o
- o @ g o8
Ooodjc‘;O &950800 c @ @ 0080
o Lo . o 8 0%
N ®9 o o 040
OO o o C (% 0 o o %
Q@; 0® © fooo° X o §o o
3 0
® %o %,q5, Boo ° °
o] ® &L 0 ® 0@, 0 &
o, o B o 00 ¢
O%Oo \é@CT/OoUOO o o e o @
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

26/39

Recursive binary partitioning

* At each step, you pick a new split by finding the input X; and split
point ; that best partitions the data

e In prediction, you choose splits to minimize the RSS

e |n classification, choose splits to maximize node purity (minimize Gini
index)

K
k=1

where P« is the proportion of training observations in the mth region
that are from the kth class

e (G is small if all the p,,;, are close to 0 or 1

27/39

Why not minimize the misclassification error?

0
=

0.4

0.3

0.2

01

0.0

p

e Misclassification rate is poor at pushing for really pure nodes

e With Gini: going from P, = 0.8 to Py, = 0.9 is better than going

from P, = 0.5 to Py = 0.6

e With Misclassification error, these are considered equal
improvements

28/39

You'll never

get this split

from .
binary
partitioning
f
Xo <t Xi<ts
‘ ‘ ‘ X2ty
R, Ry Ry

Tree pruning

Why did we stop here? Why not keep partitioning?

L]
Years < 4.5
T o °°
8 — L]
L] - o
3 e : ° . ‘ e
- .
AN :
2 s b= =
T . $: e |
o - @ . ®
- ° . L 3
3t
L : :
3 H IR K10 3 °
s ole e °
o
Hits </117.5
5.11 o e
T T T
5 10 15 20
6.00 6.74 Years

Low salary (blue, Green)
High salary (orange, red)

30/39

We could just keep going...

Years < 4.5
T
RBI 4 60.5 Hits <[117.5
Putouls < 82 Years|< 3.5
Years|< 3.5
5.487 5394 6.189
4622 5183
Walks|< 43.5 Walks|< 52.5
Runs 47.5 | RBI 4 80.5
6.407 Years[< 6.5
6015 5571) = o
6.459 7.007 ’

31/39

Tree pruning

If we just keep going, we're going to overfit the training data, and get
poor test performance

We could stop as soon as we can't find a split to reduce RSS or Gini
index by at least some pre-specified amount

But this strategy is short-sighted: A seemingly worthless split early
on might be followed by a really good split later

Solution: Grow a very large tree Tj, and then prune it back

32/39

Cost complexity pruning

e Here's the regression tree version of cost complexity pruning aka
weakest link pruning

e For each q, find the subtree T' C Tj that minimizes

|T|
> > Wi—dm,)* +alT]
m=1xz;ERm

where |T| is the number of terminal nodes in tree T', and Ry, is the
rectangle corresponding ot the mth terminal node. §p, . is just the
mean of the training observations in I,

e This is familiar. It has the form:
RSS(T) + «|T|

model error + a penalty on model complexity

33/39

Cost complexity pruning

For each ¢, find the subtree 1" C T}, that minimizes

T
> 2 Wi—ir,)’ +alT|
m=1xz;€ERm

e How do we pick a?

e Use Cross-validation

34/39

Pruning details

. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has
fewer than some minimum number of observations.

. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of «.

. Use K-fold cross-validation to choose «. For each
k=1,..., K:

3.1 Repeat Steps 1 and 2 on the %th fraction of the training

data, excluding the kth fold.
3.2 Evaluate the mean squared prediction error on the data in
the left-out kth fold, as a function of a.

Average the results, and pick o to minimize the average
error.

. Return the subtree from Step 2 that corresponds to the
chosen value of a.

35/39

Tree pruning

S 7 —— Training
—— Cross-Validation
— Test
«©
®
8
w o |
- ©
[}
g e S
%]
§ S 1 — 3
(9] - —
! — =i =
~ E\E\E\E
o
o
o
T T T T T
2 4 6 8 10
Tree Size

Looks like the small 3-node tree has the lowest CV error.
36/39

Classification trees vs. Linear models

o o~
X © - X o4
- -
o o~
) I
T T T T T T T T T T
-2 1 0 1 2 -2 -1 0 1 2
Xy X
o~ - ~ 4
¥ o — X o o
- -
o o~
i |
T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
Xy X

ISL Figure 8.7. Trees are bad when the boundary is linear, but very good
when the boundary is well-described by a simple rectangular partition.

37/39

A summary of our methods so far

’ Method H Interpretable ‘ Flexible ‘ Makes assumptions?
Logistic regression Yes Extensible Yes
k-NN No Highly No
LDA/QDA Sometimes No Yes
Trees Extremely | Somewhat No

e Decision trees are perhaps the most Interpretable method we've

seen so far

So what's the catch?

Coming soon: Forests and boosted trees

Trees don't assume any particular relationship between the response
Y and the inputs X, and large trees are quite flexible

Turns out, Trees tend to be rather poor predictors/classifiers!

38/39

Acknowledgements

All of the lectures notes for this class feature content borrowed with or
without modification from the following sources:
® 36-462/36-662 Lecture notes (Prof. Tibshirani, Prof. G'Sell, Prof. Shalizi)

® 95-791 Lecture notes (Prof. Dubrawski)

® An Introduction to Statistical Learning, with applications in R (Springer, 2013)
with permission from the authors: G. James, D. Witten, T. Hastie and R.
Tibshirani

® Applied Predictive Modeling, (Springer, 2013), Max Kuhn and Kjell Johnson

39/39

