
.

Lecture 9: Classification, Trees

Assessing Performance of Classification Models, Tree-Based methods

Prof. Alexandra Chouldechova
95-791: Data Mining

April 12, 2016

1 / 39

.

Course Roadmap

2 / 39

.

Course Roadmap

2 / 39

.

Today's topicsBoth

Pr
ed

ic
tio

n

Additive models

Similarity-based models

Tree-based models

Model selection

Model validation

C
la

ss
ifi

ca
tio

n

Logistic regression

Similarity-based models

Bayes methods

Tree-based models

Cost-sensitive assessment

Model validation

3 / 39

.

Agenda

• Assessing performance of Classification Models
◦ Calibration plots
◦ Confusion matrices
◦ Sensitivity, Specificity, Accuracy, Precision, Recall
◦ Cost-based criteria
◦ ROC curves

• Final project

4 / 39

.

.

.

Assessing the performance of Classifiers

5 / 39

.

The confusion matrix
• Let's focus again on the binary classification setting:

◦ Y = 1: if the event happened
◦ Y = 0: if the event did not happen

• The primary building block of essentially all approaches to evaluating
a Classifier is the confusion matrix

254 11 Measuring Performance in Classification Models

Table 11.1: The confusion matrix for the two-class problem (“events” and
“nonevents.”The table cells indicate number of the true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN)

Predicted Observed
Event Nonevent

Event TP FP
Nonevent FN TN

Equivocal Zones

An approach to improving classification performance is to create an equivocal
or indeterminate zone where the class is not formally predicted when the
confidence is not high. For a two-class problem that is nearly balanced in the
response, the equivocal zone could be defined as 0.50± z. If z were 0.10, then
samples with prediction probabilities between 0.40 and 0.60 would be called
“equivocal.” In this case, model performance would be calculated excluding
the samples in the indeterminate zone. The equivocal rate should also be
reported with the performance so that the rate of unpredicted results is well
understood. For data sets with more than 2 classes (C > 2), similar thresholds
can be applied where the largest class probability must be larger than (1/C)+
z to make a definitive prediction. For the data shown in Fig. 11.4, if (1/C)+z
is set to 30%, then 5 samples would be designated as equivocal.

11.2 Evaluating Predicted Classes

A common method for describing the performance of a classification model
is the confusion matrix. This is a simple cross-tabulation of the observed
and predicted classes for the data. Table 11.1 shows an example when the
outcome has two classes. Diagonal cells denote cases where the classes are
correctly predicted while the off-diagonals illustrate the number of errors for
each possible case.

The simplest metric is the overall accuracy rate (or, for pessimists, the
error rate). This reflects the agreement between the observed and predicted
classes and has the most straightforward interpretation. However, there are a
few disadvantages to using this statistic. First, overall accuracy counts make
no distinction about the type of errors being made. In spam filtering, the cost
of erroneous deleting an important email is likely to be higher than incorrectly
allowing a spam email past a filter. In situations where the costs are different,

• In R, it's more natural to form confusion matrices with the
Non-event and Event headings swapped.

Observed
No Yes

Predicted
No TN FN
Yes FP TP

[source: Applied Predictive Modeling] 6 / 39

.

Probabilities as ranking functions
• Suppose we have a probability estimate p̂(x)
• We can use p̂(x) to order the observations from most likely to have

the Event to least likely
i p̂(xi) yi

45 0.975 1
12 0.824 0
191 0.762 1
77 0.754 1
...

...
...

• We can think about how well p̂(x) performs by asking: When we
order the yi according to p̂(x), do most of the observations with
yi = 1 appear at the top of the list?

• A perfect ranking function will score all of the observations where
yi = 1 higher than those where yi = 0

• We're now going to discuss various approaches for visualizing how
well p̂(x) does at ranking observations

7 / 39

.

ROC Curves
• As we vary our probability cutoff α, we get different classification

rules and hence different values of all of our performance metrics
• You can think of getting a different confusion matrix at each α
• It's useful to plot the values of various performance metrics as you

vary the cutoff α
• Perhaps the most widely used plot is the ROC Curve

11.3 Evaluating Class Probabilities 263

1 − Specificity

S
en

si
tiv

ity
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

0.500 (Spec = 0.929, Sens = 0.400)

0.300 (Spec = 0.786, Sens = 0.600)

Fig. 11.6: A receiver operator characteristic (ROC) curve for the logistic
regression model results for the credit model. The dot indicates the value
corresponding to a cutoff of 50% while the green square corresponds to a
cutoff of 30% (i.e., probabilities greater than 0.30 are called events)

tivity (60%) but decrease specificity (79.3%). Referring to Fig. 11.3, we see
that decreasing the threshold begins to capture more of the customers with
bad credit but also begins to encroach on the bulk of the customers with
good credit.

The ROC curve is created by evaluating the class probabilities for the
model across a continuum of thresholds. For each candidate threshold, the
resulting true-positive rate (i.e., the sensitivity) and the false-positive rate
(one minus the specificity) are plotted against each other. Figure 11.6 shows
the results of this process for the credit data. The solid black point is the de-
fault 50% threshold while the green square corresponds to the performance
characteristics for a threshold of 30%. In this figure, the numbers in paren-
theses are (specificity, sensitivity). Note that the trajectory of the curve
between (0, 0) and the 50% threshold is steep, indicating that the sensitivity
is increasing at a greater rate than the decrease in specificity. However, when
the sensitivity is greater than 70%, there is a more significant decrease in
specificity than the gain in sensitivity.

This plot is a helpful tool for choosing a threshold that appropriately
maximizes the trade-off between sensitivity and specificity. However, altering
the threshold only has the effect of making samples more positive (or negative

[source: Applied Predictive Modeling] 8 / 39

.11.3 Evaluating Class Probabilities 263

1 − Specificity

S
en

si
tiv

ity
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

0.500 (Spec = 0.929, Sens = 0.400)

0.300 (Spec = 0.786, Sens = 0.600)

Fig. 11.6: A receiver operator characteristic (ROC) curve for the logistic
regression model results for the credit model. The dot indicates the value
corresponding to a cutoff of 50% while the green square corresponds to a
cutoff of 30% (i.e., probabilities greater than 0.30 are called events)

tivity (60%) but decrease specificity (79.3%). Referring to Fig. 11.3, we see
that decreasing the threshold begins to capture more of the customers with
bad credit but also begins to encroach on the bulk of the customers with
good credit.

The ROC curve is created by evaluating the class probabilities for the
model across a continuum of thresholds. For each candidate threshold, the
resulting true-positive rate (i.e., the sensitivity) and the false-positive rate
(one minus the specificity) are plotted against each other. Figure 11.6 shows
the results of this process for the credit data. The solid black point is the de-
fault 50% threshold while the green square corresponds to the performance
characteristics for a threshold of 30%. In this figure, the numbers in paren-
theses are (specificity, sensitivity). Note that the trajectory of the curve
between (0, 0) and the 50% threshold is steep, indicating that the sensitivity
is increasing at a greater rate than the decrease in specificity. However, when
the sensitivity is greater than 70%, there is a more significant decrease in
specificity than the gain in sensitivity.

This plot is a helpful tool for choosing a threshold that appropriately
maximizes the trade-off between sensitivity and specificity. However, altering
the threshold only has the effect of making samples more positive (or negative

Each point on the curve corresponds to the value of (1−Specificity,
Sensitivity) calculated at a particular choice of cutoff α

[source: Applied Predictive Modeling]
9 / 39

.

ROC

• The diagonal is the ROC you would get from randomly picking
proportion πk of the observations to classify to class k

• Higher ROC is better
• The perfect classifier has (1 − Specificity, Sensitivity) = (0, 1)

10 / 39

.

Area under the curve

• The AUC is the area under the ROC curve

• AUC has a nice interpretation: The AUC is the probability that the
classifier will rank a randomly selected observation where yi = 1
higher than a randomly selected observation where yi = 0

• What is the AUC of the perfect classifier?

11 / 39

.

Precision-Recall curves

• Precision: TP/(TP + FP) (aka, PPV)
• Recall: TP/(TP + FN) (aka, Sensitivity)
• Precision @50% Recall is a common performance metric

[source: Introduction to Information Retrieval, Manning et al.]
12 / 39

.

Lift charts
• Lift charts are kind of like ROC curves, but may be more useful

depending on the application
266 11 Measuring Performance in Classification Models

% Samples Tested

%
 E

ve
nt

s
F

ou
nd

0

20

40

60

80

100

0 20 40 60 80 100

Random Perfect

Fig. 11.7: An example lift plot with two models: one that perfectly separates
two classes and another that is completely non-informative

to all customers. Using the lift plot, the expected profit can be calculated
for each point on the curve to determine if the lift is sufficient to beat the
baseline profit.

11.4 Computing

The R packages AppliedPredictiveModeling, caret, klaR, MASS, pROC, and
randomForest will be utilized in this section.

For illustration, the simulated data set shown in Fig. 11.1 will be used in
this section. To create these data, the quadBoundaryFunc function in the Ap-
pliedPredictiveModeling package is used to generate the predictors and out-
comes:

> library(AppliedPredictiveModeling)
> set.seed(975)
> simulatedTrain <- quadBoundaryFunc(500)
> simulatedTest <- quadBoundaryFunc(1000)
> head(simulatedTrain)

X1 X2 prob class
1 2.4685709 2.28742015 0.9647251 Class1
2 -0.1889407 -1.63949455 0.9913938 Class1

• y-axis: Recall (Sensitivity)
• x-axis: #{i : p̂(xi) > α}/n = (FP + TP)/n

[source: Applied Predictive Modeling]
13 / 39

.

Lift charts
272 11 Measuring Performance in Classification Models

% Samples Tested

%
 S

am
pl

es
 F

ou
nd

0

20

40

60

80

100

0 20 40 60 80 100

Random Forest
Quadratic Discriminant Analysis

Bin Midpoint

O
bs

er
ve

d
E

ve
nt

 P
er

ce
nt

ag
e

0

20

40

60

80

100

0 20 40 60 80 100

RFprob
QDAprob

Fig. 11.9: Examples of lift and calibration curves for the random forest and
QDA models

family argument to specify the type of outcome data being modeled. Since
our outcome is a discrete category, the binomial distribution is selected:

> ## The glm() function models the probability of the second factor
> ## level, so the function relevel() is used to temporarily reverse the
> ## factors levels.

• In this example, of the top 40% of observations ordered according to
p̂(x), essentially all of them have yi = 1. This is great!

[source: Applied Predictive Modeling]14 / 39

.

How do we pick the best classifier?
You can overlay the ROC curves from a bunch of different methods.
Here's a facial recognition example. [source: cmusatyalab/openface GitHub]

• The DeepFace Ensemble method is amazing
• The proposed method, OpenFace nn4.small2.v1 does really well. Its

ROC curve is the solid black line.
◦ 10 grey curves are Test Fold ROC curves from 10-Fold CV

15 / 39

.

It depends on what region of the curve you care most about.

16 / 39

.

Example: Cancer diagnosis

We can think of two settings: Screening, and Referred examinations
• Screening: E.g., we want annual screening of all people above age 40

◦ Most people we test will not have cancer (high ratio of non-Events to
Events)

◦ False positives more costly than False negatives
◦ Focus on: performance at High Specificity (small x-axis values)

• Referred examination: E.g., your doctor feels a bump under your
skin, and refers you for a biopsy to get it tested for cancer
◦ Many referred individuals will have cancer (low or equal ratio of

non-Events to Events)
◦ False negatives are really costly
◦ Focus on: performance at High Sensitivity (high y-axis values)

17 / 39

.

Putting confidence bands on ROC curves
• We like putting standard error bars on our curves so that we can

visually discern which trends/differences are statistically significant

18 / 39

.

Using Cross-validation
• In the Prediction setting, we focussed entirely on MSE as our

performance metric

• To validate our model, we would use K-Fold CV to estimate the Test
MSE

• In the Classification setting, there are many metrics out there. The
set I presented is by no means exhaustive.

• To estimate Test performance:
...1 Pick a metric (E.g., Accuracy, profit, AUC, Sensitivity @x% Specificity,

Precision @x% Recall, etc.)
...2 Calculate the metric on each fold of K-fold CV
...3 Average over all of the folds

• For ROC and Precision-Recall curves, you may want to show the
curve you get from each Test fold. This gives a visual representation
of the variability of the curve estimates.

19 / 39

.

.

.

Back to methods...

Let's grow some Trees

20 / 39

.

[source: Classification and regression tree (CART) model to predict pulmonary

tuberculosis in hospitalized patients, Aguiar et al] 21 / 39

.

Overview: Tree-based methods
• Tree-based based methods operate by dividing up the feature space

into rectangles
• Each rectangle is like a neighbourhood in a Nearest-Neighbours

method
• You predict using the average or classify using the most common class

in each rectangle

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Does dividing up the feature space into rectangles look like it would
work here? 22 / 39

.

|x2< 0.111

x1>=0.4028

x2>=0.4993

x1< 0.5998

x2< 0.598
0

60/0

0
148/0

0
39/0

1
0/71

0
101/0

1
0/81

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2
• Trees are built up via a greedy algorithm: Recursive binary

partitioning
• At each step, you pick a new split by finding the input Xj and split

point x̃j that best partitions the data
◦ In prediction, you choose splits to minimize the RSS
◦ In classification, choose splits to maximize node purity (minimize Gini

index)
23 / 39

.

Decision trees in Prediction
Here's a Prediction example (Y = Salary in millions)

Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0
50

10
0

15
0

20
0

Years

H
its

4 / 51

Low salary (blue, Green)
High salary (orange, red)

24 / 39

.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0
50

10
0

15
0

20
0

Years

H
its

4 / 51

Low salary (blue, Green)
High salary (orange, red)

Within each of the 3 rectangles, we predict Salary using the average
value of Salary in the training data

25 / 39

.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Low salary (blue, Green)
High salary (orange, red)

Within each of the 3 rectangles, we predict Salary using the average
value of Salary in the training data

25 / 39

.

Recursive binary partitioning

26 / 39

.

Recursive binary partitioning

26 / 39

.

Recursive binary partitioning

26 / 39

.

Recursive binary partitioning

26 / 39

.

Recursive binary partitioning

26 / 39

.

Recursive binary partitioning

26 / 39

.

Recursive binary partitioning

• At each step, you pick a new split by finding the input Xj and split
point x̃j that best partitions the data

• In prediction, you choose splits to minimize the RSS

• In classification, choose splits to maximize node purity (minimize Gini
index)

G =
K∑

k=1
p̂mk(1 − p̂mk)

where p̂mk is the proportion of training observations in the mth region
that are from the kth class

• G is small if all the p̂mk are close to 0 or 1

27 / 39

.

Why not minimize the misclassification error?

• Misclassification rate is poor at pushing for really pure nodes
• With Gini: going from p̂mk = 0.8 to p̂mk = 0.9 is better than going

from p̂mk = 0.5 to p̂mk = 0.6
• With Misclassification error, these are considered equal

improvements
28 / 39

.

29 / 39

.

Tree pruning

Why did we stop here? Why not keep partitioning?

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20
0

50
10
0

15
0

20
0

Years

H
its

4 / 51

Low salary (blue, Green)
High salary (orange, red)

30 / 39

.

We could just keep going...
|

Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

31 / 39

.

Tree pruning

• If we just keep going, we're going to overfit the training data, and get
poor test performance

• We could stop as soon as we can't find a split to reduce RSS or Gini
index by at least some pre-specified amount

• But this strategy is short-sighted: A seemingly worthless split early
on might be followed by a really good split later

• Solution: Grow a very large tree T0, and then prune it back

32 / 39

.

Cost complexity pruning
• Here's the regression tree version of cost complexity pruning aka

weakest link pruning

• For each α, find the subtree T ⊂ T0 that minimizes

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)2 + α|T |

where |T | is the number of terminal nodes in tree T , and Rm is the
rectangle corresponding ot the mth terminal node. ŷRm is just the
mean of the training observations in Rm

• This is familiar. It has the form:

RSS(T) + α|T |

model error + a penalty on model complexity

33 / 39

.

Cost complexity pruning

For each α, find the subtree T ⊂ T0 that minimizes

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)2 + α|T |

• How do we pick α?
• Use Cross-validation

34 / 39

.

Pruning detailsSummary: tree algorithm

1. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has
fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of ↵.

3. Use K-fold cross-validation to choose ↵. For each
k = 1, . . . ,K:
3.1 Repeat Steps 1 and 2 on the K�1

K th fraction of the training
data, excluding the kth fold.

3.2 Evaluate the mean squared prediction error on the data in
the left-out kth fold, as a function of ↵.

Average the results, and pick ↵ to minimize the average
error.

4. Return the subtree from Step 2 that corresponds to the
chosen value of ↵.

20 / 51
[source: ISL Chapter 8 slides]35 / 39

.

Tree pruning

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tree Size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Training

Cross−Validation

Test

Looks like the small 3-node tree has the lowest CV error.
36 / 39

.

Classification trees vs. Linear models

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

ISL Figure 8.7. Trees are bad when the boundary is linear, but very good
when the boundary is well-described by a simple rectangular partition. 37 / 39

.

A summary of our methods so far

Method Interpretable Flexible Makes assumptions?

Logistic regression Yes Extensible Yes
k-NN No Highly No
LDA/QDA Sometimes No Yes
Trees Extremely Somewhat No

• Decision trees are perhaps the most Interpretable method we've
seen so far

• Trees don't assume any particular relationship between the response
Y and the inputs Xj , and large trees are quite flexible

• So what's the catch?
• Turns out, Trees tend to be rather poor predictors/classifiers!
• Coming soon: Forests and boosted trees

38 / 39

.

Acknowledgements

All of the lectures notes for this class feature content borrowed with or
without modification from the following sources:
• 36-462/36-662 Lecture notes (Prof. Tibshirani, Prof. G'Sell, Prof. Shalizi)

• 95-791 Lecture notes (Prof. Dubrawski)

• An Introduction to Statistical Learning, with applications in R (Springer, 2013)
with permission from the authors: G. James, D. Witten, T. Hastie and R.
Tibshirani

• Applied Predictive Modeling, (Springer, 2013), Max Kuhn and Kjell Johnson

39 / 39

