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In analyzing the continuous and impulsive dynamics of a robot that is contacting the world, a common structure
arises. These dynamics are characterized by a set of dynamic differential equations involving the mass matrix M and
constraint forces/impulses, described by the matrix AT , as well as an algebraic constraint equation that depends on
A. Solving this combined DAE system (differential-algebraic equations) can be done in many different ways, but it is
helpful to combine the M and A terms into an invertible block matrix. This can lead to better numerical conditioning
and also enable solutions for systems with massless limbs.

1 Block Matrix Inverse
Consider an invertible matrix that is decomposed into several sub-blocks, here labeled E, F , G, and H. If the upper
left block E is invertible then the inverse of that matrix can be written as,[

E F
G H

]−1

=

[
E−1 +E−1FS−1

E GE−1 −E−1FS−1
E

−S−1
E GE−1 S−1

E

]
Block matrix inverse (1)

where

SE := H−GE−1F Schur complement (2)

is called the Schur complement of the block E. This formula can be readily validated by testing that this expression is
a left and right inverse of the original matrix (see the Practice Problems).

In dynamics we will be using the special case of this general formula, where E = M, F = AT , G = A, and H = 0
(sometimes called the Lagrangian matrix of coefficients),

SM = 0−AM−1AT (3)[
M AT

A 0

]−1

=

[
M−1−M−1AT (AM−1AT )−1AM−1 M−1AT (AM−1AT )−1

(AM−1AT )−1AM−1 −(AM−1AT )−1

]
(4)

2 Dagger Terms
The decomposition of the block matrix inverse in (1) is useful if the first block is invertible. But, we can still think
about the block components of the matrix inverse (when it exists) even without this definition,[

M† A†T

A† Λ †

]
:=
[

M AT

A 0

]−1

Dagger terms (5)
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If the size of our state is n and the number of constraints is m, such that M ∈ Rn×n and A ∈ Rm×n, and the block of
zeros will be an m×m matrix. The dagger terms have the same sizes, so M† ∈ Rn×n, A† ∈ Rm×n, and Λ † ∈ Rm×m.
Note that we have not yet defined a non-dagger Λ – for consistency we will define Λ to mean the Schur complement
Λ = SM = −AM−1AT when it exists, such that Λ † = Λ−1 = S−1

M . However, note that other texts may use Λ to mean
the Delassus operator AM−1AT (which is −SM), the contact space or apparent inertia matrix (AM−1AT )−1 (which is
−Λ † or −S−1

M ) [1,2], or instead of Λ † itself [3].
These “dagger terms” will show up in our continuous dynamics and impact laws. They exist whenever the whole

block matrix is invertible, even if M is not invertible. But, if the leading block (M) is also invertible, they line up
with the definition in (4),

M† = M−1−M−1AT (AM−1AT )−1AM−1 (6)

A† = (AM−1AT )−1AM−1 (7)

Λ
† =−(AM−1AT )−1 (8)

From the definition of matrix inverse, multiplying the left and right block matrices in (5) together in either order,
we can observe the following properties and identities (where In×n is an n× n identity matrix and 0n×m is an n×m
zero matrix): [

M AT

A 0

][
M† A†T

A† Λ †

]
=

[
M† A†T

A† Λ †

][
M AT

A 0

]
=

[
In×n 0n×m
0m×n Im×m

]
(9)

MM† +AT A† = In×n M†M+A†T A = In×n (10)

MA†T +AT
Λ

† = 0n×m A†M+Λ
†A = 0m×n (11)

AM† = 0m×n M†AT = 0n×m (12)

AA†T = Im×m A†AT = Im×m (13)

so in particular A† is a left-inverse of AT , but note that M† is not a left- or right-inverse of M.
Note also that if M is symmetric positive (semi-)definite, then M† is symmetric positive semi-definite and Λ † is

symmetric negative (semi-)definite. We can see from (12) that the rank of M† can be no more than n−m (since A must
have full rank of m), and so is always singular for a constrained system. The rank of M† must be at least n−m if the
block matrix is invertible as A† is rank m, thus the rank of M† must be exactly n−m.

Furthermore, if M is singular (i.e. only semi-definite), then Λ † is as well. If there is only a single constraint,
Λ † =

[
0
]
. In fact, M and Λ † have the same nullity, i.e. if M has rank n−d then Λ † has rank m−d. To see this, by (11),

∀q̇i ∈ Rn : Mq̇i = 0n×1⇒ A†Mq̇i +Λ
†Aq̇i = 0m×nq̇i (14)

0m×1 +Λ
†(Aq̇i) = 0m×1 (15)

Thus Aq̇i is in the null space of Λ †, as Aq̇i 6= 0 if the block matrix is full rank. In summary,

M†T = M† M† ≥ 0 null(M†) = m (16)

Λ
†T = Λ

†
Λ

† ≤ 0 null(Λ †) = null(M) (17)
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3 Discussion

T 2Q
(q̈)

T ∗Q
(Γ )

T ∗C
(λ )

T 2C
(c̈)

T Q
(q̇)

T C
(ċ)

M

M†

A† Λ

AT
Λ †

A

A†T

Figure 1: Functional mapping of the dagger
terms. Note that this diagram does not neces-
sarily commute, as the dagger elements are not
always inverses of their non-dagger versions.

We can think of these various matrices as functions between the
state and constraint space velocities, accelerations, and forces. If the
state space is q ∈ Q, then the space of state velocities is q̇ ∈ T Q
(the tangent space), the space of accelerations is q̈ ∈ T 2Q, and
the space of forces on the state space is Γ ∈ T ∗Q (the cotangent
space). With this notation, one way to think about the mass matrix
is M : T 2Q→ T ∗Q, as it maps accelerations to forces (Mq̈ equals
the applied forces). We also have the space of constraints c ∈ C,
where we have mostly thus far talked about the constraint velocities
ċ ∈ T C, i.e. we have said that the velocity in constrained directions
must be zero. Thus the velocity constraint A : T Q→ T C, as it maps
the state velocity to the constraint velocity (which we want to be zero, Aq̇ = 0). It is always true that the transpose of a
linear function of tangent spaces maps back from the corresponding cotangent spaces – in our case AT : T ∗C → T ∗Q,
as AT λ = Γ is the effect of the constraint forces on the state space.

With this notation, we can now think of the dagger terms as mapping M† : T ∗Q → T 2Q, A† : T ∗Q → T ∗C,
A†T : T C → T Q, and Λ † : T 2C → T ∗C. However, remember that these are not necessarily inverse functions of
the non-dagger versions even if they map back to the same spaces. For example, we have in (13) that A†T is only
a right-inverse of A. So if we have a constraint velocity ċ that we mapped through A†T to get q̇ = A†T ċ, and then
mapped it back through A we would get that Aq̇ = AA†T ċ = ċ. However, it is not a left-inverse, so if we started with a
q̇, mapped it through A to get ċ = Aq̇, and the back we would have A†T Aq̇ 6= q̇ (in particular, any constrained motion of
the system will have Aq̇ = 0, which will map to ċ = 0 and therefore A†T Aq̇ = 0 6= q̇). This is easy to see when we look
at the dimensions of the spaces and matrices – since q̇ ∈ Rn is larger than ċ ∈ Rm, we will inevitably lose information
when we go down to the smaller space first.

Since A†T is a right-inverse of A, but not the only possible right-inverse of A, what value of q̇ do we get when we
map A†T ċ = q̇? Consider a case where we have a velocity that violates the constraint, so Aq̇ = ċ 6= 0. Knowing how
much we are violating the constraint, ċ, what change to q̇ should we make? Clearly there are many different changes
to q̇ we could make that would result in the same change in constraint velocity ċ. Which of these should we choose?
A natural choice (and one that agrees with physics) is that we should choose the one that requires the least energy. Our
kinetic energy, 1

2 q̇T Mq̇, defines a metric or norm, which we can write as ‖q̇‖M . Thus we would like to find the change
to q̇ that achieves the desired change in constraint velocity ċ and minimizes the norm ‖q̇‖M . This least-norm solution
to a linear system can be solved by the mass-weighted right Moore–Penrose pseudoinverse M−1AT (AM−1AT )−1,
which is exactly the quantity A†T . If we take q̇ = A†T ċ as the solution, we can verify that Aq̇ = AA†T ċ = ċ as desired,
by (13). Similarly, A† is the mass-weighted left pseudoinverse of AT .

If M† is not an inverse of M, then what does it represent? Starting from (10), we see that M†M = I−A†T A. We can
think of M† as the inverse of M in the constrained space, since if we had a q̇ that was consistent with the constraints
(i.e. Aq̇ = 0), then M†Mq̇ = Iq̇−A†T Aq̇ = q̇. Another interpretation is that it is the inverse of M that removes the
constrained component (hence the null space (16)), since if we apply A to the output we get AM†M = AI−AA†T A =
A−A = 0 and so passing a velocity through M†M removes any component that is not consistent with the constraints.
This will be useful when defining impact laws, as we will need to remove the component of the velocity into the
constraint.

4 Block Matrix Dynamics
Starting from the constrained equations of motion,

Mq̈+Cq̇+N +AT
λ =ϒ (18)

Aq̈+ Ȧq̇ = 0 (19)
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we can take this set of equations and factor out the block matrix from (5),[
M AT

A 0

][
q̈
λ

]
=

[
ϒ −Cq̇−N
−Ȧq̇

]
(20)[

q̈
λ

]
=

[
M AT

A 0

]−1 [
ϒ −Cq̇−N
−Ȧq̇

]
=

[
M† A†T

A† Λ †

][
ϒ −Cq̇−N
−Ȧq̇

]
(21)

Thus our acceleration dynamics can be solved for as,

q̈ = M†(ϒ −Cq̇−N)−A†TȦq̇
λ = A†(ϒ −Cq̇−N)−Λ † Ȧq̇

Dagger solution to constrained dynamics (22)

Note that if M is invertible, this solution to the dynamics is equivalent to the traditional solution of (e.g. [4, Eqn 6.5,
6.6]),

q̈ = M−1(ϒ −Cq̇−N−AT
λ ) (23)

λ = (AM−1AT )−1 (AM−1(ϒ −Cq̇−N)+ Ȧq̇
)

(24)

as we can see by using (6)–(8),

q̈ = M−1 (
ϒ −Cq̇−N−AT (AM−1AT )−1 (AM−1(ϒ −Cq̇−N)+ Ȧq̇

))
(25)

=
(
M−1−M−1AT (AM−1AT )−1AM−1)(ϒ −Cq̇−N)−

(
M−1AT (AM−1AT )−1) Ȧq̇ (26)

= M†(ϒ −Cq̇−N)−A†TȦq̇ (27)

λ =
(
(AM−1AT )−1AM−1)(ϒ −Cq̇−N)+

(
(AM−1AT )−1) Ȧq̇ (28)

= A†(ϒ −Cq̇−N)−Λ
†Ȧq̇ (29)

5 Massless Dynamics

m1 m
2

Consider the mass matrix for a 2-link manipulator, where each link i is length li, mass mi,
and inertia Ii,

M =

m1
l2
1
4 +m2l2

1 +m2
l2
2
4 +m2l1l2 cos(θ2)+ I1 + I2 m2

l2
2
4 +m2l1

l2
2 cos(θ2)+ I2

m2
l2
2
4 +m2l1

l2
2 cos(θ2)+ I2 m2

l2
2
4 + I2

 (30)

If m2� m1, it would be nice to simplify this expression by saying m2 ≈ 0 and therefore I2 ≈ 0,

M ≈

[
m1

l2
1
4 + I1 0
0 0

]
(31)

The challenge is obviously that this mass matrix is singular and so we cannot use M−1 in any of our calculations, e.g.
(23). And indeed this would be a problem if the system were unconstrained, as Mq̈ would zero out all terms related
to θ̈2. However, if the system is constrained, e.g. as in the “crank-slider” configuration shown, then the system can be
solved for just in terms of θ̈1 and then we can calculate θ̈2 from there.

In general, note that as long as the block matrix in (5) is invertible, we can use the dagger terms to solve our
dynamics as in (22). When is this true? We need a condition on rank, essentially that any rank deficiencies of the
inertia tensor M must be “corrected” by velocity constraints in A such that any motion still excites some momentum
(i.e. pushes against some mass) [3, Assumption A5]:

The block matrix in (5) is invertible if Mq̇ 6= 0n×1 for all q̇ 6= 0n×1 such that Aq̇ = 0m×1. (32)
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Note that this requirement is equivalent to requiring that the mass matrix in reduced coordinates, M̃, be invertible [3,
Lemma 4] (i.e. in this example, changing coordinates to only consider θ1).

Looking at the example in (31), we see that a velocity of just the second link, q̇ =
[
0 θ̇2

]T , would result in no
momentum, however this would not satisfy the constraint. Assume for simplicity that l1 = l2, then the constraint can
be simplified to A =

[
2 −1

]
. Thus, any valid q̇ would have some component of motion in both joints and therefore

move the mass of the first link. Looking at the block matrix inverse, and setting m1l2
1/4+ I1 = 1 for simplicity,

[
M AT

A 0

]−1

=

1 0 2
0 0 −1
2 −1 0

−1

=

1 2 0
2 4 −1
0 −1 0

 (33)

M† =

[
1 2
2 4

]
, A† =

[
0 −1

]
, Λ

† =
[
0
]

(34)

We see that the block matrix is now full rank (all rows and columns are linearly independent), as the constraint A has
“covered up” the zeros from M. Also, note here that M† has rank 1, as per (16), and Λ † =

[
0
]
, as per (17)).

What if we do not have enough constraints? For example, if the two link robot considered here were not touching
any surfaces. In these cases, we must remove the singular part of the system (here, the second link) and consider it
using separate, decoupled dynamics (e.g. holding constant position) [3, Assumption A6].

Finally, note that even in cases where part of the system is not not truly massless but simply small, and so M is not
singular but close to singular, computing the dynamics with the block matrix solution may provide better numerical
conditioning [5, Sec. 5.1.1].

6 Practice Problems

1) Validate the expression for the block matrix inverse in (1).

2) Prove that Λ † =−A†MA†T .

3) Considering the matrices we discussed in this chapter as functions, which of them are one-to-one (injective), which
are onto (surjective), and which are both (bijective)? Check M,A,AT ,M†,A†,A†T ,Λ †. Assume for this problem that M
is full rank, and that the system is not fully constrained (i.e. the number of constraints m is less than the dimensionality
of the state space n).
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