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SUMMARY
This paper documents autonomous multi-floor stairwell ascent by a legged robot. This
is made possible through empirically deployed sequential composition of several reactive
controllers, with perceptually triggered transitions. This composition relies on simplified
assumptions regarding the robot’s sensory capabilities, its level of mobility and the
environment it operates in. The discrepancies between these assumptions and the physical
reality are capably handled by the intrinsic motor competence of the robot. This behavior is
implemented on the legged RHex platform and experiments spanning 10 different stairwells
with various challenges are conducted.
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1. Introduction
This paper reports on a task level autonomy application where a legged robotic platform
performs autonomous ascent over various multi-floor stairwells representing a diverse set
of challenges (Figure 1). Combined with the initial implementation presented in [1], this
work offers the first documented account of fully autonomous ascent over diverse stairwells
composed of multiple flights of stairs with varying landing configurations. Similar to [2], this
is accomplished via simplified models regarding the environment the robot operates in, the
sensors it is equipped with, and the level of autonomy it is capable of, abstracting away
all the complexities handled by the robot’s mechanical preflexes [3, 4]. With the help of
these assumptions, the task at hand is broken in to a set of reactive controllers called by
perceptually driven event triggers in manner that empirically suggests (although is not yet
formally shown to exhibit) a sequential composition of attractor basins [5].

Experiments presented in this work span 10 stairwells in 4 different buildings, logging a
legged robot autonomously ascending over 67 flights of well over 700 diversely proportioned
stairs and landings. The platform used for these experiments is X-RHex [6, 7], a re-engineered
version of RHex [8]. Its high power density, flexible sensor interface, and software API enabled
this implementation of the commanded behavior in a very straightforward way. Taking
advantage of its modular payload architecture, a Light Detection And Ranging (LIDAR)
sensor and an Inertial Measurement Unit (IMU) are attached to the payload rails spanning
the robot’s top side, and utilized for all the sensing needs for successful execution. These
experimentation efforts are reported in Section 4, where the robot performance and reported
failure modes are discussed in details.

1.1. Motivation
The single flight stair climbing gait for RHex was first introduced in [9], and as discussed in
detail in [1], this gait works reliably over a wide variety of typical human-scale staircases.
Versatile robots capable of autonomous mobility in both indoor and outdoor settings have
long been sought for remote operators executing urban search and rescue (USAR) and
intelligence, surveillance, reconnaissance (ISR) operations [10]. Autonomous negotiation of
multi-flight stairwells in indoor settings has specifically been long established as a very
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Fig. 1. The X-RHex robot climbing a stairwell.

important yet challenging task for many existing man-portable mobile robots [11], yet as
discussed below in a comparative account of the more recent literature, surprisingly few
advances targeting this capability have been reported. Such a capability can be especially
useful when integrated into a multi-layer task navigation framework as discussed in [2],
enabling a deliberative task planner or a remote operator to focus only on high level planning
of a mission, and delegate the task of traveling from one floor of a building to another to
the lower level control authority presented in this work, facilitating its use in environments
with little to no communication between the robot and the operator [12].

1.2. Contributions and Related Work
Combined with [1], the central contribution of this work is a complete account of autonomous
ascent of general multi-floor stairwells. Its success over a variety of building interior styles
are depicted in the data tables of Section 4. This is achieved via several modifications to
[1]. First of all, a more detailed descriptions of all the sensors utilized for implementing
the resulting behavior are provided. Moreover, some of these sensor implementations are
modified. Specifically, the pitch wiggle self-manipulation routine in Section 2.4.3 is updated
to improve the quality and span of the pitch up scan utilized for stair detection.

Similarly, drastic modifications are performed on the moethodology for detecting stairs
in Section 2.4.5, where the output of the pitch scan sensor is now treated as a depth image,
and simple geometric processing is performed to detect a set of stairs. Furthermore, some
refinements in the landing exploration behavior implementation in Section 3.2 are made.
All these modifications resulted in improved performance: On a set of stairwells partially
overlapping with their counterparts from [1], only 12 behavioral problems over 731 stairs are
reported, compared to 23 behavioral problems over 671 stairs.

Prior work on the problem of autonomous stair ascent can be grouped into three categories:
ascent behavior over a single flight of stairs, algorithms for stair detection, and transitions
between stairwells and landings.

The first group of prior work focuses on the stair ascent behavior over a single flight of stairs
[13–23]. Many are limited to a very few steps [15, 17–20, 22, 23], or a very specific stair or
landing geometry [14, 16, 17, 22, 23]. In addition, most lack comprehensive experimentation
to report on reliability [13–17, 19–23]. This work on the other hand builds upon the stair
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ascent behavior from [9] that reliably works on a variety of flights of stairwells, and combined
with [1], expands it to multiple flights of stairs.

The second group focuses on the detection of the stairs themselves [13, 14, 16, 21, 24–
30]. The choice of sensor in this work—a LIDAR as opposed to a camera [13, 14, 24], or
a depth sensor [16, 21, 25–30]—differentiates how the sensory information about the stairs
are generated and how this information is processed to accomplish the detection from these
approaches.

The last group deals with autonomous transitions between flat surface walking and stair
ascent under the control of an operator [15, 17, 27, 31]. The transition approach presented
in this work follows [31], as discussed in Section 3.1.

The only reports found documenting empirical work on autonomy over multiple flights
of stairs other than [1] mention a few anecdotal successes [13] or assume a very specific,
simple landing geometry [14]. This work intentionally targets a great diversity and reports
in Section 4 on failure rates and causes in a detailed manner.

2. Robot and Task
This section presents simple models for the environment in which the robot is deployed, its
degree of mobility therein, and the sensors with which it is equipped. The world model of the
stair ascent task is complicated by the intermittent disappearance of the gradient beacon field
(on flat landings) and the need to find specifically marked obstacles (flights of stairs) whereon
a distinctly different gait yields robust ascent. The stair ascent behavior is accordingly
complicated, and formal statements of correctness would have a stochastic character governed
by the statistical properties of real stairwells. Although a formal demonstration of correctness
lies beyond the scope of this paper, this section aims to present a precise enough account of
all the modeling decisions to enable future analysis (when coupled with the description in
the following section of the behavior that relies upon them).

2.1. World Model
This section follows the steps of [1] and [2], and introduces a very simple model of the terrain
the robot is operating on and thus abstract away many of the issues that may arise from
operating on a complex engineered environment such as stairwells. This model relies on
two assumptions. First, there are no obstacles present over the stairs1, and the the robot’s
stair climbing gait [9] can reliably traverse various stair designs. In addition, the landings
are composed of simple polygonal floor plans with walls, and most of the time, the only
openings are sets of stairs, up to two of them, one connecting to the lower floor and/or
another connecting to the upper floor. This simplification of the world model is appropriate
for a platform like RHex since small obstacles such as debris or uneven surfaces do not
pose any problems for the robot’s standard walking gait. In addition, the violations to the
polygonal landing assumption will not necessarily pose any threat to robot operation as there
is no reason for non zero curvatures to pose any problems for the behavior introduced in
Section 3.

A stairwell, S, is defined to be a piecewise constant terrain where the terrain, defined in [2],
is represented by some unknown height function, h : R2 → R≥0. A constant component, Ui,
over this stairwell is called a landing. A landing is surrounded by obstacles such as walls
and cliffs, and potentially another component, Vi called stairs (as described in Section 2.4.5)
that connects it to the next (higher level) landing. Note that, in this definition, a cliff can
be either the previous set of stairs, Vi−1, connecting the landing to a lower level, or missing
walls, banisters, etc. that represent hazardous conditions for safety of the platform.

2.2. Robot Model
This work utilizes two different models depending which stairwell component the robot is
currently operating.

1 Note that the robot is capable of steering over a flight of stairs. an obstacle avoidance scheme similar
to [2] could be employed for obstacle-strewn stairwells.
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For the operations over a landing, the robot’s standard gait (alternating tripod [8]) is
assumed to reduce to the target dynamics (or template [32]) of a horizontal plane kinematic
unicycle [2],

q̇ = B(θ)u
ku

; B(θ) :=
[
n(θ)eT1

eT2

]
, (1)

with I =
[
e1 e2

]
:=

[
1 0
0 1

]
. The robot state, q := (p, θ) ∈ SE(2) contains its position on the

plane, p ∈ R2 and its heading, θ ∈ S1. n(θ) denotes the unit vector representing the robot’s
heading, whereas the control input u

ku
∈ R2 is composed of translational and rotational

velocity components, respectively.
Over the stairs, the stair climbing gait [9] is represented as a scalar point particle tracking

the single dimensional gradient defined by the slope of the stairs.

2.3. Task Model
The task of autonomous stairwell ascent requires that the robot locomote from any initial
position and orientation over a stairwell to some landing with no stair boundaries.

2.4. Sensor Models
This section provides a list of abstract sensor models used for implementing the autonomous
stairwell ascent behavior. These sensors are a succession of exteroceptive sensors that can
be realized through the use of a an IMU and a LIDAR hardware unit mounted on a legged
robot.
2.4.1. Depth Sensor. The depth sensor is an abstract map,

σE : SE(2)×B × P → R (2)

that returns from each position and heading in the plane, (p, θ) ∈ SE(2), bearing angle,
β ∈ B := [−βu, βu], and body pitch, φ ∈ P := [φl, φu], a distance, ρ ∈ R := [0, ρu].

For the implementation, the output from a fixed LIDAR2 unit is utilized to realize this
depth map. The arc extends roughly ±120◦ off center. The distance profile corresponds to
the first depth at which the LIDAR unit records a return. The LIDAR unit cannot detect
beyond a distance of ρu := 4m, to which the infinite reading of its maximum depth scale is
calibrated.
2.4.2. Gap Sensor. The gap sensor is an abstract map,

σG : SE(2)→ B (3)

that returns for each position and orientation at which the robot is pointing, the center,
σG(x, y, θ) = ξ of an arc segment [ξ − S, ξ + S] ⊂ B, a window within which the interval
depth is maximum

ξ := argmax
βl+S≤τ≤βu−S

I[τ, S], (4)

with,

I[τ, S] := min
τ−S≤β≤τ+S

σE(x, y, θ, 0, β)
(1−K) cos6(β − τ) +K

, (5)

where the power term over the cosine function introduces the bias towards lower bearing
differences to emulate the search for a rectangular opening on the robot’s path.

2 Hokuyo URG-04LX-F01, http://www.hokuyo-aut.jp/

http://www.hokuyo-aut.jp/
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Fig. 2. The pitch wiggle behavior for up and down scans, with inactive legs removed for clarity.

2.4.3. Pitch Scan Sensor. The pitch scan sensor, σP : SE(2)×B × P → R×B × P is
defined as,

σP (p, θ, φl, φu) :=
{
(σE(x, y, θ, φ, β), β, φ) : β ∈ B,φ ∈ [φl, φu] ⊂ P

}
(6)

and is implemented by running the depth sensor at each bearing angle within the field of
view and pitch angle achieved via a coordinated motion of the legs — a pitch wiggle self-
manipulation [1, 33, 34].

The pitch wiggle is a sensorimotor routine utilizing the planar LIDAR to generate a depth
image. For a horizontally placed LIDAR unit, even for several scans combined, there is no
perceived differences between a stairwell and a wall. To generate a depth image, instead of
attaching the LIDAR unit to a motor to tilt it, RHex morphology enables manipulation of
its body pitch to a range of angles, where an IMU3 unit is utilized to measure these angles.
As discussed in [1, 34], this routine, as depicted in Figure 2, produces a large variation in
body pitch (either up or down) with no internal forces or toe slip.

2.4.4. Cliff Sensor. The cliff sensor, σC : SE(2)×B × P → {0, 1} is the composition σCD ◦
σP . The pitch scan sensor, σP is pitched through a downward interval (φl < φu < 0) to scan
a mid distance rectangular region on robot’s path. The cliff detection sensor

σCD :R×B × P → {0, 1} (7)

compares the results from σP with predicted range values from current pitch and bearing
angles and returns a binary value based on the persistence of segments with extreme negative
error. It contains two stages. In the first stage, ground range prediction error

σGE(ρ, β, φ) := µ(β, φ)− ρ (8)

3 Microstrain 3DM-GX2, http://www.microstrain.com/

http://www.microstrain.com/
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is computed for every (ρ, β, φ) ∈ σP through the ground range prediction function µ :B ×
P → R as

µ(β, φ) := 0.5 l tan(−φ) + hs
tan(−φ) · 1

cosβ (9)

where, assuming that LIDAR is located at the geometric center, l is the length of robot’s body
and hs is the total height of the LIDAR and robot body. After a unidirectional threshold, a
binary value based on the persistence of segments with extreme negative error is returned.

2.4.5. Stair Sensor. The stair sensor, σS : SE(2)×B × P → R×B × S1 × {0, 1} is the
composition σSD ◦ σP . The pitch scan sensor, σP is pitched through an upward interval
(0 < φl < φu).

The stair detection sensor σSD :R×B × P → R×B × S1 × {0, 1} returns the range ρS ,
bearing βS and normal angle θS of the stairwell and a binary variable cS indicating if the
sensor is confident about this detection. It outputs zero if it can not detect stairs. It is
implemented in three stages. To detect and extract output parameters, a stairwell is modeled
as a set of vertical plane segments with increasing horizontal offset where offset difference
between successive plane segments are within a predefined interval [dl, du] ⊂ R. At the first
stage, a line segment extractor σLS(σP ) :=

{
piL

}
finds and parameterizes line segments,

Li := {(ρ, β, φ) ∈ σP : ρ cos(β) = ρ sin(β)ai + bi, φ = φi}, (10)

on the LIDAR scanning plane for every pitch angle. A line segment is represented with five
parameters: pitch angle φi, bearing interval boundaries βil , βiu, normal angle ni = atan(−ai),
and horizontal offset di = bi cosφi where,

piL := (φi, βil , βiu, ni, di). (11)

Once all the line segments are extracted and parameterized, vertical plane segment
extractor σPS(σLS) :=

{
pjP

}
groups these line segments into vertical plane segments

Pj :=
{
pkL ∈ σLS : [βkl , βku] ∩ [βk+1

l , βk+1
u ] 6= ∅, nk = nj , dk = dj

}
(12)

by comparing individual bearing angle intervals, normal angles and horizontal offsets and
performs a parametrization. A plane segment is represented by six parameters: pitch interval
boundaries φjl ,φju, total bearing interval boundaries βjl = min

k
βkl , βjl = max

k
βku , normal angle

nj and horizontal offset dj where

pjP := (φjl , φ
j
u, β

j
l , β

j
u, n

j , dj) (13)

Finally, the stair extractor σSE(σPS) := pS returns the range, bearing and heading angles
of the stairwell and a binary confidence variable if detected. It outputs zero otherwise. It
first extracts a stair candidate

S :=
{
pkP ∈ σPS : nk = nS , d

k=0 = ρS , dl ≤ dk+1 − dk ≤ du
, [φkl , φku] ∩ [φk+1

l , φk+1
u ] = ∅, [βkl , βku] ∩ [βk+1

l , βk+1
u ] 6= ∅

} (14)

by comparing pitch and bearing intervals, normal angles and horizontal offsets. A stairwell
is represented by four parameters: stair distance ρS , stair central bearing angle βS , stair
heading θS = nS + θ, and a binary confidence indicator cS that is nonzero if minimum pitch
angle; φk=0

l and absolute bearing angle |βS | are both within some confidence intervals

pS := (ρs, βS , θS , cS) (15)
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Fig. 3. Implementation details of the stair sensor. For all the graphs the vertical axis denotes the body
pitch and the horizontal axis denotes relative bearing angle in degrees. The top two graphs contain
the raw readings and the output of a simple filter.

Figure 3, composed of six images, depicts the actual implementation, where the first stage
of the filter contains two preprocessing steps. (upper left) represents the raw scan acquired
from the depth sensor via an upward pitch scan, whereas (upper right) shows the result of
a filtering process, where beginning from the lowest pitch angle, any infinite reading for a
specific bearing is replaced by the reading for the same bearing from the lower pitch angle
scan. (middle left) is the output of a 1D edge detector employed to segment individual pitch
angle scans into intervals. The horizontal line fitting as the first stage and vertical grouping
of line segments for vertical plane fitting are all applied on this output. (middle right) shows
the output of the second stage, where individual vertical plane segments extracted through
this process are represented with their average range value. (lower left) and (lower right)
both represent the output of the last stage, where a stairwell candidate is detected.

3. Autonomous Stairwell Ascent
Unlike the task of autonomous hill ascent [2] which is implemented as a single control law,
the task of autonomous multi-flight stairwell ascent requires a hybrid system composed of
several reactive controllers required by increased complexity in the sensorimotor loops the
robot uses to detect stairwells, boundaries, and other hazards. Not all of these closed loop
dynamics admit well-defined attractors and basins necessary for a formal implementation of
sequential composition [5]. Instead, the task is implemented through systematic pre-image
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Fig. 4. Flow chart describing autonomous stair climbing.

backchaining [35] and an implementation following the formal framework of [5] is left for
future work.

The overall task is implemented via two main behaviors, Stair Climbing and Landing
Exploration. As summarized in Figure 4, the robot executes a series of controllers back-
chained in a roughly cyclic pattern until it reaches the top of the final flight of stairs. The
two behaviors and accompanying control routines are presented as follows.

3.1. The Stair Climbing Behavior
As explained in detail by [1], once RHex is fully engaged on a single flight of a stairwell, the
overall open loop climbing gait reliably works as if the platform is guided by a steepest ascent
controller, as devised in [2]. Though, for a successful climb, when the robot detects a set of
stairs, it first needs to enter the domain of the stair climbing controller. This implementtion
utilizes a transition routine previously presented in [31] with some modifications from [36].
[31] shows that this routine is empirically reliable. The robot detects the end of a flight of
stairs via robot body pitch, and executes the final transition to landing exploration, consisting
of a couple steps forward.

3.2. Landing Exploration Behavior
Once the robot climbs through a flight of stairs and reaches a new landing, a sequence of
controllers (as summarized in Figure 4) is activated to drive it out of the prior goal set (i.e.,
the sensed zero-grade event that triggered the stair exit controller) and into the basin of the
next as follows:

3.2.1. Stair Detector.r Stair Detector
This controller first calls the stair sensor, σS and returns (ρS , βS , nS , cS) (Section 2.4.5).
For nonzero output, this controller performs an open loop move to the relative pose
(ρS , βS , θS − θ). If cS = 1, the robot transitions into stair climbing behavior. Otherwise, it
transitions back to σS for further investigation.
If σS returns 0, the robot switches to the Open Detector Controller.r Open Detector
By calling the gap sensor σG (Section 2.4.2), this controller picks the most open bearing
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# Violation Rise Run Landing Landing Size # Flights # Stairs Time # Scans Behavior Robot
(cm) (cm) (cm x cm) (hour:min:sec) ( stair, cliff)

1 - 15.3 28.0 Straight 189 x 150 2 11 0:01:51 2, 0 - -
2 - 15.3 28.0 Straight 327 x 150 2 11 0:03:01 3, 1 - -
3 Glass 17.4 29.6 Straight 192 x 143 2 27 0:02:27 2, 0 - -
4 Glass 16.7 26.9 Mixed 256 x 277 3 25 0:07:20 7, 4 - -
5 Various 17.5 31.4 U-Left 768 x 653 6 81 0:50:05 47, 36 1S 1N, 2L
6 Window 18.2 26.3 U-Left 486 x 222 7 60 0:25:25 33, 22 1S, 1T 2N, 2L
7 Glass 16.2 28.5 U-Left 471 x 252 10 111 1:03:25 51, 36 1C 3N, 3L
8 Glass 17.3 27.2 U-Left 349 x 156 10 112 0:54:40 55, 39 2T, 1C 1N, 1LD, 1L
9 Mesh 17.3 27.2 Mixed 293 x 137 11 112 0:44:54 44, 26 1T, 2W 2N, 1LD
10 Heater 17.5 26.0 U-Left 228 x 122 14 181 1:00:59 49, 27 2T 1LD, 1I

Table I . Ten indoor stairwell climbing behavior trials covering 731 stairs in 67 flights with a total of
12 behavioral problems. World model violations are briefly described. Rise, Run and Landing Size
dimensions are given in centimeters (cm). Scans column contains two numbers; Stair Scans and
Cliff Scans. Behavior faults are categorized as (S)tair Detection, (C)liff Detection, Stair (T)ransition,
and (W)all Collision. Robot faults fall into 4 categories; (N)etwork Communication, (L)eg Failures,

(L)I(D)AR Failures, and (I)MU Failures..

angle. At the beginning of each landing, the sign of this bearing angle is declared as the
preferred direction to be used in case of future conflicts.
If no suitably open bearing angle is available (if σE ◦ σG(x, y, θ) < 1m, i.e. the robot is in
a corner) the robot simply rotates by 90◦ through the preferred direction and transitions
back to the Stair Detector. In the presence of a suitably open bearing, the robot rotates
to this angle and switches to the Cliff Detector Controller.r Cliff Detector
This controller first runs the cliff detector sensor σC (Section 2.4.4) to ensure it will not
fall by pursuing this new heading. If this controller returns 0, robot walks for up to one
meter, otherwise it rotates back through the preferred direction and transitions back to
the Stair Detector Controller.
The behavior presented in section is not designed to be particularly efficient. On the

contrary, this behavior relies on simple sensorimotor routines combining limited sensing
capabilities with the robot’s mechanical competence. Thus, it seems unreasonable to expect
any deterministic guarantees that the robot can reach the basin of the next stairwell ascent
controller (i.e., the first steps of the next upward stairs) through this sequence of controllers.
Empirically, though, the data shows that this behavior finds the subsequent stairwell with
very high probability as landings are generally metrically small and topologically simple.

4. Experimental Results
The autonomous multi-flight stairwell ascent implementation is tested over 10 different
stairwells in 4 buildings of the School of Engineering and Applied Science in the University
of Pennsylvania. These results are summarized in Table I. This summary lists some
characteristics of these stairwells, such as average rise and run lengths for the stairs, number
of stairs, number of flights, landing styles and sizes. It reports the total time it took for the
robot to finish the stairwells, number of scans it performed and any faults recorded. Following
[1], this summary make a distinction between behavior faults ( caused by shortcomings in
the algorithm or the sensorimotor capabilities) and robot faults (mechanical, electrical, and
communication failures). Out of the 10 stairwells the experiments were conducted on, only 2
met the world model requirements, with all solid walls and no openings other than stairwells.
Even though the rest of these stairwells violated the assumptions in different ways, the
robot successfully climbed through them. The implication of this performance is that the
simplified model for the stairwells presented in this work successfully captures some general
characteristics for a surprisingly wide variety of structures.

The control routines, sensory capabilities, and triggers forming the the task level autonomy
developed for these experiments have been all implemented in Python4 on a remote operator
computer. While all these behaviors could be implemented directly on the robot, the
use of this network abstraction layer has greatly sped up behavior development. However

4 Python Programming Language, http://www.python.org/

http://www.python.org/


10 Autonomous Stairwell Ascent

occasional network glitches introduced experimental errors, as documented below, and could
be mitigated in future versions of these behaviors.

Overall there were 12 behavior faults. The robot had only two false positives on stair
detection throughout 67 flights of stairs. In particular one of these two failures occurred
because the specific landing had a window whose frame combined with the wall fit the
stairwell model described in Section 2.4.5. The other failure could be avoided by cropping out
small pitch angles as they managed to create enough features to mislead the plane segment
extractor. Similarly there were only two wall collision based failures and both happened on
stairwell number 5 where the laser scanner could see through the mesh walls and detect open
space even though the mesh is actually an obstacle to the robot, leading to collisions that
in turn precipitated faults requiring operator intervention. Cliff detection thresholds were
rather conservative during the experiments to avoid any false positives which resulted in
two possible cliff falls avoided by operator intervention. The remaining 6 behavior failures
occurred during initial stair transitions. These could be avoided by more extensive sensor
integration which is out of the scope of this work.

In addition, there were 21 robot faults. The majority of these arose from a leg failing
to respond (8 times) and from network communication issues (9 times). The former issue
was caused by known power distribution issues. It was partially addressed in the midst of
experimentation and it is expected to be fully resolved in very near future. Additionally, there
were 3 LIDAR failures each of which happened due to overheating. These failures resulted
in low quality readings which were addressable via power cycling the LIDAR. In the future
these failures can be fully avoided through simple heat dissipation solutions. Lastly, there
was a single IMU failure due to a loose USB cable preventing the robot from detecting the
end of the stairs.

To summarize, the autonomous multi-floor ascent behavior resulted in the robot climbing
a total of 731 stairs in 67 flights. Over 5 hours of testing, it encountered only 12 behavioral
faults. Moreover, the mechanical competency of the legged platform overcame several
incidents on almost all stairwells, such as legs hitting a wall or the robot engaging the
stairwell at a bad angle. These incidents could otherwise be considered faults as they would
require human intervention.

5. Conclusion
This paper presents an autonomous behavior, autonomous multi-flight stairwell ascent,
composed of several sensorimotor and control loops stitched together via perceptually
triggered transitions, loosely following the formal notion of sequential composition [5].
This behavior is not designed to be efficient or optimal but rather to exploit limited
sensory availability in combination with the mechanical competence of the underlying
platform. Extensive experimentation demonstrates its empirical robustness, which relies on
the underlying mechanical competency of the physical platform.

Similar to [2], this behavior can become a part of a multi-layer navigation system, where
the high level authority can start this as a reactive layer behavior that can take the robot
autonomously from floor A to floor B, without the need of a global planner carefully devising
policies every step of the way. To better facilitate this vision, there are several modest
improvements that could be pursued as the next step. The stair climbing behavior can be
endowed with descent capability (as in [37] via [38]), as well more deliberative obstacle
avoidance (as in [39]). Lastly, this approach to task encoding and execution can be combined
with the perceptual capabilities developed in [27] for faster landing exploration.
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