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Abstract

We ask when additional data collection by a monopolist to engage in price discrimi-
nation monotonically increases or decreases weighted surplus. To answer this question,
we develop a model to study endogenous market segmentation subject to residual un-
certainty. We give a complete characterization of when data collection is good or bad
for surplus, which consists of a reduction of the problem to one with only two demand
curves, and a condition for the two-demand-curves case that highlights three distinct ef-
fects of information on welfare. These results provide insights into when data collection
and usage for price discrimination should be allowed.
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1 Introduction

The rise of big data technologies, allowing firms to collect detailed consumer data to estimate
their willingness to pay, has reignited the longstanding debate on the welfare implications
of price discrimination. The prevalence of these practices has raised concerns among policy-
makers about big tech’s exploitation of consumer data. Quoting a letter that followed a senate
hearing on May 2, 2024:

As more consumers shop online, large tech platforms have access to vast stores
of personal data [. . . ] that can be exploited by corporations to set prices based on
the time of day, location, or even the electronic device used by a consumer.1

The Federal Trade Commission also recently issued an order seeking information from several
companies about their “segmentation solutions” that categorize consumers based on location,
demographics, and credit history and set different prices for the same good or service.2

A significant difficulty in regulating data collection practices is that it is close to impossible
to perfectly monitor and control how firms use consumer data, which makes highly targeted
regulation impractical. Often the relevant question is if data collection should be permitted,
without knowing how much information the firm already has nor how much additional in-
formation it might be able to collect. It is clear, however, that if additional consumer data
collection is guaranteed to be beneficial (harmful) regardless of the firm’s existing or addi-
tional information, the it should (should not) be permitted. As a first step towards informed
policy design, we seek to characterize when such guarantees can be provided.

To answer this question, we develop a model to study endogenous market segmentation
by a monopolist subject to residual uncertainty. There is a given set of consumer types each
represented by a downward-sloping demand curve specifying the distribution of consumers’
valuations of that type. The seller has access to some information structure that maps types to
signal realizations, allowing her to segment the market and charge a profit-maximizing price
for each segment. Types in our setting represent everything that is possibly knowable, e.g.,
a complete profile of consumer characteristics, and a segmentation reflects what the seller
actually knows, e.g., perhaps only consumer locations. The heterogeneity of values of con-
sumers of the same type, represented by the downward-sloping demand curve, is residual
uncertainty that cannot be resolved even if the seller perfectly observes types. This resid-
ual uncertainty reflects the practical limitations, legal and technological, that sellers face in
perfectly predicting individual willingness to pay.

Our model bridges the classical and modern approaches to price discrimination. The clas-
sical approach to this problem, pioneered by Pigou (1920)’s foundational work, compares only
the two extreme cases where the seller is either fully informed or fully uninformed of the

1See the hearing’s follow-up letter to Amazon for details.
2See the order for details.
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types. The modern approach to this problem, pioneered by the seminal work by Bergemann
et al. (2015), studies endogenous market segmentation in a setting where the seller’s has ac-
cess to signals about consumer values. In their setting, all consumer values can be perfectly
learned, which may overstate the seller’s ability to extract surplus in scenarios with con-
straints on market segmentation. Our framework merges these two approaches and allows
us to study endogenous market segmentation that is subject to residual uncertainty.

Within this framework, we examine how additional information impacts welfare through
a pair of opposing properties: “monotonically bad” and “monotonically good” information.
Information is “monotonically bad” if every refinement of any segmentation reduces weighted
surplus — a convex combination of consumer and producer surplus. Conversely, information
is “monotonically good” if weighted surplus is higher for any refinement. We refer to these
two properties as surplus-monotonicity properties.

Our main result characterizes each surplus-monotonicity property and has two parts. The
first part of the result reduces the problem, for an unrestricted set of demand curves, to one
with only two demand curves. It says that surplus-monotonicity holds if and only if three con-
ditions are satisfied. First, the demand curves cannot be too far apart in the sense that the opti-
mal monopoly price of each of them is in the interior of any other’s domain of prices. Second,
the set of all demand curves is decomposable into at most two basis demand curves. Third, the
two basis demand curves satisfy the surplus-monotonicity condition themselves. Given the
reduction in the first part of the result, the second part then identifies a closed-form expression
that characterizes when a given pair of demand curves satisfies surplus-monotonicity.

As an application of our result, we study a family of demand curves constructed from addi-
tive andmultiplicative shifts of a single initial demand, and show that the surplus-monotonicity
characterization simplifies considerably. This simplified characterization implies that if the
initial demand curve has a log-concave density function, information is monotonically bad
not only for consumer but also for total surplus. This result confirms and generalizes results
from the classical approach to price discrimination (Cowan, 2007; Aguirre et al., 2010), and in
particular the seminal work of Pigou (1920) showing that price discrimination reduces total
and consumer surplus if demand curves are linear. We also use this characterization to illus-
trate how information can have opposing effects on total and consumer surplus, increasing
the former but decreasing the latter.

In another application, we relate our results to the finding of Bergemann et al. (2015) that
for a family of unit-demand curves, information is neither monotonically good nor bad. Our
analysis does not apply directly to their setting because it relies on the assumption that each
demand curve is downward sloping with a concave revenue function, which is violated by
the unit-demand curves considered in their setting. However, we show that as we approach
unit-demand curves in a way that satisfies our assumption, then regardless of how we do so,
information is neither monotonically good nor bad, showing the robustness of the findings of
Bergemann et al. (2015) that study the limit case.
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We further study the implications and the interpretation of the formula that characterizes
surplus-monotonicity for two demand curves. As an implication, we study two demand curves
with constant elasticity of substitution. We show information is monotonically bad for total
surplus exactly when the two elasticities are not too far apart.

The interpretation of the formula that characterizes surplus-monotonicity for two demand
curves is that it aggregates and highlights three distinct effects of information. To understand
what these three effects are, consider an example. Suppose there are two types, type 1 and
type 2, half the consumers have type 1, and the other half have type 2. Suppose without
loss of generality that, if the seller could perfectly price discriminate based on the type, she
would choose a higher price for type 2 consumers. Without any information, the seller offers
a uniform price p to all consumers.

Now consider a segmentation with two segments that partially separates the two types in
a way that the first segment contains 2

3
of type 1 consumers and 1

3
of type 2 consumers, and

the second segment contains the remaining 1
3
of type 1 consumers and 2

3
of type 2 consumers.

The seller lowers the price to some p1 < p for the first segment, and increases the price to
some p2 > p for the second segment. Table 1 shows, for each type and each price, the fraction
of consumers of that type that face that price, before and after information is provided.

p1 p p2

Before
Type 1 0 1 0

Type 2 0 1 0

After
Type 1 2

3
0 1

3

Type 2 1
3

0 2
3

Table 1: The fraction of consumers of each type facing each price before and after information
is provided.

The three effects of information are reflected in the table. The first effect is thewithin-type
price change effect: For each type, information disperses prices, with some consumers facing
a price drop and some consumers facing a price increase. The second effect is the cross-types
price change effect: The price drop applies asymmetrically, to more type 1 consumers than
type 2 ones. The third effect is the price curvature effect: The size of the price drop might not
be equal to the size of the price increase. The larger the price drop is compared to the price
increase, the larger the positive effect of providing information becomes.

The power of the expression that characterizes surplus-monotonicity for two demand
curves is that it gives a single formula to aggregate the overall effect of information. But
it can also be used to give easy-to-check sufficient conditions for surplus-monotonicity: If
each of the three effects is positive (negative), then the overall effect is positive (negative) and
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information is monotonically good (bad). We relate properties of the demand curves to the
sign of each effect: The within-type price change effect is positive (negative) when surplus is
a convex (concave) function of price, the cross-type price change effect is positive (negative)
when the more elastic demand curve has a higher (lower) level then the less elastic one, and
the price curvature effect is positive (negative) when the more elastic demand curve has a
more (less) steep marginal revenue curve. We construct a parametric example where each of
the effects is positive for some parameters, implying information is monotonically good, and
negative for some parameters, implying information is monotonically bad.

The rest of the paper is organized as follows. Section 1.1 reviews the literature. Section 2
describes our model. Section 3 defines our surplus-monotonicity properties and states the
main result that gives the reduction to two demand curves and the characterization for two
demand curves. Section 4 proves and interprets the two-demands part of the main result.
Section 5 explains the reduction part of the main result, providing details of the methodology.

1.1 Related Literature

First and foremost, our work relates to the large literature on monopolistic third-degree price
discrimination.3 As discussed earlier, the classical approach to this problem compares uniform
pricing to full segmentation of a given set of demand curves. These papers typically either
focus on studying total surplus (Varian, 1985; Aguirre et al., 2010; Cowan, 2016) or consumer
surplus (Cowan, 2012; Aguirre and Cowan, 2015).4 Our general approach allows us to charac-
terize surplus-monotonicity for anyweighted combination of consumer and producer surplus,
including as special cases consumer and total surplus. Additionally, our framework allows us
to study intermediate forms of price discrimination where the types are partially separated.
Most importantly, whereas the papers in the literature give sufficient conditions for (weighted)
surplus to rise or fall, we give a complete characterization of our surplus-monotonicity con-
ditions.

A growing literature focuses on the modern approach to monopolistic third-degree price
discrimination, studying all possible segmentations, pioneered by Bergemann et al. (2015).5 A
common focus is to identify all possible pairs of consumer and producer surplus (Bergemann
et al., 2015; Kartik and Zhong, 2023). Yang (2022) studies how a profit-maximizing inter-
mediary sells segmentations to a producer for price discrimination. Haghpanah and Siegel
(2022), Haghpanah and Siegel (2023), Asseyer (2024), and Bergemann et al. (2024) study a

3Oligopolistic third-degree price discrimination is studied in a literature that is more distant to ours, such
as Holmes (1989) and Elliott et al. (2021).

4Other objectives have also been considered. Several papers focus directly on total output (Robinson, 1969;
Schmalensee, 1981) because it is shown (for example, in Varian, 1985) that a necessary condition for price discrim-
ination to increase total surplus is that it increases total output. The effect of price discrimination on producer
surplus is clear: It increases profits. Bergemann et al. (2022) quantify how much price discrimination increases a
seller’s profit.

5A literature that is more remote to our work, starting from Roesler and Szentes (2017), studies all informa-
tion structures when the buyer receives information about her type.
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multi-product seller, combining second- and third-degree price discrimination. Our concep-
tual contribution to this literature is to introduce a framework in which segmentations are
constrained by some residual uncertainty.

Methodologically, our work builds on the recent literature that uses duality in Bayesian
persuasion (Kolotilin, 2018; Dworczak andMartini, 2019; Dworczak andKolotilin, 2024; Kolotilin
et al., 2024).6 In particular, we convert our surplus-monotonicity properties to a class of
Bayesian-persuasion problems that seek to identify when no-information maximizes or mini-
mizesweighted surplus for all prior distributions over the given set of demand curves. Because
the seller’s profit-maximization problem in our setting is identified by its first-order condition,
we take the strong-duality results of Kolotilin (2018) and Kolotilin et al. (2024) off-the-shelf
to solve these Bayesian persuasion problem. We then show that for no-information to be a
solution to the entire class of Bayesian-persuasion problems, our separability condition must
hold. The main technical result in Kolotilin et al. (2024) gives a sufficient optimality condi-
tion, the “twist” condition, that is reminiscent of, but different than, our separability condition.
Our characterization identifies an additional condition on two demands capturing the three
effects of information, which has no counter-part in Kolotilin et al. (2024), that together give
necessary and sufficient conditions for our surplus-monotonicity properties.

2 Model

A single seller sells a good, whose constant marginal cost of production is normalized to zero,
to a unit mass of unit-demand consumers. The set of (consumer) types Θ is a compact subset
of a linear normed vector space (which trivially holds if Θ is finite). The types are distributed
according to a full-support prior distribution µ0 ∈ ∆Θ. There is a demand curve associated
with each type θ ∈ Θ where D(p, θ) specifies the quantity demanded by type θ consumers
when the good is sold at price p. This demand can be thought of as representing the measure
of type θ consumers whose willingness to pay for the good is at least p.7 We denote the family
of demand curves by D = {D(p, θ)}θ∈Θ. The primitive of our model is a tuple (D, µ0), that
is, the family of demand curves and the prior distribution over them.

We make the following assumption on the demand curves throughout the paper.

Assumption 1. For all types θ ∈ Θ, the demand curve D(·, θ) : R+ → R+ satisfies the
following properties:

6See also Immorlica et al. (2022), Smolin and Yamashita (2022), Saeedi and Shourideh (2024), and Saeedi et
al. (2024).

7An alternative interpretation of our model is that the seller faces a single consumer with a random type
drawn from µ. The consumer has multi-unit demands with non-linear utility for quantity and her utility-
maximization problem for a given price induces a demand curve for each type. One can also combine the
two interpretations and think about each demand as representing a population of consumers with multi-unit
demands.
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1. There exists an interval I(θ) =
[
p(θ), p(θ)

]
, 0 ≤ p(θ) < p(θ) ≤ ∞, such that D(p, θ) is

differentiable and strictly decreasing in p, Dp(p, θ) < 0, for values p ∈ I(θ).

2. For values of p < p(θ), D(p, θ) = D(p(θ), θ) and for values of p > p(θ), D(p, θ) = 0.

3. For values of p ∈ I(θ), the revenue function R(p, θ) = pD(p, θ) is strictly concave.8

4. There exists p∗(θ) ∈ I(θ) such that Rp(p
∗(θ), θ) = 0.

The above assumption implies that marginal revenueRp(p, θ) is well defined and decreas-
ing for all values of p, and also that p∗(θ) is the optimal price set by the seller when the seller
faces only type θ consumers.

The demand curve of a population of unit-demand consumers all with the samewillingness-
to-pay θ, used in Bergemann et al. (2015), is represented by a step function which violates
Assumption 1. Later we show how our analysis confirms their results by studying demand
curves that pointwise approach step functions while maintaining Assumption 1.

A market µ ∈ ∆Θ is a probability distribution over types. A segmentation σ ∈ ∆∆Θ is a
Bayes-plausible distribution over markets, that is, Eσ[µ] = µ0, and S(µ0) denotes the set of all
segmentations. The interpretation is that the seller has access to some information structure
that reveals a signal about the type of the buyer. The seller then forms a posterior µ in the
support of σ and chooses a profit-maximizing price for that posterior. The seller uses a pricing
rule p∗ : ∆Θ → R+ that specifies an optimal price for every possible posterior, breaking ties
if necessary,

p∗(µ) ∈ argmax
p∈R+

∫
Θ

R(p, θ) dµ(θ),∀µ ∈ ∆Θ.

We study the weighted surplus that each segmentation induces. For this, let

CS(p, θ) =

∫ p(θ)

p

D(z, θ) dz

denote the surplus of type θ consumers from facing price p. The α-surplus of price p for type
θ consumers is a weighted average of consumer surplus and producer surplus with weights
α ∈ (0, 1] and 1− α,

V α(p, θ) := α · CS(p, θ) + (1− α) ·R(p, θ).

The special case of α = 1 corresponds to consumer surplus and the special case of α = 1
2

8This assumption allows us to replace the seller’s profit-maximization problem by its first-order condition.
Kolotilin et al. (2024) show that the first-order approach remains valid under a slight relaxation of strict concavity,
roughly assuming concavity up to a normalization, so our results go through with this weaker assumption. We
state our assumption with strict concavity because it is more straightforward and is commonly used in the
literature.
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corresponds to total surplus.9 The α-surplus of a segmentation is the expectation of the α-
surplus of all price and type pairs in the segmentation, given by

V α(σ) :=

∫
∆Θ

∫
Θ

V α(p∗(µ), θ) dµ(θ) dσ(µ).

Our main goal in the paper is to characterize families of demands D for which changes in in-
formation, i.e., a refinement of the market segmentation σ, either always decreases or always
increases the surplus, V α(σ), as formalized next.

3 Main Result: Surplus-Monotonicity Characterization

Our main result characterizes when allowing the monopolist to use consumer data, to refine
segmentation and price discriminate accordingly, monotonically affects (weighted) surplus.
In this section we state this main result and briefly explain what it says. The rest of the paper
interprets the theorem, proves it, and provides several examples.

Consider two segmentations σ and σ′. We say σ a mean-preserving spread of σ′, and write

σ ⪰
MPS

σ′,

if there exists a joint distribution over pairs of markets ν ∈ ∆(∆Θ × ∆Θ) that induces
marginals σ and σ′, i.e., ν(·,∆Θ) = σ(·) and ν(∆Θ, ·) = σ′(·), and random markets (µ, µ′)

drawn from ν satisfy E[µ|µ′] = µ′ almost surely. We call σ a “refinement” of σ′ because it can
be obtained by splitting each market µ′ in segmentation σ′ into possibly multiple markets in a
way that satisfies Bayes-plausibility. If σ is a mean-preserving spread of σ′, then we can garble
the signals of the information structure that leads to σ to obtain σ′ (as shown by Blackwell,
1953), so the information structure that corresponds to σ Blackwell-dominates that of σ′. The
full-information segmentation, in which each market µ in the support of the segmentation has
only a single type in its support, is finer than any segmentation, and any segmentation is finer
than the no-information segmentation that assigns probability 1 to the prior market µ0.

Given this definition of refinement, we define our main notion of surplus-monotonicity:

Definition 1 (Surplus-monotonicity in information.). Consider a given (D, µ0).

1. Information is monotonically bad for α-surplus, “α-IMB holds,” if

V α(σ) ≤ V α(σ′), ∀σ, σ′ ∈ S(µ0) such that σ ⪰
MPS

σ′.

9We assume α > 0 because our properties of interest are trivial if the entire weight is on producer surplus
(we explain why after defining the properties).
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2. Information is monotonically good for α-surplus, “α-IMG holds,” if

V α(σ) ≥ V α(σ′), ∀σ, σ′ ∈ S(µ0) such that σ ⪰
MPS

σ′.

When distinguishing the two properties orα is unimportant, we refer to them as “surplus-monotonicity”
properties.

The two surplus-monotonicity properties are related to the question of which segmen-
tation maximizes the weighted surplus over all segmentations, that is, which segmentation
solves

max
σ∈S(µ0)

V α(σ).

Under α-IMB (α-IMG), the no-information segmentation (respectively, the full-information
segmentation) solves the above problem because it is less (more) fine than any other seg-
mentation. But α-IMB (α-IMG) is a stronger property than optimality of the no-information
(full-information) segmentation because it requires that any refinement of any segmentation
leads to a lower (higher) weighted surplus.

As stated in the introduction, our motivation for studying these properties is to shed light
on situations where a regulator cannot fully monitor or control a seller’s information. The
seller might have already collected some information and the regulator might not even know
howmuch additional information the seller might be able to collect. The regulator only gets to
decide whether or not to allow the seller to collect and use additional information for price dis-
crimination. A cautious regulator, who wants to provide information only if it is guaranteed
to improve its objective, provides information whenever information is monotonically good.
A less cautious regulator, who wants to provide information only if it is plausible that doing
so improves its objective, provides information whenever information is not monotonically
bad.

Ourmain result completely characterizeswhen the surplus-monotonicity properties hold.10

The result starts by a simplifying step: It shows that the surplus-monotonicity properties are
prior-free, allowing us to drop the prior distribution through the rest of the statement. For-
mally, prior-freeness means that for any two distributions µ, µ′, α-IMG (α-IMB) holds for
(D, µ) if and only if α-IMG (α-IMB) holds for (D, µ′).

The main content of the result are statements (i) and (ii). Statement (i) gives a reduction
of the problem from any number of demand curves to binary families of demand curves.
It gives conditions under which we only need to verify surplus-monotonicity for the binary
family {D(·, θ)}θ∈{θ1,θ2} that consists of the two demand curvewith the lowest and the highest

10Blackwell (1953) implies that information is monotonically good for producer surplus, which is the reason
we focus on α > 0 throughout the paper.
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optimal monopoly price, p∗(θ1) = min
θ

p∗(θ) and p∗(θ2) = max
θ

p∗(θ) (ties can be broken
arbitrarily). Statement (ii) provides the characterization for binary families.

A condition used in the characterization is the partial inclusion condition, which means
p(θ′) ≤ p∗(θ) ≤ p̄(θ′) for all θ, θ′ ∈ Θ. We call this the partial inclusion condition because it
says that at the optimal price for type θ, some but not all of the demand of type θ′ consumers
will be served.

We now state the main result and then go over the two main statements of the theorem
in more detail.

Theorem 1 (Surplus-Monotonicity). The surplus-monotonicity properties are prior-free, and
we can therefore refer to them as properties of D. Let θ1, θ2 ∈ Θ be the two types with the lowest
and the highest optimal monopoly prices in D. The following two statements hold:

(i) α-IMB (α-IMG) holds for D if and only if

(A) there is partial inclusion, and

(B) there exist two function f1, f2 : Θ → R+ such that

D(p, θ) = f1(θ)D(p, θ1) + f2(θ)D(p, θ2)

for all θ and p ∈ [p∗(θ1), p
∗(θ2)], and

(C) α-IMB (α-IMG) holds for the binary family {D(·, θ)}θ∈{θ1,θ2}.

(ii) α-IMB (α-IMG) holds for the binary family {D(·, θ)}θ∈{θ1,θ2} if and only if there is partial
inclusion and

V α(p, θ2)− V α(p, θ1) +
−Rp(p,θ1)

Rp(p,θ2)
V α
p (p, θ2) + V α

p (p, θ1)

−Rp(p,θ1)

Rp(p,θ2)
Rpp(p, θ2) +Rpp(p, θ1)

(Rp(p, θ1)−Rp(p, θ2)) (1)

is decreasing (increasing) on [p∗(θ1), p
∗(θ2)].

Let us now explain in more detail what the theorem says. Consider statement (i). Condi-
tion (A) of the statement, partial inclusion, says that the monopoly price p∗(θ) for any type
θ cannot be less than the lowest price p(θ′) in the support of another type θ′ or higher than
the largest price p̄(θ′) of type θ′. Roughly speaking, this partial-inclusion condition means
that the demand curves cannot be too far from each other. For example, with linear demands
D(p, θ) = θ − p where and p(θ) = 0, p̄(θ) = θ, the optimal monopoly price for each type is
p∗(θ) = θ

2
, and the partial-inclusion condition requires that

θ

2
≤ θ′,
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for every two types θ, θ′. That is, the set of all possible values of θ must be in some interval
[c, 2c] for some constant c ≥ 0. Notice that this partial-inclusion condition must hold regard-
less of what α is or which one of the surplus-monotonicity properties we are characterizing.

Condition (B) of statement (i) says that all demand curves in the family must be decom-
posable into a linear combination of at most two “base” demand curvesD(·, θ1), D(·, θ2)with
possibly varying weights, where these base demand curves are those with the lowest and
the highest optimal monopoly price. The only possible source of heterogeneity among the
demand curves is the pair of weights f1(θ) and f2(θ), so heterogeneity must be reducible to
a two-dimensional sufficient statistic. Notice that this condition must also hold regardless of
what the weight is or which one of the surplus-monotonicity properties we are characterizing.

Condition (C) of statement (i) puts additional constraints on the base demand curves that
we can use for the decomposition. The binary family of demand curves that consists only of
the two base demand curves D(·, θ1), D(·, θ2) must itself satisfy the corresponding surplus-
monotonicity property. This condition therefore reduces the problem of characterizing the
surplus-monotonicity properties for an arbitrary class of distributions D to characterizing
them with binary distributions.

Statement (ii) of the theorem characterizes the surplus-monotonicity properties for a bi-
nary family of distributions in terms of partial inclusion and monotonicity of an expression
that depends on α. The direction of the monotonicity condition depends on which one of the
surplus-monotonicity properties we are characterizing.

The entirety of Section 4 is dedicated to understanding the monotonicity condition in
Equation (1), but for now, note that the expression can be written in a way that is a bit less
compact but clarifies how α-IMB (α-IMG) becomes easier to satisfy as α gets larger (smaller).
In particular, substituting the definition of V α, the expression from Proposition 1 is equivalent
to

α

[
CS(p, θ2)− CS(p, θ1) +

−Rp(p,θ1)

Rp(p,θ2)
CSp(p, θ2) + CSp(p, θ1)

−Rp(p,θ1)

Rp(p,θ2)
Rpp(p, θ2) +Rpp(p, θ1)

(Rp(p, θ2)−Rp(p, θ1))

]
+(1− α) [R(p, θ2)−R(p, θ1)] .

The above expression is a convex combination of two functions with weights α and 1 − α.
The second functionR(p, θ2)−R(p, θ1) is increasing over (p∗(θ1), p∗(θ2)) becauseR(p, θ2) is
increasing for any price below the optimal monopoly price p∗(θ2) for type θ2 and R(p, θ1) is
decreasing for any price above the optimal monopoly price p∗(θ1) for type θ1. Now suppose
the convex combination is decreasing, so α-IMB holds, and consider a larger weight α′ ≥ α.
Because the convex combination is decreasing but the second term is increasing, the first term
must be decreasing. So if we replace α with the larger α′, we are increasing the weight of the
decreasing function and decreasing the weight of the increasing function, so the resulting
combination must be decreasing as well, implying information is monotonically bad for α′.
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A similar argument applies for the case of monotonically good information.11 We summarize
this monotonicity property in the following corollary.12

Corollary 1. If α-IMB (α-IMG) holds, then α′-IMB (α′-IMG) holds for any α′ ≥ α (α′ ≤ α).

Before diving deeper into each of the two main statements of Theorem 1, in the next two
subsections we provide two applications of this result. The first application enables us to
relate our result to the literature that only compares the no-information segmentation to the
full-information segmentation (Pigou, 1920; Cowan, 2007; Aguirre et al., 2010). The second
application enables us to relate to seminal work of Bergemann et al. (2015).

3.1 Demand Curve Family {aD + b}

Consider the family of demand curves consisting of additive and multiplicative shifts of some
base demand curve. This family has two features that makes it particularly amenable to ap-
plying Theorem 1. First, it satisfies the separability condition in statement (i) of Theorem 1
because we can write any demand curve in the family as a linear combination (with positive
weights) of the two demands in the family that have the lowest and the highest monopoly
price. The characterization of the surplus-monotonicity properties therefore reduces to ver-
ifying whether the monotonicity condition of the statement (ii) of Theorem 1 holds for the
binary family of demand curves that contains only those demands in the family that have the
lowest and the highest monopoly price. Second, this monotonicity condition in statement (ii)
of Theorem 1 significantly simplifies.

Corollary 2. Consider the family of demand curves

D =
{
a(θ)D(p) + b(θ)

}
θ

for some demand curve D. Then α-IMB (α-IMG) holds if and only if

(2α− 1)p+ α(
pD′(p)

R′′(p)
) (2)

is increasing (decreasing) over [min
θ

p∗(θ),max
θ

p∗(θ)] and there is partial inclusion.13

First, note that as α approaches 0, the expression in Equation (2) approaches−p, which is
a decreasing function. This indicates that information is monotonically good for small enough
values of α, consistent with information being monotonically good for the seller.

11Suppose the convex combination is increasing, so α-IMG holds, and consider α′ ≤ α. Replacing α with α′

increases the weight of the increasing function in the convex combination, so the resulting combination with
weights α′, 1− α′ is also increasing.

12This result can also be directly shown using Blackwell (1953)’s characterization without using ours. We
call it a corollary as a “sanity check” of our characterization and because of its usefulness later.

13We denote the first and second derivative ofR(p) byR′(p) andR′′(p), and similarlyD′(p) is the derivative
of D(p).
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Second, consider the case of total surplus, α = 1
2
. Information is monotonically bad (good)

for total surplus if and only if

pD′(p)

R′′(p)

is increasing (decreasing). This condition can be written in terms of log-concavity of the
density function of the distribution of values that generates demandD. That is, letting, f(p) =
−D′(p) ≥ 0, the condition is that p2f(p) is log-concave (log-convex).14 For instance, for
D = 1 − pc for c > 0, p2f(p) is log-concave and information is monotonically bad for total
surplus. A sufficient condition for log-concavity of p2f(p) is log-concavity of the density
function, in which case it follows from Corollary 1 that information is monotonically bad for
consumer surplus as well.

It is useful to compare Corollary 2 to existing results. Cowan (2007) and Aguirre et al.
(2010) also study the family of demand curves of the form a(D + b) and show that if pD′(p)

R′′(p)
is

increasing, then total surplus is lower under full segmentation than under uniform pricing.15

Our Corollary 2 generalizes their result in several ways: It shows information ismonotonically
bad under this condition, applies to any weighted combination of consumer and producer sur-
plus, and most importantly gives a tight characterization. In fact, whereas these papers only
give sufficient conditions for total surplus to decrease, we use our result to give an example
below that covers all possible cases for how information might (monotonically) affect total
and consumer surplus.

If information affects total and consumer surplus monotonically, there are three possible
cases for what the effects might be: Information is good for both, bad for both, or good for
total surplus but bad for consumer surplus (information cannot be good for consumer surplus
but bad for total surplus). In the example below, each case is covered for some parameters.
Detailed calculations are in Online Appendix B.1.

Example 1 (Impact of Information on Total and Consumer Surplus: Three Cases).
Suppose the family of demands D satisfies partial inclusion and the density function is given by

f(p) =
c1(c2 + c3p)

c4

p2
.

The revenue curve is strictly concave whenever c4 ̸= 0 and c3 and c4 have the same sign. We
show, as summarized in Figure 1, that information is monotonically good for total surplus but
bad for consumer surplus if c4 < −1, good for both if −1 ≤ c4 ≤ 0, and bad for both if c4 > 0.

14Because −D′(p) = f(p), we have Rpp(p) = −2f(p) − pf ′(p). Now notice that pD′(p)
R′′(p) is increasing

(decreasing) whenever R′′(p)
pD′(p) = 2

p + f ′(p)
f(p) = d

dp (log p
2f(p)) is decreasing (increasing), that is, when p2f(p) is

log-concave (log-convex).
15Aguirre et al. (2010) give several examples where this condition holds, including exponential, probits and

logits, and demand functions derived from log-normal distributions.
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c4
0−1

Bad for both TS and CSGood for TS but bad for CS Good for both TS and CS

Figure 1: The three possible cases for how information affects total surplus (TS) and consumer
surplus (CS) in Example 1.

A convenient feature of Example 1 is that the expression in Equation (2) becomes linear,(
α(2 +

1

c4
)− 1

)
p+

αc2
c3c4

.

Thus, information is monotonically bad (good) whenever the multiplier of p in this expression
is positive (negative), that is,

α(2 +
1

c4
)− 1 ≥ (≤) 0.

When −1 ≤ c4 ≤ 0, the multiplier is negative for all α and therefore information is mono-
tonically good regardless of α. Otherwise, that is when c4 is either above 0 or below−1, there
exists a threshold α̂ ∈ (0, 1) such that information is monotonically bad when α is above the
threshold, and is monotonically good when α is below the threshold. When c4 < −1, this
threshold is between 1

2
and 1, so information is good for total surplus but bad for consumer

surplus. When c4 > 0, this threshold is less than 1
2
, so information is bad for both total and

consumer surplus.
A special case of Example 1 isD(p) = d1+d2p

d3 .16 In this case, α̂ = d3+1
2d3+3

< 1
2
. Therefore

information is monotonically bad for total and consumer surplus. Linear demand belongs
to this family and arises when d3 = 1. In this case, α̂ = 0.4: Information increases α-
surplus only for α < 0.4, i.e. when producer surplus is over-weighted relative to consumer
surplus. This finding confirms and generalizes the foundational result of Pigou (1920) that
price discrimination reduces total and consumer surplus if demand curves are linear.

3.2 Approaching Demand Curve Family of Step Functions

Because the demand curves in our setting must be downward-sloping over a non-empty in-
terval, they cannot be step functions, considered in Bergemann et al. (2015). Here we study
what happens when we approach step functions within our framework. We use this analysis
to discuss how our findings align with those of Bergemann et al. (2015).

16For D to be decreasing and have a strictly concave revenue curve, we need d3 > −1 and d2 and d3 have
opposite signs. To see how D(p) = d1 + d2p

d3 has a density function of the form f(p) = c1(c2+c3p)
c4

p2 , notice
that the density associated with D is −d2d3p

d3−1, so we can let c1 = −d2d3, c2 = 0, c3 = 1, c4 = d3 + 1.
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To do so, let us start with an example.

Example 2 (Demand Curves Approaching Unit Demand). Consider two demand curves
D(p, θi) = (θi − p)c with supports [0, θi] for i ∈ {1, 2}, where 0 ≤ θ1 < θ2 and c ∈ (0, 1].
1-IMB holds, i.e. information is monotonically bad for consumer surplus, if and only if there is
partial inclusion.

Details are in Online Appendix B.2. As c approaches 0, each demand curve converges to
a step function that is positive and constant at any price p < θi but jumps to zero at p > θi.
This limit step function represents the demand from a population of consumers all with the
same value θi for the product. Bergemann et al. (2015) consider these demand curves and
show that as long as the prior probability of step function θ2 is high enough, then there exists
some segmentation that increases consumer surplus relative to no segmentation. This result
might appear in contrast with our finding that information is monotonically bad regardless
of the prior distribution.

The key observation is that surplus-monotonicity of information requires partial inclusion.
Partial inclusion is violated for small c, which means information is not monotonically bad
when the demand curves become close enough to step functions. This is because the optimal
monopoly price for each demand curve is θi

1+c
, so the partial-inclusion condition becomes

θ2
1+c

≤ θ1, which is violated for small c because θ1 < θ2.
But what if we approach step functions some other way? Based on the above discussion,

it might appear that we might be able to “fix” the partial-inclusion violation by extending the
supports of the demand curves and adding a vanishingly small downward sloping demand
curve, if necessary, to each. However, doing so necessarily violates the concavity of the rev-
enue curves over the extended supports, and more generally the validity of the first-order
approach upon which our analysis rests. In other words, to approach step functions while
maintaining concavity of revenue, the partial inclusion condition must be violated, and there-
fore neither surplus-monotonicity property holds, consistent with the findings of Bergemann
et al. (2015) in the limit case.17

To see why, suppose we approach two step functions with steps at θ1 < θ2 in a way that
respects partial inclusion, as shown in Figure 2, (a). Because the optimal price for the second
step function approaches θ2, to ensure partial inclusion, the support of the first demand curve
must reach θ2 as well. Now consider the revenue curve associated with a market µ. As shown
in Figure 2, (b), this revenue curve has two local maxima and a local minimum. In particular,
not only is this revenue curve not concave, but also it violates the weaker aggregate single-

17Even though the findings of Bergemann et al. (2015) are not stated in terms of surplus-monotonicity, they
imply that both surplus-monotonicity properties are violated. In particular, any segmentation in which some
market has price θ2 can be refined in a way that increases consumer surplus and therefore weighted surplus.
And any segmentation in which some market has price θ1 can be refined in a way that reduces consumer surplus
while keeping producer surplus fixed, reducing weighted surplus for any weight.
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price

demand

θ1 θ2

(a)
price

revenue

θ1 θ2

µ

(b)

Figure 2: Approaching step functions with partial inclusion violates concavity of revenue.

crossing property that is needed to ensure the validity of the first-order approach.18 This
discussion is summarized in the following corollary.

Corollary 3. Consider a family of demand curves Dϵ that uniformly converges to a family of
unit-demand curves as ϵ goes to zero while satisfying our Assumption 1 for every ϵ > 0. Then,
for small enough ϵ, the partial-inclusion condition is violated and therefore information is neither
monotonically good nor bad.

To summarize, approaching step functions within our framework, i.e., with concave rev-
enue curves, necessarily leads to a violation of the partial-inclusion condition, meaning that
neither surplus-monotonicity condition holds. This is in line with the findings of Bergemann
et al. (2015) in the limit case and shows the robustness of their findings.

4 Two Demand Curves

In this section and the next one we visit the two statements of Theorem 1 and sketch the proof
of each statement.

This section considers two demand curves, establishing and interpreting statement (ii) of
Theorem 1. In order to focus on themonotonicity expression of the statement, which allows us
to provide intuition about the effects of price discrimination, we assume that there is partial
inclusion. In Section 5 we show that partial inclusion is in fact necessary for both of the
surplus-monotonicity properties. Assuming partial inclusion, the following is a restatement
of statement (ii) of Theorem 1 that is repeated here for convenience.

18This condition, defined in Kolotilin et al. (2024) says that if marginal revenue is zero at some price, it must
be positive for lower prices and negative for higher prices.

16



Proposition 1 (Surplus-Monotonicity with Two Demand Curves). Suppose there is par-
tial inclusion. α-IMB (α-IMG) holds for a binary family D = {D(·, θ)}θ∈{θ1,θ2}, where without
loss of generality p∗(θ1) ≤ p∗(θ2), if and only if

V α(p, θ2)− V α(p, θ1) +
−Rp(p,θ1)

Rp(p,θ2)
V α
p (p, θ2) + V α

p (p, θ1)

−Rp(p,θ1)

Rp(p,θ2)
Rpp(p, θ2) +Rpp(p, θ1)

(Rp(p, θ1)−Rp(p, θ2)) (3)

is decreasing (increasing) on (p∗(θ1), p
∗(θ2)).

Notice that Proposition 1 says that if p∗(θ1) = p∗(θ2) then both surplus-monotonicity
properties hold regardless of what α is because any function is monotone over a degenerate
interval. This makes sense because if the two demands have the same optimal price, then the
seller will optimally choose that same price for any market, so segmentation has no effect
on price and therefore on consumer and producer surplus, and both surplus-monotonicity
properties trivially hold.

Before explaining Proposition 1 in more detail, Let us use it to get tight conditions for
surplus-monotonicity of constant-elasticity demand curves, widely used in macroeconomics
and empirical work for demand estimation.

Example 3 (CES demand: α-IMB). Consider two demand curves D(p, θi) = (c + p)−θi for
i ∈ {1, 2} and θ1 > θ2 > 1 and some constant c > 0. Then 1

2
-IMB holds, i.e., information is

monotonically bad for total surplus, if and only if θ1 ≤ θ2+
1
2
. Under this condition, α-IMB holds

for any α ≥ 1
2
.

These demand curves have elasticities θ1 and θ2.19 Example 3 shows that providing infor-
mation to themonopolist monotonically decreases total surplus exactly when the two demand
elasticities are not too far apart. In other words, unless consumers have widely different elas-
ticities with respect to price, price discrimination is bad for total (and consumer) surplus.
Detailed calculations are in Online Appendix B.3.

As far as we are aware, none of the existing results in the literature applies to this example.
In particular, this example violates the conditions of Aguirre et al. (2010) that give the most
general conditions for price discrimination to decrease total surplus. Namely, their condition
that the demand curve with a lower monopoly price has a higher curvature is “more concave”
than the demand curvewith a highermonopoly price, is violated in this example. Our example
therefore shows that this ranking of curvatures is not necessary for price discrimination to
lower total surplus.

19More precisely, these are the elasticities before costs are normalized to zero. In particular, the demand
curves in our example are the results of normalizing costs to zero of a setting where the demand curves are p−θi

and the marginal cost is c > 0. Demand curve p−θi has a constant elasticity of demand θi.
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4.1 Proof Sketch

It is useful to begin by describing how Proposition 1 is proved. The proof uses the concavi-
fication result of Kamenica and Gentzkow (2011). To state the result, let us simply denote by
µ a market in which the probability of type θ2 is µ. Consider the weighted surplus function
Wα : [0, 1] → R that specifies the expected α-surplus of a market µ,

Wα(µ) = Eθ∼µ[V
α(p∗(µ), θ)],

where p∗(µ) ∈ [p∗(θ1), p
∗(θ2)] is the profit-maximizing price for the market and is uniquely

identified by the first-order condition

E[Rp(p
∗(µ), θ)] = 0.

The concavification result of Kamenica and Gentzkow (2011) implies that information is
monotonically bad for α-surplus if and only if Wα is concave. Indeed, if Wα is concave,
then splitting any market µ′ in the support of a segmentation into multiple markets with
the same mean would only (weakly) decrease weighted surplus. And if Wα is not concave,
that is, if Wα(µ′) is below the concavification of Wα for some market µ′, then we can take
any segmentation with market µ′ in its support and split µ′ into two markets in a way that
increases weighted surplus. A similar argument shows that Information is monotonically
good for α-surplus if and only ifWα is convex.

To see how the concavity (convexity) of Wα relates to the monotonicity condition in
Proposition 1, consider the derivative ofWα with respect to µ,

Wα
µ (µ) = − V α(p∗(µ), θ1) + V α(p∗(µ), θ2) + p∗µ(µ)E[V α

p (p∗(µ), θ)].

The first term is the effect of changing the composition of types, holding the price fixed, and
the second term is the effect of changing the price, holding the composition of types fixed.
The weighted surplus function Wα is concave if and only if its derivative is decreasing. The
expression above contains p∗(µ) and p∗µ(µ), both of which are defined implicitly given the
seller’s profit-maximization condition. In the proof of Proposition 1 we eliminate this implicit
dependence by observing that because p∗(µ) is increasing in µ,Wα

µ is a monotone function of
µ if and only if Wα

µ (µ(p)) is a monotone function of p, where µ(p) is the inverse of the price
function, that is, µ(p∗(µ)) = µ. Indeed, the expression in Equation (3) is exactly the above
expression evaluated at µ(p).

4.2 Interpretation: The Three Effects of Information

To interpret the monotonicity condition, we identify three effects that providing information
has on weighted surplus, and show that Proposition 1 combines these three effects into one
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formula.
For our purposes here to develop intuition, we continuewith keeping p (and its derivatives)

implicitly defined. Let us derive the expression for the second derivative ofWα, which is

Wα
µµ(µ) = (p∗µ(µ))

2 E
[
V α
pp(p

∗(µ), θ)
]

+2p∗µ(µ)
[
V α
p (p∗(µ), θ2)− V α

p (p∗(µ), θ1)
]

+p∗µµ(µ) E
[
V α
p (p∗(µ), θ)

]
. (4)

The above expression highlights that information affects weighted surplus in three ways.
To understand these effects, consider what happens if we take a market µwith optimal price p
and split it into two markets µ1 = µ−δ and µ2 = µ+δ with optimal prices p1 < p < p2, each
with probability a half. Table 2 shows, for each type and each price, the fraction of consumers
of that type that face that price, before and after information is provided.20

p1 p p2

before
θ1 0 1 0

θ2 0 1 0

after
θ1

1
2
(1 + δ

1−µ
) 0 1

2
(1− δ

1−µ
)

θ2
1
2
(1− δ

µ
) 0 1

2
(1 + δ

µ
)

Table 2: The fraction of consumers of each type facing each price before and after information
is provided.

The three effects of information are reflected in Table 2, each represented in one of the
terms in Equation (4).

1. The within-type price change effect. Information disperses prices for each type: Some
consumers face a price drop and some consumers face a price increase. The sign of
this effect depends on how V α is affected by a price dispersion, which depends on the
curvature of V α for each group. If both functions are convex, then this effect is positive,
and if they are both concave, the effect is negative. This effect corresponds to the first
term in Equation (4).

2. The cross-types price change effect. Relatively more type θ1 consumers face a price drop
than do type θ2 consumers. In fact, more than half of type θ1 consumers but less than

20Consider type θ1 consumers. After information is provided, those in µ1 face price p1 and those in µ2 face
price p2, and their measures are 1

2 (1− µ+ δ) and 1
2 (1− µ− δ). So the fraction of type θ1 consumers that face

price p1 is
1
2 (1−µ+δ)

1
2 (1−µ+δ)+ 1

2 (1−µ−δ)
= 1

2 (1 +
δ

1−µ ).
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half of type θ2 consumers face a price drop. In the extreme case of full information, all
type θ1 consumers face a price drop and all type θ2 consumers face a price increase. The
sign of this effect depends on how the marginal effect of changing the price compares
across the two types. This effect corresponds to the second term in Equation (4).

3. The price curvature effect. The size of price drop p − p1 might not be equal to the size
of the price increase p2 − p. The comparison depends on the curvature of the price
function p∗(µ). This effect corresponds to the third term in Equation (4). Notice that
the seller’s profit-maximization condition means that the expected marginal revenue is
zero and therefore

E
[
V α
p (p∗(µ), θ)

]
= αE

[
CSp(p

∗(µ), θ)
]
≤ 0,

and so the sign of this effect only depends on the curvature of the price function. This
effect is positive if p∗(µ) is concave, in which case the price drop is larger than the
price increase, benefiting consumers overall. Similarly, this effect is negative if the price
function is convex, so the price increase is larger than the price drop.

4.3 Sufficient Conditions

The overall effect of information depends on the aggregation of three effects identified above,
and each of the three effects might be positive or negative. However, a sufficient condition for
information to have a positive (negative) effect is that each of the three effects have the positive
(negative) sign. The following corollary formalizes this discussion by directly considering
each term in Equation (4).

Corollary 4. α-IMG (respectively α-IMB) holds if there is partial inclusion and the following
hold over the range of prices (p∗(θ1), p∗(θ2)).

1. The within-type price change effect is positive (negative): V α(p, θ) is convex (concave) for
each type θ ∈ {θ1, θ2}.

2. The cross-types price change effect is positive (negative): V α
p (p, θ2) ≥ (≤)V α

p (p, θ1).

3. The price curvature effect is positive (negative): p∗(µ) is concave (convex). A sufficient
condition for this is Rppp(p, θ) ≤ (≥) 0 and Rpp(p, θ2) ≤ (≥)Rpp(p, θ1).

We next visit IMG and IMB in turn, explaining the sufficient conditions that Corollary 4
gives in each case and relating them to features of demand curves. For these discussions, let
us refer to the demand curve with a lower monopoly price as the “more elastic” demand curve.
Indeed, over the interval of prices [p∗(θ1), p∗(θ2)], the elasticity of the demand curve θ1 is less
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Figure 3: Information is monotonically good when both marginal revenue curves are concave
and the more elastic demand θ1 has a higher level and a less steep marginal revenue curve.

than 1 (because its marginal revenue is negative), but the elasticity of the demand curve θ1 is
more than 1 (because its marginal revenue is positive).21

4.3.1 Sufficient Conditions for Monotonically Good Information

Let us start by IMG, summarizing what Corollary 4 implies and then explaining why the
implication follows. Corollary 4 implies that assuming Rppp(p, θ) ≤ 0, that is, the marginal
revenue curves are concave, information is monotonically good for consumer surplus (and
therefore any α) if the more elastic demand curve, θ1, has

1. a higher level, D(p, θ1) ≥ D(p, θ2), and,

2. a less concave revenue curve, Rpp(p, θ2) ≤ Rpp(p, θ1), or equivalently a less steep
marginal revenue curve.

These conditions are shown in Figure 3.
Let us first explain why these conditions imply information is monotonically good and

then give and example of they are satisfied. For this, let us discuss each of the three effects
of information in turn. The fact that the within-type and cross-group price change effects
are positive are straightforward to see. The within-type price change effect is positive be-

21If Rp(p, θ) ≤ 0 then D(p, θ) + pDp(p, θ) ≥ 0 so the elasticity is −pDp(p,θ)
D(p,θ) ≤ 1. A similar argument

implies if Rp(p, θ) ≤ 0 then −pDp(p,θ)
D(p,θ) ≥ 1. Additionally, if the elasticities of two demand curves are ranked

so that one demand curve is more elastic than the other over the entire range of prices, then the more elastic
demand curve has a lower monopoly price.
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Figure 4: The case where the marginal revenue curve of θ2 is more steep than that of θ1, and
both curves are linear.

cause V 1(p, θ) measures consumer surplus which is a convex function of price. The cross-
group price change effect is positive because of the ranking of the demand levels, D(p, θ1) ≥
D(p, θ2). The intuition is that if the demand level of type θ1 consumers is higher than the
demand level of type θ2 consumers, then the benefit to type θ1 consumers from decreasing
the price is larger than the harm to type θ2 consumers from increasing the price, so the cross-
group price change effect is positive.

The price change effect requires amore detailed analysis compared to the other two effects.
To understand this effect, let us study each of the two conditions that together imply concavity
of the price function, Rppp(p, θ) ≤ 0 and Rpp(p, θ2) ≤ Rpp(p, θ1), in isolation.

To isolate the condition Rpp(p, θ2) ≤ Rpp(p, θ1), suppose Rppp(p, θ) = 0, that is, marginal
revenue curves are linear. This is shown in Figure 4, which zooms in on the relevant range
of prices [p∗(θ1), p

∗(θ2)]. Because the marginal revenue curve of type θ2 is higher and is
more steep than the marginal revenue curve of type θ1, they meet at some point A below
the horizontal axis. The marginal revenue curve associated with market µ is the line that
connects point A to point D which is obtained by taking a convex combination of points
E and C with weights µ and 1 − µ, where E is the intersection of the marginal revenue
curve Rp(·, θ2) and the vertical axis, and C is the intersection of the marginal revenue curve
Rp(·, θ1) and the vertical axis. The intersection of this line AD with the horizontal axis is
point B which specifies the optimal price p∗(µ) for the market µ.

To see that p∗(µ) is concave, notice that the slope s of the marginal revenue curve asso-
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Figure 5: The case where the marginal revenue curves are concave and parallel to each other.

ciated with µ is the negative of the ratio of the length of the line segment CD to the line
segment BC ,

s = −|CD|
|BC|

.

Let s1, s2 be the constant slopes of the two marginal revenue curves Rp(·, θ1) and Rp(·, θ2),
so s = (1− µ)s1 + µs2 = s1 + µ(s2 − s1). We therefore have

p∗(µ)− p∗(θ1) = |BC| = −|CD|
s

=
µ|CE|

−s1 + µ(s1 − s2)
.

Because |CE|,−s1, and s1 − s2 are all positive constants that do not depend on µ, p∗(µ) is
concave.

To isolate the effect of the condition Rppp(p, θ) ≤ 0 on the price curvature, suppose
Rpp(p, θ2) = Rpp(p, θ1), which implies that the marginal revenue curves are parallel to each
other, Rp(p, θ2) = Rp(p, θ1) + c. This is shown in Figure 5. Intuitively, when µ is small, such
as at µ = µ1 in the figure, the marginal revenue curve intersects the horizontal axis at low
prices where the curve is relatively flat, so if we shift the curve upwards, then a large price
increase is required to bring us back to the horizontal axis. On the other hand, when µ is large,
such as at µ = µ2 in the figure, the slope of the marginal revenue curve where it intersects
the horizontal axis is large, so a small price increase is sufficient to offset an upwards shift.

We now give an example where the sufficient conditions discussed in this section (shown
in Figure 3) are satisfied, implying information is monotonically good.

Example 4 (Sufficient Condition for α-IMG). Consider two demand curvesD(p, θi) = ai−
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p + ci
p
for i ∈ {1, 2} and ai, ci ≥ 0 with supports [δ, ai] for small enough δ > 0.22 Without loss

of generality, assume a1 ≤ a2. Then α-IMG holds for all α if

c1 − c2 ≥ (a2 − a1)
a2
2
.

In this example, the marginal revenue curves are linear and parallel to each other, and
therefore information is monotonically good for total surplus if the level of the demand curve
with a lower optimal price is sufficiently higher. It then follows from Corollary 1 that α-IMG
holds for all α. Detailed calculations are in Online Appendix B.4.

4.3.2 Sufficient Conditions for Monotonically Bad Information

Having discussed what Corollary 4 says about monotonically good information, let us now
discuss what it says about monotonically bad information. We focus on the case where α ≥
1
2
.23

Corollary 4 implies that assuming Rppp(p, θ) ≥ 0, that is, the marginal revenue curves are
convex, and assuming an additional condition that each V 1/2 is concave, 1

2
-IMB (and therefore

α-IMB for any α ≥ 1
2
) holds if the more elastic demand curve, θ1, has

1. a higher derivative, Dp(p, θ1) ≥ Dp(p, θ2), and,

2. a more convex revenue curve, Rpp(p, θ2) ≥ Rpp(p, θ1), or equivalently a more steep
marginal revenue curve.

These conditions, other than the additional concavity condition, are shown in Figure 6. This
additional condition does not have a parallel in the case of monotonically good information.
Notice thatDp(p, θ1) ≤ Dp(p, θ2) is about how the slopes of the demand curves, and not their
levels, rank.

Let us explain why the conditions shown in Figure 6 imply information is monotonically
bad for total surplus using from Corollary 4. Instead of reviewing the three effects of infor-
mation in detail as we did for monotonically good information, we only highlight what the
differences are.

An important difference is the additional condition that each V 1/2 is concave to ensure
that the within-type price change effect is negative. Because V 1/2 measures total surplus, its
second derivative is

V 1
pp(p, θ) =

1

2

d2

dp2

(∫ p̄(θ)

p

D(x, θ) dx+R(p, θ)

)
=

Dp(p, θ) + pDpp(p, θ)

2
,

22A small enough positive δ guarantees that p is bounded away from 0 and each demand is bounded.
23The asymmetry between the discussion of this section and the previous section that studied all α is because

information can never be bad for producer surplus. We can give sufficient conditions for any α > 0, but choose
to focus on the economically relevant case where α ≥ 1

2 .
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price

quantity
and MR

D(·, θ2)

D(·, θ1)

Rp(·, θ1)

Rp(·, θ2)p∗(θ1) p∗(θ2)

Figure 6: Information is monotonically good for total surplus when over the interval
[p∗(θ1), p

∗(θ2)], both marginal revenue curves are convex and the more elastic demand θ1
has a higher derivative and a more steep marginal revenue curve.

so for the within-type price effect to be negative, we want the above expression to be negative.
In words, we want the sum of the consumer surplus, which is convex, and revenue, which is
concave, to be concave. We can therefore think about this condition as saying that the revenue
curve must be “concave enough” so that even adding the consumer surplus function to it
results in a concave function. The marginal revenue curves therefore need to be “decreasing
fast enough."

The conditions for the other two effects are natural analogues of the IMG case. Because
the objective is now the total surplus, the derivative of the value function is

V 1
p (p, θ) =

d

dp

(∫ p̄(θ)

p

D(x, θ) dx+R(p, θ)

)
= pDp(p, θ),

so the condition V 1
p (p, θ2) ≤ V 1

p (p, θ1) becomes D1
p(p, θ2) ≤ D1

p(p, θ1). The two conditions
Rpp(p, θ2) ≥ Rpp(p, θ1) and Rppp(p, θ) ≥ 0 imply that the price function is convex the same
way their negation implies that the price function is concave.

We now give an example where the sufficient conditions discussed in this section (shown
in Figure 6) are satisfied, implying information is monotonically good.

Example 4 Continued (Sufficient Condition for α-IMB). Recall the case of two demand
curves D(p, θi) = ai − p+ ci

p
for i ∈ {1, 2} where a1 ≤ a2. α-IMB holds for all α ≥ 1

2
if

c1 ≤ c2 ≤
a21
4
.
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In this example, the marginal revenue curves are linear and parallel to each other. There-
fore, 1

2
-IMB holds if the the demand curve with a lower optimal price has a higher derivative,

c1 ≤ c2, and each V 1/2 is concave, c2 ≤ a21
4
. Detailed calculations are in Online Appendix B.4.

5 Reduction from Many Demand Curves to Two

In this section we prove the rest of Theorem 1 that shows how to reduce a general family
of demand curves to two demand curves. Combined with the characterization of surplus-
monotonicity for two demand curves discussed in Section 4, we obtain a complete character-
ization of surplus-monotonicity for any number of demand curves.

The reduction has three main steps. We first show how to transform the problem to an
optimization problem and establish prior-freeness. We then show why partial inclusion is
necessary for surplus-montonicity. Finally, we show how the partial inclusion assumption
allows us to replace the seller’s profit-maximization with its first-order condition and use
strong duality to solve the optimization problem.

5.1 Transformation to an Optimization Problem

Recall that α-IMB for (D, µ0) is a stronger property than saying that the no-information seg-
mentation maximizes V α for a given prior distribution µ0. We observe below, however, that
α-IMB for (D, µ0) is equivalent to saying that the no-information segmentation maximizes
V α for all prior distributions over D. This equivalence follows from the standard observa-
tion that both of these two properties are equivalent to the concavity of the value function
Wα : ∆Θ → R that specifies the expected α-surplus of each market µ,

Wα(µ) =

∫
Θ

V α(p∗(µ), θ) dµ(θ).

Because concavity of Wα is not affected by which prior distribution we are considering, a
consequence of this equivalence is that α-IMB and α-IMG are prior-independent properties.

Lemma 1. The following three statements are equivalent for any (D, µ0).

1. α-IMB holds for (D, µ0).

2. The value functionWα is concave.

3. No-information is “V α universally optimal”, that is, for everymarket µ, the no-information
segmentation that assigns probability 1 to µ solves

max
σ∈S(µ)

V α(σ).
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Furthermore, the following three statements are equivalent for any (D, µ0).

1 ′. α-IMG holds for (D, µ0).

2 ′. The value functionWα is convex.

3 ′. No-information is “−V α universally optimal”, that is, for everymarketµ, the no-information
segmentation that assigns probability 1 to µ solves

max
σ∈S(µ)

−V α(σ).

Notice that the only difference between statements 3 and 3′ of the lemma is the objectives
that are considered in the maximization problem. In statement 3, this objective is V α and in
statement 3′, this objective is−V α. The two statements are identical otherwise, and in partic-
ular they both seek the optimality of the no-information segmentation for the corresponding
objective. This allows us to give a unified proofs for the two surplus-monotonicity properties
by considering a problem

max
σ∈S(µ)

U(σ), (5)

for all µ, and then letting U = V α to characterize α-IMB and letting U = −V α to characterize
α-IMG.24

5.2 Necessity of Partial Inclusion

Let us now sketch why partial inclusion is necessary for both of the surplus-monotonicity
properties. A preliminary observation is that we can focus on binary demands: If family
D contains two demands D(·, θ1) and D(·, θ2), once we show that α-IMB (α-IMG) does not
hold for the binary family D′ = {D(·, θ1), D(·, θ2)}, then we can construct a segmentation
and a refinement of it for the family D that shows that α-IMB (α-IMG) does not hold for D
either. Given this preliminary observation, we sketch the arguments for two demand curves.
Furthermore, because surplus-monotonicity properties are prior-free, to show their violation
we can freely choose the prior distribution.

Suppose there is full exclusion, that is, p∗(θ2) > p̄(θ1), as shown in Figure 7 (a). We first
argue why α-IMB is violated. The idea is similar to ones in Bergemann et al. (2015) and Pram
(2021). If there is full exclusion, there is scope for improving α-surplus by a segmentation that
removes some fraction of the excluded consumers and puts them in a new segment in which

24One might wonder if statement 3′ can be replaced by a statement that says full information maximizes V α

for all priors. Perhaps surprisingly, this statement is not equivalent to α-IMG and is strictly weaker than it.
Roughly speaking, for the full information segmentation to maximize V α for all priors, all that is required is that
the value function V α is pointwise below a hyperplane that connects the points (µ, V α(µ)) for markets µ that
assign probability 1 to each given state, which is implied by convexity of V α but does not imply it.
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p̄(θ1) p∗(θ2)
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p∗(θ1)p̄(θ1) p∗(θ2) price

revenue

(b)

Figure 7: (a) The case of full exclusion, p̄(θ1) < p∗(θ2). (b) At some threshold µ̂, there will be
two optimal prices.

the price is lower, benefiting those consumers. In particular, suppose the prior probability of
type θ1 is small enough, so that the monopolist optimally excludes type θ1 and charge price
p∗(θ2) uniformly to both types. Now consider a segmentation of that completely separates
the two types. The first market has only θ1 in its support and the price is p∗(θ1). The second
market has only θ2 in its support and the price is p∗(θ2). In the prior market, the monopolist
charges a uniform price of p∗(θ2), but in the segmented markets the monopolist lowers the
price for type θ1 and keeps the price the same in type θ2, which leads to an increase in α-
surplus for any α.

To prove that α-IMG is violated we use a different construction. In this case, we argue that
there is a threshold µ̂ on the probability of type θ such that at µ̂ the monopolist is indifferent
between price p∗(θ2) or a lower price p that is at most p̄(θ1) < p∗(θ2). This threshold µ̂ leads
to a market with a demand curve shown in Figure 7 (b). Suppose the probability of type θ

is just below µ̂, so the seller charges the lower price. Now consider a segmentation into two
segments, one inwhich the probability of type θ2 is just above µ̂, and a secondmarket in which
the probability of type θ2 is just below µ̂. In the first market, the price jumps discontinuously
up to p∗(θ2). In the second market, the price goes down. But importantly, the price would go
down continuously. As a result, for small enough changes, the negative discontinuous effect
of the higher price dominates the positive continuous effect and therefore the segmentation
decreases α-surplus.

Let us also briefly sketch the argument if there is full inclusion, that is, p∗(θ1) < p(θ2),
as shown in Figure 8. We show that the revenue curve of type θ2 has a “kink” at price p(θ2),
and as a result, there is an open set (µ1, µ2) such that price p(θ2) is optimal for any market
in that interval. This means that we can perturb any such market by a small amount without
changing the optimal price. This enables us to construct segmentations in which all prices are
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p∗(θ1) p(θ2)

Figure 8: The case of full inclusion, p∗(θ1) < p(θ2).

at most p(θ2), with some price strictly less than p(θ2), and to similarly construct segmentations
in which all prices are at least p(θ2), with some price strictly more than p(θ2).25

5.3 Applying Duality

The optimization problem derived in Section 5.1 nests another optimization problem in which
the seller chooses an optimal price for each market. We next show how the partial-inclusion
assumption allows us to replace the seller’s optimal pricing problem with a first-order condi-
tion, as formalized below, and then apply duality.

Lemma 2. Suppose there is partial inclusion. For anymarket µ, the optimal price p∗(µ) is unique
and solves the following first-order condition∫

Θ

Rp(p
∗(µ), θ) dµ(θ) = 0.

We can therefore write surplus-monotonicity as follows. Surplus-monotonicity holds if
and only if for every market µ, the no-information segmentation that assigns probability 1 to
µ solves the following problem,

max
σ∈S(µ),p∗

∫
∆Θ

∫
Θ

U(p∗(µ′), θ) dµ′(θ) dσ(µ′)∫
Θ

Rp(p
∗(µ), θ) dµ′(θ) = 0,∀µ′ ∈ Supp(σ),

where U = V α to characterize α-IMB and U = −V α to characterize α-IMG.
To solve this problem, we apply the duality framework of Kolotilin (2018), Dworczak and

Martini (2019), Dworczak and Kolotilin (2024), and Kolotilin et al. (2024). For this, it is con-
venient to reformulate the problem as one of choosing a joint distribution G over types and

25Our construction is related toHaghpanah and Siegel (2023) who also considermarkets that can be perturbed
without changing the optimal mechanism to construct Pareto improving segmentations.
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prices subject to the constraint that themarginal ofG over the types agreeswithµ and the obe-
dience constraint that conditioned on a given price recommendation, the expected marginal
revenue of the seller must be zero.

max
G∈∆(I×Θ)

∫
I×Θ

U(p, θ) dG(p, θ) (P)

s.t. G(I ×Θ′) = µ(Θ′),∀Θ′ ⊂ Θ∫
I′×Θ

Rp(p, θ) dG(p, θ) = 0,∀I ′ ⊂ I

Our starting point in solving the problem above is the following complementary slackness
conditions that follow from the strong duality results of Kolotilin (2018) and Kolotilin et al.
(2024), as we explain in Appendix A.5.

Proposition 2. A probability measure G is an optimal solution to the problem (P) if and only
if there exists continuous functions λ(θ), ζ(p) such that

λ(θ) + ζ(p)Rp(p, θ) = U(p, θ), G-almost surely (6)

λ(θ) + ζ(p)Rp(p, θ) ≥ U(p, θ),∀(p, θ) ∈ I ×Θ (7)

We can now use this result to establish the reduction in Theorem 1. We show that for the
no-information segmentation to be optimal for every prior, it is necessary and sufficient that
the separability condition holds and the two demand curves with the lowest and the highest
optimal monopoly prices satisfy surplus-monotonicity.26

To use this result, consider a prior distribution µwith optimal price p. The no-information
segmentation corresponds to a distributionG that assigns probability 1 to price p (and induces
marginal µ over types). So suppose that such a distributionG is optimal for problem (P). This
observation pins down the function λ, because given Equation (6) for every θ we must have

λ(θ) = U(p, θ)− ζ(p)Rp(p, θ). (8)

Now consider an arbitrary price p′ ∈ I . Equation (7), applied to the pair (p′, θ), implies that

λ(θ) + ζ(p′)Rp(p
′, θ) ≥ U(p′, θ).

26The observation that the separability condition is necessary for surplus-monotonicity is consistent with
the finding in Corollary 1 of Kolotilin et al. (2024) that no-information is suboptimal for generic utility functions
that the receiver might have in their Bayesian persuasion setting. A difference is that the value functions of
the receiver and the sender in their setting are unrelated whereas in our setting the value function U and the
seller’s objective R are both pinned down given the demand curves. We use this property to give a complete
characterization of our surplus-monotonicity properties.
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Substitute the definition of λ(θ) from Equation (8) into the above inequality,

U(p, θ)− ζ(p)Rp(p, θ) ≥ U(p′, θ)− ζ(p′)Rp(p
′, θ),

which we can write as

p ∈ argmax
p′∈I

U(p′, θ)− ζ(p′)Rp(p
′, θ). (9)

We conclude that the no-information segmentation is optimal for a prior µwith optimal price
p if and only if there exists a function ζ such that for every type θ ∈ Θ, Equation (9) holds.

Recall that surplus-monotonicity holds if the no-information segmentation is optimal for
every prior µ. Notice that any price in I is optimal for some prior µ. Surplus-monotonicity
therefore holds if and only if for every p in I , there exists ζ such that Equation (9) holds. This
function ζ may depend on p. To make this dependence explicit, let us use ζ(p, ·) as a function
that is indexed by p. Using this notation, surplus-monotonicity holds if and only if there exists
a single function ζ such that for every p ∈ I and every type θ,

p ∈ argmax
p′∈I

U(p′, θ)− ζ(p, p′)Rp(p
′, θ). (10)

The “sufficiency” direction of Theorem 1 is straightforward. Suppose that the family of
demand curves D satisfies the separability condition of the theorem,

D(p, θ) = f1(θ)D(p, θ1) + f2(θ)D(p, θ2),

for all θ and p ∈ I = [p∗(θ1), p
∗(θ2)], and that the binary family {D(·, θ)}θ∈{θ1,θ2} satisfies

surplus-monotonicity, which means there exists a function ζ such that for all p ∈ I ,

p ∈ argmax
p′∈I

U(p′, θ1)− ζ(p, p′)Rp(p
′, θ1), (11)

p ∈ argmax
p′∈I

U(p′, θ2)− ζ(p, p′)Rp(p
′, θ2). (12)

We want to show that surplus-monotonicity is satisfied for D.
The argument relies on two key observations. First, because each demand is a linear com-

bination of the two base demands, each value, revenue, and marginal revenue function can
also be written as the same linear combination of the corresponding objects for the base de-
mand curves,

U(p, θ) = f1(θ)U(p, θ1) + f2(θ)U(p, θ2),

Rp(p, θ) = f1(θ)Rp(p, θ1) + f2(θ)Rp(p, θ2).

This step critically uses the property that nomatter whatα is andwhich surplus-monotonicity
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property we are characterizing, U is a linear combination of demand and revenue. Second,
because p maximizes each of the two expressions in Equation (11) and Equation (12), it also
maximizes their linear combination with positive weights,

p ∈ argmax
p′∈I

f1(θ)

(
U(p′, θ1)− ζ(p, p′)Rp(p

′, θ1)

)
+ f2(θ)

(
U(p′, θ2)− ζ(p, p′)Rp(p

′, θ2)

)
= argmax

p′∈I
U(p′, θ)− ζ(p, p′)Rp(p

′, θ)

as claimed, completing the proof.
Let us now sketch the proof of the “necessity” part of the Theorem 1. Again, one part of

the argument is straightforward. If surplus-monotonicity holds for D, then Equation (10) is
satisfied for every type, and in particular it must hold for the two types θ1, θ2 that have the
lowest and the highest optimal monopoly price in the family, so surplus-monotonicity must
hold for the binary family that contains only the demand curves associated with θ1, θ2 as well.

To argue that the separability condition of the theorem must be satisfied, we argue first
that each pair θ, θ′ of types in Θ pin down the function ζ over the interval (p∗(θ), p∗(θ′))
of prices that are in between their two optimal monopoly prices. We then argue that if the
separability condition of the theorem is violated, the ζ functions that are pinned down with
different pairs do not agree, and therefore a single function ζ does not exist. Appendix A.6
provides detail of the proof.
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Appendix

A Proofs

A.1 Proof of Corollary 2

Proof of Corollary 2. Let uswithout loss of generality parameterize the family asD = {a(θ)(D(p)+

b(θ))}θ. The first step is to show that D can be separated as in the theorem.
Let θ1, θ2 be the demands in the family with the lowest and highest b, that is, b(θ1) = b,

b(θ2) = b̄) (choosing arbitrarily if there are multiple candidates).
For θ define

f1(θ) =
a(θ)(b̄− b(θ))

a(θ1)(b̄− b)

f2(θ) =
a(θ)(b(θ)− b)

a(θ2)(b̄− b)
.

We need to check that for all θ = (a, b),

f1(θ)D(p, θ1) + f2(θ)D(p, θ2) = D(p, θ),

That is,

f1(θ)a(θ1) + f2(θ)a(θ2) = a,

f1(θ)a(θ1)b(θ1) + f2(θ)a(θ2)b(θ2) = ab.

These two equations hold because

f1(θ)a(θ1) + f2(θ)a(θ2) =
a(θ)

b̄− b
((b̄− b(θ)) + (b(θ)− b)) = a.

f1(θ)a(θ1)b(θ1) + f2(θ)a(θ2)b(θ2) =
a(θ)

b̄− b
((b̄− b(θ))b+ (b(θ)− b)b̄) = ab.

The second step is to characterize the surplus-monotonicity properties for the binary family
{D(p, θ1), D(p, θ2)}. In order to save on notation, suppose without loss of generality that
a(θ2) = b(θ2) = 1, that is, D(p, θ2) = D(p), and let a = a(θ1), b = b(θ1). We want to show
that the family {a(D(p) + b), D(p)}, satisfies α-IMB (α-IMG) if and only if there is partial
inclusion and

(2α− 1)p+ α(
pD′(p)

R′′(p)
)

is increasing (decreasing) over [(R′)−1(−b), (R′)−1(0)].
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We have

D1 = a(D2 + b)

R1 = aR2 + apb

R′
1 = aR′

2 + ab

R′′
1 = aR′′

2

V1 = aV2 + ab(αp̄+ (1− 2α)p)

V ′
1 = aV ′

2 + ab(1− 2α).

So

V2(p)− V1(p) +
−R′

1(p)

R′
2(p)

V ′
2 + V ′

1

−R′
1(p)

R′
2(p)

R′′
2 +R′′

1

(R′
1(p)−R′

2(p))

=V2(p)− V1(p) +
−aR′

2(p)+ab

R′
2(p)

V ′
2 + aV ′

2 + ab(1− 2α)

−aR′
2+ab

R′
2(p)

R′′
2 + aR′′

2

(R′
2(p)(a− 1) + ab)

=V2(p)(1− a)− ab(αp̄+ (1− 2α)p) +
V ′
2(p)− (1− 2α)R′

2(p)

R′′
2(p)

(R′
2(p)(a− 1) + ab)

The derivative of the expression is

V ′
2(p)(1− a)− ab(1− 2α) +

V ′
2(p)− (1− 2α)R′

2(p)

R′′
2(p)

R′′
2(p)(a− 1)

+ (
V ′
2(p)− (1− 2α)R′

2(p)

R′′
2(p)

)′(R′
2(p)(a− 1) + ab)

=− (1− 2α)R′
2(p)(a− 1)− ab(1− 2α) + (

V ′
2(p)− (1− 2α)R′

2(p)

R′′
2(p)

)′(R′
2(p)(a− 1) + ab)

=(R′
2(p)(a− 1) + ab)(−(1− 2α) + (

V ′
2(p)− (1− 2α)R′

2(p)

R′′
2(p)

)′).

Notice that R′
2(p)(a− 1) + ab = R′

1(p)−R′
2(p) ≤ 0,

so we want to show that

2α− 1 + (
V ′
2(p)− (1− 2α)R′

2(p)

R′′
2(p)

)′ ≥ 0.

Notice also that V ′
2(p)− (1− 2α)R′

2(p) = αpD′(p). So we want to show that

2α− 1 + (
αpD′

2(p)

R′′
2(p)

)′ ≥ 0.
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In other words we want to show that

(2α− 1)p+ α(
pD′

2(p)

R′′
2(p)

)

to be increasing in p over (p∗(θ1), p∗(θ2)) = [(R−1
2 )′(−b), (R−1

2 )′(0)], as claimed.
To see that log-concavity of f is sufficient when α = 1/2, note that it is sufficient for

pD′(p)

R′′
2(p)

to be increasing everywhere, or for

R′′
2(p)

pD′(p)
=

2D′(p) + pD′′(p)

pD′(p)
=

2

p
+

−D′′(p)

−D′(p)
=

2

p
+ (log −D′(p))′ =

2

p
+ (log f(p))′

to be decreasing. It is sufficient for (log f(p))′ to be decreasing, that is, f is log-concave.

A.2 Proof of Proposition 1

Proof. Suppose there is partial inclusion. To save on notation, let µ = µ(θ2) ∈ [0, 1] be the
probability of θ2, which means 1− µ is the probability of θ1. By the concavification result of
Kamenica and Gentzkow (2011), α-IMB (α-IMG) holds if and only if value as a function of µ,

Wα(µ) := (1− µ)V α(p∗(µ), θ1) + µV α(p∗(µ), θ2),

is concave where p∗(µ) is the profit-maximizing price for the seller. As argued in Section 4, the
partial inclusion condition implies that this price is uniquely defined and p∗(µ) ∈ [p∗(θ1), p

∗(θ2)]

is the profit-maximizing price for the seller that solves the seller’s first-order condition

(1− µ)Rp(p
∗(µ), θ1) + µRp(p

∗(µ), θ2) = 0.

The profit-maximizing price is uniquely defined because

(1− µ)Rp(p, θ1) + µRp(p, θ2)

is decreasing in p and takes a positive value at p = p∗(θ1) and a negative value at p = p∗(θ2).
We identify three consequences of the first-order condition for future use. First, re-arranging

the first-order condition, we have

µ

1− µ
=

−Rp(p
∗(µ), θ1)

Rp(p∗(µ), θ2)
. (13)
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Second, taking the derivative of the first-order condition with respect to µ, we have

−Rp(p
∗(µ), θ1) +Rp(p

∗(µ), θ2) +

(
(1− µ)Rpp(p

∗(µ), θ1) + µRpp(p
∗(µ), θ2)

)
p∗µ(µ) = 0,

which, after re-arranging, means

p∗µ(µ) =
Rp(p

∗(µ), θ1)−Rp(p
∗(µ), θ2)

(1− µ)Rpp(p∗(µ), θ1) + µRpp(p∗(µ), θ2)
. (14)

Third, p∗(µ) is increasing in µ. To see this, consider the above equation. Notice that because
p∗(θ1) ≤ p∗(µ) ≤ p∗(θ2) and each revenue curve is concave, the first term in the numerator,
Rp(p

∗(µ), θ1), is negative and the second term, Rp(p
∗(µ), θ2), is positive, so the numerator

is negative.27 Further, because both revenue curves are strictly concave, the denominator is
negative. We conclude that p∗µ(µ) > 0.

NowWα(µ) is concave if and only if its derivativeWα
µ (µ) is decreasing. From the defini-

tion of Wα(µ), we can write its derivativeWα
µ (µ) as

Wα
µ (µ) =V α(p∗(µ), θ2)− V α(p∗(µ), θ1) +

(
(1− µ)V α

p (p∗(µ), θ1) + µV α
p (p∗(µ), θ2)

)
p∗µ(µ)

=V α(p∗(µ), θ2)− V α(p∗(µ), θ1)

+

(
(1− µ)V α

p (p∗(µ), θ1) + µV α
p (p∗(µ), θ2)

)
Rp(p

∗(µ), θ1)−Rp(p
∗(µ), θ2)

(1− µ)Rpp(p∗(µ), θ1) + µRpp(p∗(µ), θ2)

where the second equation followed from substituting p∗µ using Equation (14). Re-arranging
terms, we have

Wα
µ (µ) =V α(p∗(µ), θ2)− V α(p∗(µ), θ1)

+
(1− µ)V α

p (p∗(µ), θ1) + µV α
p (p∗(µ), θ2)

(1− µ)Rp(p∗(µ), θ1) + µRp(p∗(µ), θ2)

(
Rp(p

∗(µ), θ1)−Rp(p
∗(µ), θ2)

)
.

Dividing the numerator and the denominator of the fraction by 1− µ, we have

Wα
µ (µ) =V α(p∗(µ), θ2)− V α(p∗(µ), θ1)

+
V α
p (p∗(µ), θ1) +

µ
1−µ

V α
p (p∗(µ), θ2)

Rpp(p∗(µ), θ1) +
µ

1−µ
Rpp(p∗(µ), θ2)

(
Rp(p

∗(µ), θ1)−Rp(p
∗(µ), θ2)

)
=V α(p∗(µ), θ2)− V α(p∗(µ), θ1)

+
V α
p (p∗(µ), θ1) +

−Rp(p∗(µ),θ1)
Rp(p∗(µ),θ2)

V α
p (p∗(µ), θ2)

Rp(p∗(µ), θ1) +
−Rp(p∗(µ),θ1)
Rp(p∗(µ),θ2)

Rp(p∗(µ), θ2)

(
Rp(p

∗(µ), θ1)−Rp(p
∗(µ), θ2)

)
,

27To be precise, at the two extremes one term might be zero but then the other term is non-zero. At p∗(θ1)
the first term is zero but the second term is positive, so the expression is negative. Similarly at p∗(θ2) the second
term is zero but the first term is negative, so the expression is negative.
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where the second equality followed from substituting Equation (13).
The above expression is complex because it contains a term, p∗(µ), that is implicitly de-

fined via the seller’s first-order condition. The observation that p∗(µ) is increasing in µ is
useful because then we know Wα

µ (µ) is decreasing if and only if Wα
µ (µ(p)) is decreasing,

where µ is the inverse of p, that is, p(µ(p)) = p. So we want

V α(p, θ2)− V α(p, θ1) +
V α
p (p, θ1) +

−Rp(p,θ1)

Rp(p,θ2)
V α
p (p, θ2)

Rp(p, θ1) +
−Rp(p,θ1)

Rp(p,θ2)
Rp(p, θ2)

(
Rp(p, θ1)−Rp(p

∗(µ), θ2)
)

=V α(p, θ2)− V α(p, θ1) +
−Rp(p, θ1)V

α
p (p, θ2) +Rp(p, θ2)V

α
p (p, θ1)

−Rp(p, θ1)Rpp(p, θ2) +Rp(p, θ2)Rpp(p, θ1)

(
Rp(p, θ1)−Rp(p, θ2)

)
to be decreasing in p, where the equality followed from multiplying the numerator and de-
nominator of the fraction by Rp(p, θ2).

A.3 Proof of Corollary 4

Proof. Consider each of the terms in Equation (4).
The first term corresponds to the within-type price change effect. It is

(p∗µ(µ))
2

[
(1− µ)V α

pp(p
∗(µ), θ1) + µV α

pp(p
∗(µ), θ2)

]
,

which is positive (negative) whenever

(1− µ)V α
pp(p

∗(µ), θ1) + µV α
pp(p

∗(µ), θ2) (15)

is positive (negative). Rearranging the first-order condition of the seller’s profit-maximization
problem, we have

µ

1− µ
=

−Rp(p
∗(µ), θ1)

Rp(p∗(µ), θ2)
.

Therefore, the expression in Equation (15) is positive (negative) whenever

−Rp(p, θ2)V
α
pp(p, θ1) +Rp(p, θ1)V

α
pp(p, θ2)

is positive (negative), as claimed.
The second term corresponds to the cross-types price change effect. It is

2p∗µ(µ)

[
V α
p (p∗(µ), θ2)− V α

p (p∗(µ), θ1)

]
,
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which is positive (negative) whenever

V α
p (p∗(µ), θ2)− V α

p (p∗(µ), θ1)

is positive (negative) because p∗(µ) is increasing in µ.
The third term corresponds to the price curvature effect. It is

p∗µµ(µ)

[
(1− µ)V α

p (p∗(µ), θ1) + µV α
p (p∗(µ), θ2)

]
.

Notice that from the definition of V α,

(1− µ)V α
p (p∗(µ), θ1) + µV α

p (p∗(µ), θ2) = α

(
(1− µ)CSp(p

∗(µ), θ1) + µCSp(p
∗(µ), θ2)

)
+ (1− α)

(
(1− µ)Rp(p

∗(µ), θ1) + µRp(p
∗(µ), θ2)

)
= α

(
(1− µ)CSp(p

∗(µ), θ1) + µCSp(p
∗(µ), θ2)

)
,

≤ 0,

where the second equality follows because of the first-order condition of the seller’s profit-
maximization problem, and the inequality follows because for each θ,

CSp(p, θ) =
d

dp

(∫ p̄(θ)

p

D(x, θ) dx

)
= −D(p, θ) ≤ 0.

So the third term is positive (negative) whenever p∗µµ(µ) is negative (positive).
To complete the proof, we relate the curvature of p to the two sufficient conditions in

the third bullet of the corollary. For this, let us take two derivatives of the seller’s profit-
maximization condition,

(1− µ)Rp(p
∗(µ), θ1) + µRp(p

∗(µ), θ2) = 0.

The first derivative implies

−Rp(p
∗(µ), θ1) +Rp(p

∗(µ), θ2) + p∗µ(µ)

[
(1− µ)Rpp(p

∗(µ), θ1) + µRpp(p
∗(µ), θ2)

]
= 0.
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The second derivative implies

(p∗µ(µ))
2

[
(1− µ)Rppp(p

∗(µ), θ1) + µRppp(p
∗(µ), θ2)

]
+2p∗µ(µ)

[
Rpp(p

∗(µ), θ2)−Rpp(p
∗(µ), θ1)

]
+p∗µµ(µ)

[
(1− µ)Rpp(p

∗(µ), θ1) + µRpp(p
∗(µ), θ2)

]
= 0. (16)

Note that p∗µµ(µ) is multiplied by a negative term because both revenue curves are concave.
So p∗µµ(µ) is positive (negative) if the sum of the other two terms are positive (negative). The
first term is positive (negative) whenever

(1− µ)Rppp(p
∗(µ), θ1) + µRppp(p

∗(µ), θ2)

is positive (negative), which is the case if Rppp(p, θ) is positive (negative) for all p and both θ1

and θ2. The second term is positive (negative) whenever

Rpp(p
∗(µ), θ2)−Rpp(p

∗(µ), θ1)

is positive (negative), completing the proof.

A.4 Proof of Lemma 2

Proof. First notice that the optimal price p∗(µ) for any market µ must be at least minθ p
∗(θ)

and at most maxθ p
∗(θ). Otherwise, if the price is less than minθ p

∗(θ), we can increase the
price to minθ p

∗(θ) and increase the revenue from every demand in the support of µ be-
cause each demand by assumption has a concave revenue curve. A similar argument shows
the optimal price is at most maxθ p

∗(θ). So we only need to consider prices in the interval
[minθ p

∗(θ),maxθ p
∗(θ)].

Because of partial inclusion, it must be thatmaxθ p
∗(θ) ≤ p̄(θ′) andminθ p

∗(θ) ≥ p(θ′) for
every θ′. Because R(·, θ′) is strictly concave and differentiable over the range [p(θ′), p̄(θ′)], it
is also concave and differentiable over the smaller range [minθ p

∗(θ),maxθ p
∗(θ)]. As a result,

the revenue function associated with any market µ∫
Θ

R(·, θ) dµ(θ)

is also strictly concave and differentiable over the range of prices [minθ p
∗(θ),maxθ p

∗(θ)].
Because any optimal price for market µ is in the interval [minθ p

∗(θ),maxθ p
∗(θ)], a price p is
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optimal for market µ if and only if it satisfies the first-order condition∫
Θ

Rp(p, θ) dµ(θ) = 0.

As a result, the optimal price p∗(µ) ∈ [minθ p
∗(θ),maxθ p

∗(θ)] is unique and is characterized
by ∫

Θ

Rp(p
∗(x), θ) dµ(θ) = 0,

as claimed.

A.5 Proof of Proposition 2

The strong duality result of Kolotilin et al. (2024) relates problem (P) to the following dual
problem.

min
λ,ζ

∫
Θ

λ(θ) dµ(θ) (D)

s.t. λ(θ) + ζ(p)Rp(p, θ) ≥ U(p, θ),∀(p, θ) ∈ I ×Θ.

Lemma 3 (Kolotilin et al., 2024). Optimal solutions G and λ, ζ to the primal problem (P) and
the dual problem (D) exist and their values are equal,∫

I×Θ

U(p, θ) dG(p, θ) =

∫
Θ

λ(θ) dµ(θ). (17)

We now use this strong duality result to establish Proposition 2. By Lemma 3, a feasible
G is an optimal solution the primal problem (P) if and only if there exists a feasible solution
λ, ζ to the dual problem (D) such that Equation (17) holds. The feasibility of λ, ζ is exactly
Equation (7) from Proposition 2. Furthermore, for any feasible G, we have∫

I×Θ

ζ(p)Rp(p, θ) dG(p, θ) = 0,

so ∫
I×Θ

U(p, θ) dG(p, θ) =

∫
I×Θ

[U(p, θ)− ζ(p)Rp(p, θ)] dG(p, θ),

and ∫
Θ

λ(θ) dµ(θ) =

∫
I×Θ

λ(θ) dG(p, θ).
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So Equation (17) is equivalent to∫
I×Θ

[U(p, θ)− ζ(p)Rp(p, θ)] dG(p, θ) =

∫
I×Θ

λ(θ) dG(p, θ),

which is Equation (6) of Proposition 2.

A.6 Proof of Theorem 1

We here complete the proof of Theorem 1.

A.6.1 Necessity of Partial Inclusion

A simplifying step is that we can focus on two demands. In particular, for a family of demands
D, and any two types θ1, θ2 in it, if we can construct two segmentations σ′

1 ⪰
MPS

σ′
2 of the binary

family D′ = {D(p, θ1), D(p, θ2)} that shows that α-IMB (α-IMG) does not hold, then α-IMB
(α-IMG) does not hold for D either. For this, we can consider any segmentation of D that is
a convex combination of σ′

1 and any other segmentation, i.e., σ1 = βσ′
1 + (1 − β)σ3, which

exists for small enough β, and then further refine σ1 to obtain σ2 = βσ′
2 + (1− β)σ3.

Suppose first that there is full exclusion, that is, p̄(θ1) < p∗(θ2). We want to show that
both α-IMB and α-IMG must be violated. It is sufficient to prove this claim for a certain (not
every) prior market µ on θ1, θ2. This is because for any prior market µ′ we can first construct a
segmentation that contains market µ in its support, and then show that segmenting µ′ further
does not increase or decrease weighted surplus (depending on which one of IMG or IMB we
are proving).

Consider the set p∗(µ) of optimal prices in a market in which θ has probability 1− µ and
θ2 has probability µ,

p∗(µ) = argmax
p

(1− µ)R(p, θ1) + µR(p, θ2).

Notice that p∗(µ) never includes a price in (p̄(θ1), p
∗(θ2)) because any such price, which ex-

cludes θ1 entirely, leads to a lower revenue than p∗(θ2). Moreover, p∗(µ) never includes a price
less than p∗(θ1) because any such price is also lower than p∗(θ2) and increasing it increases
revenue in both types. Therefore, p∗(µ) may only contain prices in [p∗(θ1), p̄(θ1)]∪ {p∗(θ2)}.
At µ = 0, the only optimal price is p∗(θ1), and at µ = 1, the only optimal price is p∗(θ2).
Because for each p, revenue changes linearly in µ, there exists a threshold µ̂ ∈ (0, 1) such
that p∗(θ2) ∈ p∗(µ) if and only if µ ≥ µ̂, and p∗(θ2) is the unique optimal price for all µ > µ̂.

To see that α-IMB does not hold, consider any segmentation of the prior market that con-
tains a segment in which the probability of θ2 in the prior market is µ′ > µ̂ (such a segmen-
tation exists because the prior market has full support over θ1, θ2). The unique optimal price
for µ′ is p∗(θ2). Consider segmenting µ′ further into two segments µ1 < µ̂ < µ′ and µ2 > µ′.
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Because any optimal price for market µ1 is strictly less than p∗(θ2) and the unique optimal
price for market µ2 is p∗(θ2), this segmentation increases consumer surplus. Because any
segmentation weakly increases producer surplus, it also strictly increases weighted surplus.

To see that α-IMG does not hold, consider any segmentation of the prior market that
contains a segment in which the probability of θ2 in the prior market is µ′ = µ̂− ϵ for some
small ϵ. Consider segmenting µ′ into two segments µ1 = µ′ − 2ϵ and µ2 = µ′ + 2ϵ = µ̂ + ϵ,
with probability 1

2
each. As ϵ goes to zero, the seller’s revenue approaches the optimal revenue

in market µ′ continuously by the Maximum theorem. But we argue that the consumer surplus
decreases discontinuously, that it, it decreases by at least some δ > 0, and therefore weighted
surplus decreases for small enough ϵ.

To see the discontinuity in consumer surplus, consider optimal prices for markets µ1 and
µ2. Because µ1 < µ̂, optimal prices for µ1 are those that maximize revenue over [p∗(θ1), p̄(θ1)].
Because the revenue curve is strictly concave over this range, the optimal price and therefore
consumer surplus changes continuously. But for market µ2 the only optimal price is p∗(θ2)
and the consumer surplus of this market is bounded away from that of µ′, so the consumer
surplus and total surplus increase for small enough ϵ.

Now suppose there is full inclusion, p∗(θ1) < p(θ2). We argue that there exist µ1, µ2 such
that µ1 < µ2 and price p(θ2) is the unique optimal price for any market in (µ1, µ2). For this,
we first show that note that the revenue curve associated with θ2 has a kink at price p(θ2).
The revenue of type θ2 at any price p < p(θ2) is

R(p, θ2) = pD(p(θ2), θ2)

so the left derivative of R(p, θ2) at p = p(θ) is

Rp(p, θ2) = D(p(θ), θ2).

The revenue of type θ2 at any price p > p(θ2) is

R(p, θ2) = pD(p, θ2)

so marginal revenue is

Rp(p, θ2) = D(p, θ2) + pDp(p, θ2).

As p converges to p(θ2) from above, marginal revenue converges to

lim
p→+p(θ2)

Rp(p, θ2) = D(p(θ2), θ2) + pDp(p(θ2), θ2) < D(p(θ2), θ2).

So the right derivative of the revenue curve at p(θ2) is strictly less than its left derivative. Let
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δ− > δ+ be the left and the right derivatives of the revenue curve of type θ2 at p(θ2). Price
p(θ2) is optimal in any market µ such that

(1− µ)Rp(p(θ2), θ1) + µδ− > 0, and (1− µ)Rp(p(θ2), θ1) + µδ+ < 0,

that is

µ ∈ (µ1, µ2) := (
−Rp(p(θ2), θ1)

δ+ −Rp(p(θ2), θ1)
,

−Rp(p(θ2), θ1)

δ− −Rp(p(θ2), θ1)
).

Now consider IMB. consider any segmentation of the prior market that contains a segment
in which the probability of θ2 in the prior market is µ′ ∈ (µ1, µ2). Consider segmenting µ′

further into two segments µ′
1 and µ′

2 such that µ′
1 < µ1 < µ′ and µ′ < µ′

2 < µ2. Any optimal
price for µ′

1 is less than p(θ2) and the optimal price for µ′
2 is p(θ2). This segmentation therefore

increases consumer surplus. Because any segmentation weakly increases producer surplus, it
also increases weighted surplus.

Finally, consider IMG. For this, we examine the value function Wα(µ) around µ2 and
show that the value function is locally concave, which means that providing a small amount
of information reduces weighted surplus. For this, consider the left derivative of Wα(µ) at
µ = µ2. Recall that price p(θ2) is optimal for all markets in (µ1, µ2), which means that the left
derivative ofWα(µ) at µ < µ2 is

Wα
µ (µ) = V α(p∗(µ), θ2)− V α(p∗(µ), θ1) +

(
(1− µ)V α

p (p∗(µ), θ1) + µV α
p (p∗(µ), θ2)

)
p∗µ(µ),

= V α(p∗(µ), θ2)− V α(p∗(µ), θ1),

where the equality follows because p∗µ(µ) = 0 for µ in (µ1, µ2) as p∗(µ) = p(θ2). As µ

converges to µ2 from below, this derivative converges to

V α(p(θ2)), θ2)− V α(p(θ2), θ1).

Now consider what happens as µ converges to µ2 from above. The derivative ofWα is

V α(p∗(µ), θ2)− V α(p∗(µ), θ1) +

(
(1− µ)V α

p (p∗(µ), θ1) + µV α
p (p∗(µ), θ2)

)
p∗µ(µ).

Given the first-order condition of the seller’s problem, we can write this derivative as

V α(p∗(µ), θ2)− V α(p∗(µ), θ1) + α

(
(1− µ)CSp(p

∗(µ), θ1) + µCSp(p
∗(µ), θ2)

)
p∗µ(µ).
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which, as µ goes to µ2 from above, converges to

V α(p(θ2), θ2)− V α(p(θ2), θ1) + α

(
(1− µ)CSp(p(θ2), θ1) + µCSp(p(θ2), θ2)

)
p∗µ(µ2)

< V α(p(θ2), θ2)− V α(p(θ2), θ1),

where the inequality follows because p∗(µ) is strictly increasing at µ ≥ µ2, and CSp < 0. We
conclude thatWα is not concave, which means that IMG does not hold.

A.6.2 Statement (i)

We start by an implication of the separability property that will be later used in the proof.

Lemma 4. If the separability condition of Theorem 1 is violated, then there exists some θ, p ∈ I ,
and a, b such that Rp(p, θ) ̸= 0 and

Rp(p, θ) = aRp(p, θ1) + bRp(p, θ2)

Rpp(p, θ) = aRpp(p, θ1) + bRpp(p, θ2)

Up(p, θ) ̸= aUp(p, θ1) + bUp(p, θ2).

Proof. Wewill show that there is an open interval of prices I ′ ⊂ (p∗(θ1), p
∗(θ2)) such that the

above three equations hold for all p ∈ I ′. Because marginal revenue is decreasing in p, there
exists such a price that furthermore satisfies Rp(p, θ) ̸= 0.

For each p there exists a pair a, b of constants for which the first two equalities hold, that
is, writing a, b as functions of p to make this dependence explicit,

Rp(p, θ) = a(p)Rp(p, θ1) + b(p)Rp(p, θ2) (18)

Rpp(p, θ) = a(p)Rpp(p, θ1) + b(p)Rpp(p, θ2), (19)

which is obtained by solving the system of two equations and two variables,

a(p) =
Rpp(p, θ)Rp(p, θ2)−Rp(p, θ)Rpp(p, θ2)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)

b(p) =
−Rpp(p, θ)Rp(p, θ1) +Rp(p, θ)Rpp(p, θ1)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)
.

This solution is well-defined because Rpp < 0 and Rp(p, θ1) < 0 < Rp(p, θ2).
Similarly, let us define functions c, d as follows

R(p, θ) = c(p)R(p, θ1) + d(p)R(p, θ2)

Rp(p, θ) = c(p)Rp(p, θ1) + d(p)Rp(p, θ2)
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Using a similar argument to above, the pair c(p), d(p) is also unique for each p. Violation of
the separability condition implies that c, d are not constant functions.

Taking a derivative of the above, we have

Rp(p, θ) =c′(p)R(p, θ1) + d′(p)R(p, θ2) + c(p)Rp(p, θ1) + d(p)Rp(p, θ2)

=c(p)Rp(p, θ1) + d(p)Rp(p, θ2), (20)

which means

c′(p)R(p, θ1) = −d′(p)R(p, θ2),

and

Rpp(p, θ) =c′(p)Rp(p, θ1) + d′(p)Rp(p, θ2) + c(p)Rpp(p, θ1) + d(p)Rpp(p, θ2)

=(
Rp(p, θ1)

R(p, θ1)
− Rp(p, θ2)

R(p, θ2)
)c′(p)R(p, θ1) + c(p)Rpp(p, θ1) + d(p)Rpp(p, θ2)

=∆(p) + c(p)Rpp(p, θ1) + d(p)Rpp(p, θ2), (21)

where ∆(p) is defined as

∆(p) := (
Rp(p, θ1)

R(p, θ1)
− Rp(p, θ2)

R(p, θ2)
)c′(p)R(p, θ1).

Let I ′ be an interval for which c′(p) ̸= 0, which means that ∆(p) ̸= 0 for the same interval.
Combining Equation (18) and Equation (19) with Equation (20) and Equation (21), we have

a(p) =
Rpp(p, θ)Rp(p, θ2)−Rp(p, θ)Rpp(p, θ2)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)

= c(p) +
∆(p)Rp(p, θ2)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)
(22)

b(p) =
−Rpp(p, θ)Rp(p, θ1) +Rp(p, θ)Rpp(p, θ1)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)

= d(p)− ∆(p)Rp(p, θ1)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)
. (23)

Now let us evaluate

Up(p, θ)− a(p)Up(p, θ1)− b(p)Up(p, θ2) (24)

using the above two equations and show that it is not equal to zero. From the definition of U ,
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when characterizing α-IMG the above expression is

Up(p, θ)− aUp(p, θ1)− bUp(p, θ2) = α
(
CSp(p, θ)− a(p)CSp(p, θ1)− b(p)CSp(p, θ2)

)
+ (1− α)

(
Rp(p, θ)− a(p)Rp(p, θ1)− b(p)Rp(p, θ2)

)
= −α

(
D(p, θ)− a(p)D(p, θ1)− b(p)D(p, θ2)

)
=

−α

p

(
R(p, θ)− a(p)R(p, θ1)− b(p)R(p, θ2)

)
.

When characterizing α-IMB, we want to show that the negative of the above expression is
non-zero. In either case, because α > 0, to show that Equation (24) is not zero, it is sufficient
to show that

R(p, θ)− a(p)R(p, θ1)− b(p)R(p, θ2) ̸= 0.

For this, use Equation (22) and Equation (23) to write

R(p, θ)− a(p)R(p, θ1)− b(p)R(p, θ2)

=R(p, θ1)− c(p)R(p, θ1)− d(p)R(p, θ2)−∆(p)
Rp(p, θ2)R(p, θ1)−Rp(p, θ1)R(p, θ2)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)

=−∆(p)
Rp(p, θ2)R(p, θ1)−Rp(p, θ1)R(p, θ2)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)
.

For any p ∈ I ′, this expression is non-zero because ∆(p) ̸= 0, which proves the claim.

Given Lemma 4, we now complete the proof of Statement (i) of Theorem 1.

Proof of Statement (i). We have already shown in Appendix A.6.1 that partial inclusion
is necessary for the surplus-monotonicity properties. We therefore assume partial inclusion
here and establish the necessity and sufficiency of the reduction.

The case where minθ p
∗(θ) = maxθ p

∗(θ) is straightforward. In this case, both surplus-
monotonicity properties as well as the conditions of the statement hold trivially. So suppose
for the rest of the proof that minθ p

∗(θ) < maxθ p
∗(θ).

Necessity. As argued in Section 5.3, using Lemma 1 and the strong duality result, Propo-
sition 2, surplus-monotonicity holds if and only if there exists a continuous function ζ such
that for every p ∈ I and θ ∈ Θ, we have

p ∈ argmax
p′∈I

U(p′, θ)− ζ(p, p′)Rp(p
′, θ), (25)

where W = V α characterizes α-IMB andW = −V α characterizes α-IMG.
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First, notice that if Equation (25) is satisfied for all θ ∈ Θ, then it must be satisfied for θ1, θ2
that have the lowest and the highest monopoly price inΘ, and therefore surplus-monotonicity
holds for the binary family that consists only of θ1, θ2.

Now consider any pair θ, θ′ of types for which p∗(θ) < p∗(θ′) and any p ∈ (p∗(θ), p∗(θ′)).
Equation (25) implies

U(p′, θ)− ζ(p, p′)Rp(p
′, θ) ≤ U(p, θ)− ζ(p, p)Rp(p, θ), ∀p′ ∈ (p∗(θ), p∗(θ′)).

Because Rp(p
′, θ) < 0, we can divide the above inequality by Rp(p

′, θ) and write it as

ζ(p, p′) ≤ U(p′, θ)− U(p, θ) + ζ(p, p)Rp(p, θ)

Rp(p′, θ)
.

A similar argument repeated for θ′, but with the difference that Rp(p
′, θ′) > 0, implies

ζ(p, p′) ≥ U(p′, θ′)− U(p, θ′) + ζ(p, p)Rp(p, θ
′)

Rp(p′, θ′)
.

Therefore, we must have that for all p, p′ ∈ (p∗(θ), p∗(θ′)):

U(p′, θ)− U(p, θ) + ζ(p, p)Rp(p, θ)

Rp(p′, θ)
≥ U(p′, θ′)− U(p, θ′) + ζ(p, p)Rp(p, θ

′)

Rp(p′, θ′)
.

Note that evaluated at p′ = p, both sides of the above are equal to ζ(p, p). Because both sides
are continuously differentiable, it has to be that they are tangent at p′ = p. Therefore,

Up(p, θ)

Rp(p, θ)
− ζ(p, p)

Rpp(p, θ)

Rp(p, θ)
=

Up(p, θ
′)

Rp(p, θ′)
− ζ(p, p)

Rpp(p, θ
′)

Rp(p, θ′)

which pins down ζ(p, p),

ζ(p, p) =

Up(p,θ)

Rp(p,θ)
− Up(p,θ′)

Rp(p,θ′)

Rpp(p,θ)

Rp(p,θ)
− Rpp(p,θ′)

Rp(p,θ′)

=
Up(p, θ)Rp(p, θ

′)− Up(p, θ
′)Rp(p, θ)

Rpp(p, θ)Rp(p, θ′)−Rpp(p, θ′)Rp(p, θ)
. (26)

Now suppose the separability condition of the theorem is violated, so there exists some θ
whose demand curve cannot be written as a linear combination of D(·, θ1) and D(·, θ2) over
the interval I . Lemma 4 implies that that there is price p ∈ I and a, b such that Rp(p, θ) ̸= 0

and

Rp(p, θ) = aRp(p, θ1) + bRp(p, θ2)

Rpp(p, θ) = aRpp(p, θ1) + bRpp(p, θ2)

Up(p, θ) ̸= aUp(p, θ1) + bUp(p, θ2).

49



Because Rp(p, θ1) < 0 < Rp(p, θ2) and Rp(p, θ) ̸= 0, the marginal revenue of θ has a
different sign with either θ1, θ2. Suppose 0 < Rp(p, θ) (the other case is similar). Then our
discussion above pins down ζ(p, p) in two different ways

ζ(p, p) =
Up(p, θ1)Rp(p, θ2)− Up(p, θ2)Rp(p, θ1)

Rpp(p, θ1)Rp(p, θ2)−Rpp(p, θ2)Rp(p, θ1)

and

ζ(p, p) =
Up(p, θ1)Rp(p, θ)− Up(p, θ)Rp(p, θ1)

Rpp(p, θ1)Rp(p, θ)−Rpp(p, θ)Rp(p, θ1)
.

But these two expressions cannot be equal by Lemma 4, implying that ζ satisfying Equa-
tion (25) does not exist. To see this, let us use Lemma 4 and the above two equalities to write

ζ(p, p) =
Up(p, θ1)Rp(p, θ)− Up(p, θ)Rp(p, θ1)

Rpp(p, θ1)Rp(p, θ)−Rpp(p, θ)Rp(p, θ1)

̸=
Up(p, θ1)

(
aRp(p, θ1) + bRp(p, θ2)

)
−
(
aUp(p, θ1) + bUp(p, θ2)

)
Rp(p, θ1)

Rpp(p, θ1)
(
aRp(p, θ1) + bRp(p, θ2)

)
−
(
aRpp(p, θ1) + bRpp(p, θ2)

)
Rp(p, θ1)

=
b
(
Up(p, θ1)Rp(p, θ2)− Up(p, θ2)Rp(p, θ1)

)
b
(
Rpp(p, θ1)Rp(p, θ2)−Rpp(p, θ2)Rp(p, θ1)

)
= ζ(p, p),

which is a contradiction.

Sufficiency. We now prove the sufficiency part of the reduction. Suppose a family of de-
mand curves D can be decomposed into two demands that satisfy α-IMG (α-IMB),

D(p, θ) = f1(θ)D(p, θ1) + f2(θ)D(p, θ2),∀p, θ.

We want to show that D satisfies α-IMG (α-IMB). That is, there exists a function ζ such that
for every price p ∈ I , we have

p ∈ argmax
p′∈I

U(p′, θ)− ζ(p, p′)Rp(p
′, θ),

for W = V α (W = −V α).
Notice that because each demand is a linear combination of the two base demands, each

value, revenue, and marginal revenue function can also be written using a linear combination
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of the corresponding objects for the base demand curves. Formally,

U(p, θ) = f1(θ)U(p, θ1) + f2(θ)U(p, θ2),

R(p, θ) = f1(θ)R(p, θ1) + f2(θ)R(p, θ2),

Rp(p, θ) = f1(θ)Rp(p, θ1) + f2(θ)Rp(p, θ2).

Because the family {D(p, θ1), D(p, θ2)} satisfies α-IMG (α-IMB), for each p ∈ I we have

p ∈ argmax
p′∈I

U(p′, θ1)− ζ(p, p′)Rp(p
′, θ1),

p ∈ argmax
p′∈I

U(p′, θ2)− ζ(p, p′)Rp(p
′, θ2).

Because p maximizes each of the above two expressions, it also maximizes their linear com-
bination,

p ∈ argmax
p′∈I

f1(θ)

(
U(p′, θ1)− ζ(p, p′)Rp(p

′, θ1)

)
+ f2(θ)

(
U(p′, θ2)− ζ(p, p′)Rp(p

′, θ2)

)
= argmax

p′∈I
U(p′, θ)− ζ(p, p′)Rp(p

′, θ)

as claimed, completing the proof.

A.6.3 Statement (ii)

We have already shown in Appendix A.6.1 that partial inclusion is necessary for the surplus-
monotonicity properties. Proposition 1 establishes the remainder of the statement assuming
partial inclusion.
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Online Appendix

B Derivation for Examples

B.1 Example 1

Recall that

f(p) =
c1(c2 + c3p)

c4

p2
.

This density function is positive if c1 ≥ 0 and c2 + c3p ≥ 0 for all p ∈ [p, p̄].
Let us calculate the expression Equation (2). We have

log p2f(p) = log c1 + c4 log(c2 + c3p).

Because D′(p) = −f(p) and R′′(p) = 2D′(p) + pD′′(p) = −2f(p)− pf ′(p), we have

pD′(p)

R′′(p)
=

pf(p)

2f(p) + pf ′(p)
= (

2

p
+

f ′(p)

f(p)
)−1 = (

d

dp
log p2f(p))−1 =

c2 + c3p

c3c4
=

c2
c3c4

+
p

c4
.

Therefore, the expression in Equation (2) is

(2α− 1)p+ α(
pD′(p)

R′′(p)
) = p(2α− 1 +

α

c4
) +

αc2
c3c4

,

which is increasing (decreasing) whenever the multiplier of p is positive (negative), that is,
when

α(2 +
1

c4
) ≥ (≤) 1.

Now consider three cases for c4. When 2 + 1
c4

≤ 1, that is, when −1 ≤ c4 ≤ 0, then
α(2 + 1

c4
) ≤ 1 for all α and therefore information is monotonically good regardless of α.

When 2 + 1
c4

≥ 1, that is, when c4 ≤ −1 or c4 ≥ 0, α-IMB (α-IMG) holds whenever

α ≥ (≤) α̂ :=
1

2 + 1
c4

=
c4

2c4 + 1
. (27)

This threshold α̂ ∈ (0, 1] is such that information is monotonically bad for all α above the
threshold, is monotonically good for all α below the threshold, and has no effect on α̂-surplus.
When c4 ≤ −1, α̂ ranges from 1

2
to 1. This means that information is monotonically good for

total surplus but bad for consumer surplus. When c4 ≥ 0, α̂ ranges from 0 to 1
2
. This means

that information is monotonically good for both total surplus and consumer surplus.
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Let us specialize our analysis to the case where D(p) = d1 + d2p
d3 , where d3 > −1 and

d2 and d3 have opposite signs (to ensure downward-sloping demand and concave revenue).
For this demand, p2f(p) is log-concave, and therefore information is monotonically bad for
total surplus. We can use our analysis of Example 1 to pin down the threshold α̂. In this case,
c1 = −d2d3, c2 = 0, c3 = 1, c4 = d3 + 1. Parameter c4 is therefore positive because d3 > −1.
Then, using Equation (27), we have

α̂ =
d3 + 1

2d3 + 3
,

which ranges from 0 to 1
2
. The special case of the linear demand is where d3 = 1, and therefore

α̂ = 0.4. For linear demands, information has no effect on 0.4-surplus, and has a positive effect
when α ≤ 0.4 and a negative effect when α ≥ 0.4.

Concavity of revenue. We next verify that this example indeed has a concave revenue
function. For this, let us calculate the derivative of the density,

f ′(p) =
c1c3c4(c2 + c3p)

c4−1

p2
− 2c1(c2 + c3p)

c4

p3
.

Therefore,

R′′(p) = −2f − pf ′ =
c1(c2 + c3p)

c4−1

p2

(
− 2(c2 + c3p)− pc3c4 + 2(c2 + c3p)

)
=

−c1c3c4(c2 + c3p)
c4−1

p
,

which is negative because c1 ≥ 0, c2 + c3p ≥ 0 for all p ∈ [p, p̄], and c3, c4 have the same
signs.

The special case where D(p) = d1 + d2p
d3 . Notice that the density function is f(p) =

−d2d3p
d3−1. So for the density function to be positive (the demand to be downward-sloping),

we need d2d3 ≤ 0. The marginal revenue of this demand curve is

R′′(p) = 2D′(p) + pD′′(p) = 2d2d3p
d3−1 + d2d3(d3 − 1)pd3−1 = d2d3(d3 + 1)pd3−1

which, because d2d3 ≤ 0, is negative whenever d3 + 1 ≥ 0, that is, d3 ≥ −1.

B.2 Example 2

We show that 1-IMB holds for two demand curves D(p, θi) = (θi − p)c for i ∈ {1, 2} and
θi ≥ 0, c ∈ (0, 1] with supports [0, θi], if and only if there is partial inclusion. The necessity
of partial inclusion follows directly from Theorem 1. So suppose there is partial inclusion. In
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this example,

R(p, θi) = p(θi − p)c

Rp(p, θi) = (θi − p)c − pc(θi − p)c−1 = (ai − p)c−1
(
ai − p(1 + c)

)
so the optimal monopoly price for each demand is p∗(θi) = θi

1+c
. Assuming without loss of

generality that θ1 ≥ θ2, the partial inclusion condition is θ2
1+c

≤ θ1.
To establish 1-IMB, we want to show that

CS(p, θ2)− CS(p, θ1) +
Rp(p, θ2)CSp(p, θ1)−Rp(p, θ1)CSp(p, θ2)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)
(Rp(p, θ1)−Rp(p, θ2))

is decreasing. To simplify notation, let us define

h(p) :=
Rp(p, θ2)CSp(p, θ1)−Rp(p, θ1)CSp(p, θ2)

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)

and write the expression as

CS(p, θ2)− CS(p, θ1) + h(p)(Rp(p, θ1)−Rp(p, θ2)).

Because CSp(p, θ) = −D(p, θ), the derivative of this expression, that we want to show is
negative, is

D(p, θ1)−D(p, θ2) + h(p)(Rpp(p, θ1)−Rpp(p, θ2)) + hp(p)(Rp(p, θ1)−Rp(p, θ2)) =

(D(p, θ1)−D(p, θ2))(1 + hp(p)) +

(Dp(p, θ1)−Dp(p, θ2))(php(p) + 2h(p)) +

(Dpp(p, θ1)−Dpp(p, θ2))ph(p),

where the equality followed from writingRp andRpp in terms of the demand curves and their
derivatives, Rp(p, θ) = D(p, θ) + pDp(p, θ) and Rpp(p, θ) = 2Dp(p, θ) + pDpp(p, θ). The sign
of the last term is negative. For this, notice that

Dpp(p, θ1)−Dpp(p, θ2) = c(c− 1)

(
(θ1 − p)c−2 − (θ2 − p)c−2

)
≤ 0

because θ1 ≤ θ2 and c− 1 ≤ 0 (and therefore c− 2 ≤ 0), and h(p) ≥ 0 given that Rp(p, θ1) ≤
0 ≤ Rp(p, θ2). Therefore, it is sufficient to show that

(D(p, θ1)−D(p, θ2))(1 + hp(p)) + (Dp(p, θ1)−Dp(p, θ2))(php(p) + 2h(p)) (28)

is negative. To do so, we use the following two claims which we prove in the following two
subsections.
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Claim 1. 2h(p)− p ≤ 0.

Claim 2. 1 + hp(p) ≥ 0.

Using Claim 1 and Claim 2, we show that the expression in Equation (28) is negative. For
this, first notice that because Rp(p, θ1) ≤ 0 ≤ Rp(p, θ2), we have

D(p, θ1) ≤ −pDp(p, θ1)

D(p, θ2) ≥ −pDp(p, θ2)

and therefore

D(p, θ1)−D(p, θ2) ≤ −p(Dp(p, θ1)−Dp(p, θ2)).

So because 1 + hp(p) ≥ 0 by Claim 2, we have

(D(p, θ1)−D(p, θ2))(1 + hp(p)) ≤ −p(Dp(p, θ1)−Dp(p, θ2))(1 + hp(p)).

We can therefore give an upper bound on the expression in Equation (28) as follows

(D(p, θ1)−D(p, θ2))(1 + hp(p)) + (Dp(p, θ1)−Dp(p, θ2))(php(p) + 2h(p))

≤(Dp(p, θ1)−Dp(p, θ2))(−p(1 + hp(p)) + php(p) + 2h(p))

=(Dp(p, θ1)−Dp(p, θ2))(2h(p)− p) ≤ 0,

where the last inequality follows from Claim 1 and because

Dp(p, θ1)−Dp(p, θ2).

So to complete the proof, we only need to establish Claim 1 and Claim 2.

B.2.1 Proof of Claim 1

Let us examine the numerator and the denominator of h(p) in turn. The numerator is

Rp(p, θ2)CSp(p, θ1)−Rp(p, θ1)CSp(p, θ2)

=− (D(p, θ2) + pDp(p, θ2))D(p, θ1) + (D(p, θ1) + pDp(p, θ1))D(p, θ2)

=p(D(p, θ2)Dp(p, θ1)−D(p, θ1)Dp(p, θ2)).
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The denominator is

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)

=(D(p, θ2) + pDp(p, θ2))(2Dp(p, θ1) + pDpp(p, θ1))

−(D(p, θ1) + pDp(p, θ1))(2Dp(p, θ2) + pDpp(p, θ2))

=2(Dp(p, θ1)D(p, θ2)−Dp(p, θ2)D(p, θ1))

+p(Dpp(p, θ1)D(p, θ2)−Dpp(p, θ2)D(p, θ1))

+p2(Dpp(p, θ1)Dp(p, θ2)−Dpp(p, θ2)Dp(p, θ1)).

Therefore,

2h(p)− p =

+
1

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)
×(

2p(D(p, θ2)Dp(p, θ1)−D(p, θ1)Dp(p, θ2))

− 2p(Dp(p, θ1)D(p, θ2)−Dp(p, θ2)D(p, θ1))

− p2(Dpp(p, θ1)D(p, θ2)−Dpp(p, θ2)D(p, θ1))

− p3(Dpp(p, θ1)Dp(p, θ2)−Dpp(p, θ2)Dp(p, θ1))

)

=
p2

Rp(p, θ2)Rpp(p, θ1)−Rp(p, θ1)Rpp(p, θ2)
×(

− (Dpp(p, θ1)D(p, θ2)−Dpp(p, θ2)D(p, θ1))

− p(Dpp(p, θ1)Dp(p, θ2)−Dpp(p, θ2)Dp(p, θ1))

)
.

Because the denominator of h is negative, it is sufficient to show that

(Dpp(p, θ1)D(p, θ2)−Dpp(p, θ2)D(p, θ1)) + p(Dpp(p, θ1)Dp(p, θ2)−Dpp(p, θ2)Dp(p, θ1))

is negative. Substituting the definition of the demands, this expression is

c(c− 1)(θ1 − p)c−2(θ2 − p)c−2(θ2 − θ1)(θ1 + θ2 − p(2 + c)).
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It is therefore sufficient to show that θ1 + θ2 − p(2 + c) ≥ 0. For this, notice that because
p ≤ θ2

1+c
and θ1 ≥ θ2

1+c
, we have

θ1 + θ2 − p(2 + c) ≥ θ1 + θ2 −
θ2(2 + c)

1 + c

≥ θ2(2 + c)

1 + c
− θ2(2 + c)

1 + c
= 0,

completing the proof.

B.2.2 Proof of Claim 2

Using the definitions of the demand curves, we have

h(p) =
p(θ1 − p)(θ2 − p)

p2c(1 + c)− p(1 + c)(θ1 + θ2) + 2θ1θ2
.

Let us write h(p) = f(p)/g(p) where

f(p) = p(θ1 − p)(θ2 − p)

g(p) = p2c(1 + c)− p(1 + c)(θ1 + θ2) + 2θ1θ2.

Therefore,

1 + h′(p) = 1 +
f ′(p)g(p)− g(p)f ′(p)

g2(p)
=

g2(p) + f ′(p)g(p)− g(p)f ′(p)

g2(p)
.

So in order to prove that 1 + h′(p) ≥ 0, we need to prove that

g2(p) + f ′(p)g(p)− g(p)f ′(p) ≥ 0.

We do so in three steps.

Step 1. We show that g2(p) + f ′(p)g(p) − g(p)f ′(p) is decreasing in p. So it is sufficient to
establish the inequality at the highest possible price, p = θ2

1+c
.

Step 2. We show that g2(p) + f ′(p)g(p) − g(p)f ′(p) is increasing in θ1. So it is sufficient to
establish the inequality at the lowest possible θ1, θ1 = θ2

1+c
.

Step 3. We show that at p = θ2
1+c

, θ1 = θ2
1+c

, the expression is zero.

Let us now explain each step in detail.
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Step 1. The derivative of g2(p) + f ′(p)g(p)− g(p)f ′(p) with respect to p is

2(p2c(1 + c)− p(1 + c)(θ1 + θ2) + 2θ1θ2)(2pc(1 + c)− (1 + c)(θ1 + θ2))

+ (6p− 2(θ1 + θ2))(p
2c(1 + c)− p(1 + c)(θ1 + θ2) + 2θ1θ2)

− 2c(1 + c)p(θ1 − p)(θ2 − p).

The last term is positive because p ≤ θ1, θ2. So it is sufficient to show that the first two terms
are negative, that is

(p2c(1 + c)− p(1 + c)(θ1 + θ2) + 2θ1θ2)×

(2pc(1 + c)− (1 + c)(θ1 + θ2) + 6p− 2(θ1 + θ2))

is negative. The first term is positive because it is g(p) ≥ 0. So we want to show that the
second term is negative. For this, given p ≤ θ2

1+c
and θ1 ≥ θ2

1+c
, let us write

(2pc(1 + c)− (1 + c)(θ1 + θ2) + 6p− 2(θ1 + θ2))

=p(4c(1 + c) + 6)− (θ1 + θ2)(4 + 2c)

≤ θ2
1 + c

(4c(1 + c) + 6)− (
θ2

1 + c
+ θ2)(4 + 2c)

=
2θ2(c− 1)2

1 + c
≤ 0.

Step 2. At p = θ2
1+c

, the derivative of g2(p) + f ′(p)g(p)− g(p)f ′(p) with respect to θ1 is

2θ1(θ
2
2

3c

1 + c
) + θ32(

−5c− c2

(1 + c)2
).

Because this expression is decreasing in θ1, to show that it is positive, it is sufficient to show
that it is positive at the lowest possible θ1, θ1 = θ2

1+c
, at which the expression is

θ32(c− c2)

(1 + c)2
≥ 0.

Step 3. At p = θ2
1+c

, θ1 = θ2
1+c

, both g and f are zero. To see this, consider f ,

f(p) = p(θ1 − p)(θ2 − p),

which is zero because θ1 = p. Now consider g,

g(p) = p2c(1 + c)− p(1 + c)(θ1 + θ2) + 2θ1θ2

=
θ22c

1 + c
− θ22(2 + c)

1 + c
+

2θ22
1 + c

= 0.
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Therefore,

g2(p) + f ′(p)g(p)− g(p)f ′(p) = 0.

B.3 Example 3

For a CES demand curve D(p, θ) = (c+ p)−θ, the optimal monopoly price is given by

p∗(θ) =
c

θ − 1
.

Thus, we require c > 0 and θ > 1 to ensure that a finite monopoly price exists when the
monopolist faces each demand curve. To make the exposition of the proof more intuitive, we
define θ1 = θH and θ2 = θL, which means θH > θL, and use (θH , θL) instead of (θ1, θ2). Thus,
the statement of the example is

|θH − θL| <
1

2
⇒ α− IMB holds for α ≥ 1

2

Let x = θH − θL, 0 < x ≤ 1
2
. The derivative of the expression in Equation (3) simplifies to

−(c+ p)−θL−x−1 ((c− θLp+ p)(c+ p)x − c+ θLp+ px− p)

2 (2c2 − cp(2θL + x− 3) + (θL − 1)p2(θL + x− 1))2
×(

2c4 + 8c3p− c2p2(θL(3θL + 2) + 3θLx+ x− 11) + cp3(2θL + x− 3)(θL(θL + x)− 2)

− (θL − 1)p4(θL + x− 1)(θL(θL + x)− 1)
)

The denominator is positive. Thus, in order to show that the derivative is negative for all p,
we need to show that the numerator is positive.

1. (c+ p)−(θL+x+1) > 0: always true.

2. (c− θLp+ p)(c+ p)x − c+ θLp+ px− p > 0.

Simplify the above expression to get

(c− (θL − 1)p)(c+ p)x − (c− (θL − 1)p) + px

=((c+ p)x − 1) (c− (θL − 1)p) + px

As p∗(θH) < p < p∗(θL) and p∗(θL) =
c

θL−1
, c− (θL − 1)p > 0.

If ((c+ p)x − 1) > 0, we are done. So suppose ((c+ p)x − 1) < 0. In this case, because
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c− (θL − 1)p is maximized at p = p∗(θH) = p∗(θL + x) = c
θL+x−1

, we have

((c+ p)x − 1) (c− (θL − 1)p) + px

≥ ((c+ p)x − 1) (c− (θL − 1)p∗(θH)) + px

=
cx ((c+ p)x − 1)

θL + x− 1
+ px. (29)

The derivative of this expression with respect to p is given by

x2c(c+ p)x−1

θL + x− 1
+ x,

which is positive. Thus, Equation 29 is minimized when p takes its minimum value at
p = p∗(θH) = p∗(θL + x). In this case, Equation 29 simplifies to

cx
(
c
(

1
θL+x−1

+ 1
))x

θL + x− 1
> 0.

Thus, the minimum value of ((c+ p)x − 1) (c − (θL − 1)p) + px is greater than zero,
which completes the proof.

3. (
2c4 + 8c3p− c2p2(θL(3θL + 2) + 3θLx+ x− 11) + cp3(2θL + x− 3)(θL(θL + x)− 2)

− (θL − 1)p4(θL + x− 1)(θL(θL + x)− 1)
)
> 0 (30)

We show that the derivative of Equation 30 with respect to x is negative, which means
that it takes its lowest value at the highest value of x, x = 1

2
. The derivative is given by

p2
(
θ2Lp(3(c+ p)− 2px) + θL(c+ p)(2px− 3c)− (c+ p)2 − 2θ3Lp

2
)
.

Dividing this expression by p2 does not change its sign. So we want to show that the
following expression is negative

θ2Lp(3(c+ p)− 2px) + θL(c+ p)(2px− 3c)− (c+ p)2 − 2θ3Lp
2. (31)

Let us first evaluate Equation 31 at the minimum and maximum p i.e. p∗(θL + x) and
p∗(θL). At p∗(θL + x), the expression is − c2(θL+x)(2(θL−1)θL+(θL+1)x)

(θL+x−1)2
while at p∗(θL), it

is given by −2c2θ2L
θL−1

. Thus, the two end points are always negative.

As such, in order for Equation 31 to be negative for all p∗(θL + x) ≤ p ≤ p∗(θL) it
is sufficient to show that it is convex in p. The second derivative of Equation 31 with
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respect to p is

−2(θL − 1)(θL(2θL + 2x− 1)− 1) = −2(θL − 1) (2θL(θL + x− 1)(θL − 1)) > 0.

Therefore, Equation 30 is minimized for the highest value of x which is x = 1
2
.

Evaluating Equation 30 at x = 1
2
gives

1

4
(c− (θL − 1)p)

(
8c3 + 8c2(θL + 3)p+ 2c

(
−2θ2L + θL + 9

)
p2 +

(
4θ3L − 5θL + 2

)
p3
)

To show that the above expression is positive, it is sufficient to show that each of its
two constituents are positive

(a) (c − (θL − 1)p) > 0: as we are only interested in p∗(θL + 1
2
) < p < p∗(θL) and

p∗(θL) =
c

θL−1
, this is true.

(b) (8c3 + 8c2(θL + 3)p+ 2c (−2θ2L + θL + 9) p2 + (4θ3L − 5θL + 2) p3) > 0

Wewill show that this expression is positive atminimumvalue of p, p = p∗(θL+
1
2
),

and that it is increasing in p.

First, the value of this expression at p = p∗(θH) = p∗(θL + 1
2
) = 2c

2θL−1
is given by

16c3(2θL + 1)2

(2θL − 1)2
> 0

which is positive.
Next, take the derivative with respect to p and simplify to get

8c2(θL + 3) + 4c
(
−2θ2L + θL + 9

)
p+ 3

(
4θ3L − 5θL + 2

)
p2

=8c2(θL + 3) + 36cp− 4cpθL(2θL − 1) + 3p2(2θL − 1)(2θ2L + θL − 2)

=8c2(θL + 3) + 36cp+ (2θL − 1)(3p2θL(2θL + 1)− 4cθLp− 6p2).

The first two terms are positive. So in order to show that the derivative is positive,
we show

3(2θL + 1)θLp
2 − 4cθLp− 6p2 > 0.

Dividing by p

3(2θL + 1)θLp− 4cθL − 6p

=6(θ2L − 1)p+ 3θLp− 4cθL = 6
(
θ2L − 1

)
p+ θL(3p− 4c)

In order to show that the latter expression is positive, it is sufficient to show that
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it is positive at minimum value of p, p = p∗(θH) = p∗(θL + 1
2
) = 2c

2θL−1
:

6
(
θ2L − 1

)
p+ θL(3p− 4c) >6

(
θ2L − 1

)
p∗(θL +

1

2
) + θL(3p

∗(θL +
1

2
)− 4c)

=2c

(
θL + 3(1− 1

2θL − 1
)

)
> 0

The last line is positive as θL > 1, which implies 1
2θL−1

< 1.

Necessity of θH ≤ θL + 1
2
. For any pair of (θH , θL), derivative of the expression in Equa-

tion (3) at p∗(θH) is given by

−
(2θH − 2θL + 1)(θH − θL)

(
cθH
θH−1

)1−θH

2cθ2H

As θH > θL > 1, this expression is always negative. Furthermore, for (θH , θL), derivative of
the expression in Equation (3) at p∗(θL) is given by

(2θH − 2θL − 1)(θH − θL)
(

cθL
θL−1

)1−θH

2cθ2L

As θL > 1, this expression is strictly increasing in θH and is zero if θH = θL + 1
2
, which

completes the proof.

The concavity comparison of Aguirre et al. (2010). Aguirre et al. (2010) use a condition
that is violated in our example. In particular, the condition requires that the demand curve
with a lower monopoly price, θ1, is more convex in the sense that

Dpp(p, θ1)

Dp(p, θ1)
≥ Dpp(p, θ2)

Dp(p, θ2)
.

In our example,

Dp(p, θi) = −θi(c+ p)−θi−1,

Dpp(p, θi) = θi(θi + 1)(c+ p)−θi−2,

Dpp(p, θ1)

Dp(p, θ1)
= −1 + θi

c+ p
.

Therefore, their ranking requires that

1 + θ1
c+ p

≤ 1 + θ2
c+ p

,

which is violated because θ1 > θ2.
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B.4 Example 4

Consider IMG first. We find conditions for 1-IMG, implying α-IMG holds for any α. Recall
that Corollary 4 says, as summarized in Figure 3, that 1-IMG holds if the marginal revenue
curves are concave and the more elastic demand curve, θ1, has

1. a higher level, D(p, θ1) ≥ D(p, θ2), and,

2. a more concave revenue curve, Rpp(p, θ2) ≤ Rpp(p, θ1), or equivalently a less steep
marginal revenue curve.

In this example, both marginal revenue curves are linear becauseRppp(p, θ) = 0. Additionally,
the two marginal revenue curves have the same slope, −2. Therefore, the only condition left
to check is D(p, θ1) ≥ D(p, θ2) to ensure that the cross-types price change effect is positive.
This condition is

c1 − c2 ≥ (a2 − a1)p (32)

for all prices in [a1
2
, a2

2
]. Because a2 ≥ a1, the right hand side of the above inequality is

increasing in p and takes its highest value at p = p∗(θ2) =
a2
2
, so the above condition becomes

c1 − c2 ≥ (a2 − a1)
a2
2
. (33)

To summarize, 1-IMGholds if c1 is sufficiently larger than c2, asmeasured by Equation (33).
This is intuitively because as c1−c2 increases, the level of demand for the first type θ1 increases
compared to the level of demand for the second type θ2, which increases the cross-group price
change effect. Because the marginal revenue curves are linear and parallel to each other, the
price curvature effect is zero. And the within-type price effect is positive because consumers
surplus is a convex function of price.

Now consider IMB. We find conditions for 1
2
-IMB, implying α-IMB holds for any α ≥ 1

2
.

Recall that Corollary 4 says, as summarized in Figure 6, that 1
2
-IMB holds if the marginal

revenue curves are convex and the more elastic demand curve, θ1, has

1. a lower derivative, Dp(p, θ1) ≤ Dp(p, θ2), and,

2. a more convex revenue curve, Rpp(p, θ2) ≥ Rpp(p, θ1), or equivalently a more steep
marginal revenue curve,

and an additional condition that ensures that the within-type price change effect is negative
holds. In this example the marginal revenue curves are linear and have the same slope, so the
only conditions left to check are regarding the ranking of the derivatives and the technical
condition Dp(p, θ) + pDpp(p, θ) ≤ 0 that implies that the within-type price change effect is
negative.
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The condition Dp(p, θ2) ≤ Dp(p, θ1), ensuring the cross-types price change effect is neg-
ative, simply becomes

c1 ≤ c2.

The condition Dp(p, θ) + pDpp(p, θ) ≤ 0, ensuring the within-type price change effect is
negative, becomes

ci ≤ p2

for all prices in [a1
2
, a2

2
] and each i ∈ {1, 2}, which given the condition c1 ≤ c2 can be sum-

marized as c2 ≤ a21
4
. To summarize, 1

2
-IMB holds if each ci is small enough and c1 is no more

than c2.
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