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Introduction

• An old problem: how to design mechanisms with transfers
◦ Sell multiple goods
◦ Choose different dimensions of quality

• Type space: multiple dimensions

• The goal: come up with a method that is somewhat
tractable and applicable to a range of problems

• Today: Focus on selling two goods
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The Model

• Seller selling two goods:

p

• A buyer
2∑

i=1
xiqi−p = x ·q−p
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The Model

• buyer’s type, x, is distributed according to density f (x) with:

◦ Support is [0,1]2 = X
◦ density f (x) is C1

• Our results work when there is a cost for q: e.g.,
c (q) =

∑2
i=1 q2

i /2
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Mechanisms

• Mechanism: {p (x) ,q (x)}x∈X; p : X→ R,q : X→ R2
+

• IC: x ·q (x)−p (x)≥ x ·q
(
x′
)
−p
(
x′
)
,∀x′,x

• IR: x ·q (x)−p (x)≥ 0

Proposition. Rochet (1987). An allocation is incentive com-
patibility if and only if there exists a convex potential function
u (x) such that ∇u (x) = q (x).
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The Main Idea: Heuristics
• For every two paths between x and 0, there should be a

constraint:
´

q ·dr1 =
´

q ·dr2
◦ Too many constraints!!!

• The main heuristic:
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The Main Idea: More Formal

• Formally, we show a semi/strong duality result that can
handle any finite class of paths

• Use it to look at class of problems where considering two
classes of paths are enough

• Hope that a potential function exists
• Reason for hope(!):

Green (Stokes) Theorem. If q : X→ R2 is continuously differ-
entiable, then ∂q1

∂x2
(x) = ∂q2

∂x1
(x) ,∀x ∈ X implies

¸
C q · dx = 0 for all

piece-wise smooth closed loops in X.
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Mechanism Design Problem

sup
p:X→R,q:X→[0,1]2,u:X→R+

ˆ
p (x) f (x)dx

subject to

u (x) : convex
u (x) = x ·q (x)−p (x)

∇u (x) = q (x)
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Mechanism Design Problem

sup
q:X→[0,1]2,u:X→R+

ˆ
[x ·∇u (x)−u (x)] f (x)dx

subject to

u (x) : convex

��HHu (x)(((((
((hhhhhhh= x ·q (x)−p (x)

∇u (x) = q (x)
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Mechanism Design Problem

sup
q:X→[0,1]2,u:X→R+

ˆ
u (x)dµ

subject to

u (x) : convex
∇u (x) = q (x)

Use Green-Stokes Theorem

µ (A) =
ˆ

A
− (3f (x)+∇f (x) · x)dx

+
ˆ

A∩[0,1]×{1}
f (x1,1)dx1 +

ˆ
A∩{1}×[0,1]

f (1,x2)dx2
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The signed measure µ
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Mechanism Design Problem – Relaxed

sup
u:X→R+

ˆ
u (x)dµ

subject to

u∈
{

u|∃q : X→ [0,1]2 ,u (x) =
ˆ x1

0
q1 (t,0)dt +

ˆ x2

0
q2 (x1, t)dt

}
= F1

u∈
{

u|∃q : X→ [0,1]2 ,u (x) =
ˆ x2

0
q2 (0, t)dt +

ˆ x1

0
q1 (t,x2)dt

}
= F2

Basic idea: we can use Lagrange multipliers associated with the
equality constraint. Need a strong duality result to be able to
use them
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Mechanism Design Problem – Relaxed

sup
u∈F1∩F2

〈u,µ〉

We can view the above as a function of µ over the convex set
F1∩F2.

S (ω|C) = sup
u∈C
〈u,ω〉

C is convex subset of a t.v.s. F ; ω ∈F∗ a member of the dual of
F∗.
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Support Functional

• S (·|·) is the support functional for set C in the direction ω –
see Kushnir (several!)

• What is the space F?

F = L2 (X)×L2 ([0,1]×{1})×L2 ({1}× [0,1])

F∗ = F

• Recall that

µ (A) =
ˆ

A
− (3f (x)+∇f (x) · x)dx

+
ˆ

A∩[0,1]×{1}
f (x1,1)dx1 +

ˆ
A∩{1}×[0,1]

f (1,x2)dx2

So µ ∈F∗.
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Strong Duality

Proposition. Support functional satisfies

S (µ|F1∩F2) = inf
ω∈F

S (ω|F1)+S (µ−ω|F2) (F)

• ω is the Lagrange multiplier associated with the equality
constraint

• Key difficulty: typically need non-empty interior for F1
and F2 (Fenchel-Rockefellar Theorem)

• We follow Mitter (2008); see also Gretsky, Ostroy, and
Zame (2002), Kleiner and Manelli (2019)
◦ Strong duality is equivalent to non-empty subgradient of

the value function
◦ Suffiecient to show that when µ is shifted by δµ, the

objective changes by at least M
∥∥δµ

∥∥ for some M > 0.

Alexey Kushnir, Ali Shourideh Optimal Multi-Dimensional Mechanisms: A Heuristic Approach



Strong Duality

Corollary. Suppose q : X→ [0,1]2 and ω ∈F exists such that:
1. Relaxed IC holds:

u (x) =
ˆ x1

0
q1 (t,0)dt +

ˆ x2

0
q2 (x1, t)dt

u (x) =
ˆ x2

0
q2 (0, t)dt +

ˆ x1

0
q1 (t,x2)dt

2. We have

S (ω|F1) = 〈u,ω〉 ,S (µ−ω|F2) = 〈u,µ−ω〉

Then, S (µ|F1∩F2) = 〈u,µ〉.
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From 2D to 1D

• How do we find u such that S (ω|F1) = 〈u,ω〉?
• This is identical to the 1D problem, e.g. Myerson,

Mussa-Rosen, etc.
• Pointwise optimization:

〈u,ω〉=
ˆ [ˆ x1

0
q1 (t,0)dt +

ˆ x2

0
q2 (x1, t)dt

]
dω
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Optimal 1D Allocations

• Optimal allocations for F1:

q1 (x1,0) =






1 ω ([x1,1]× [0,1])> 0

∈ [0,1] ω ([x1,1]× [0,1]) = 0

0 ω ([x1,1]× [0,1])< 0

q2 (x) =






1
´ 1

x2
w (x1, t)dt + w (x1,1)> 0

∈ [0,1]
´ 1

x2
w (x1, t)dt + w (x1,1) = 0

0
´ 1

x2
w (x1, t)dt + w (x1,1)< 0

• Optimal allocations for F2 is similar
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Symmetry

Assumption. Density f (x) is symmetric, i.e., f (x) = f
(

xT
)
.

• When f is symmetric, so is µ. We can conjecture that

ω (A) =
ˆ

A
w (x)dx +

ˆ
A∩[0,1]×{1}

f (x1,1)dx1

(µ−ω) (A) =
ˆ

A

(
−m (x)−w

(
xT
))

dx +
ˆ

A∩{1}×[0,1]
f (1,x2)dx2

• So if we can come up with w (x) =−m (x)−w
(

xT
)

we are
done!
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Deterministic Mechanisms

• 1D: (revneue maximizing) optimal mechanism is
determinic – posted price: Myerson (1981), Riley and
Zeckhauser (1983)

• 2D: when is this the case?
• A symmetric deterministic mechanism should have this

form:
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Deterministic Mechanisms
Proposition. If the solution to (F) is symmetric and determin-
istic, then

−
ˆ 1

x
m (x1, t)dt + f (x1,1) = 0,∀x1 ∈ [0,x]
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Deterministic Mechanisms
Corollary. If f (x) = g (x1)g (x2) and the solution to (F) is sym-
metric and deterministic, then:

1. g has power form

g (x) = (1 +α)xα ,

2. Upper cutoff satisfies

x =
(

2 +α
2α+ 3

) 1
1+α

Note: Monopoly posted price is
(

1
2+α

) 1
1+α < x.

3. The lower cutoff satisfies
ˆ 1

x

[
f (x1,1)− 1

2

ˆ 1

max{x+x−x1,x1}
m (x1, t)dt

]
dx1 = 0
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Integral Equation

• Finding virtual values comes down to solving integral
equations:

w (x)+ w
(

xT
)

=−m (x) ,∀x

f (x1,1)+
ˆ 1

max{x+x−x1,x}
w (x1, t)dt = 0

• We can construct several solutions. Existence is equivalent
to virtual values being positive over the “both sell” region.
This is somewhat easy to check.
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Deterministic Mechanisms

• Calculations suggest that for α ≥ 0, f (x) = (1 +α)2 (x1x2)α
virtual values are indeed positive in the both-sell region.
◦ Still needs to be proved!
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A (somewhat) Generic Class of Random
Mechanisms

• Losely speaking, the restriction for deterministic
mechanisms is fairly non-generic.

• Alternative mechanism:
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Random Mechanisms

• The both-sell region is identical to deterministic.
• Integral equation for virtual values is the same
• We are still looking for sufficient conditions for positive

virtual values
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Auctions

• The strong duality result holds for an number of buyers
• Optimal: Allocate each good to to the buyer with highest

positive virtual value
Proposition. With any number of buyers the participation re-
gions are the same.

• Integral equation is much more difficult to solve.
◦ IC depends on the level curves of virtual values

• Unlike 1D, optimal allocations depend on the number of
buyers:
◦ interim quantities Qn (x) are CDF’s of highest positive

virtual value for good n
◦ Incentive compatbility

∂Q1 (x)
∂x2

= ∂Q2 (x)
∂x1
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Conclusion

• Developed a heuristic method to solve 2D mechanisms
design problems with transfers

• Finding optimal allocations often equivalent to solving
integral equations

• Very much work in progress.
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