When can price discrimination benefit consumers?

Nima Haghpanah (Penn State)

with Maryam Farboodi (MIT Sloan) and Ali Shourideh (CMU)

June 28, 2024

・ロト・日本・ビア・ビア・ 日・ もくの

1/1

Pigou: "Yes! (with linear demands)" Is price discrimination bad? (for CS, TS, ...)

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

<□> <⊡> <⊡> < 글> < 글> < 글> < ⊇ > < ○ < ⊙ < < 3/1

When is "more price discrimination" bad?

When is "more price discrimination" bad?

When is "more price discrimination" bad?

When it is \Rightarrow seller's data usage must be banned When it isn't \Rightarrow scope for appropriate regulation

Results

A characterization of when more price discrimination is bad.

- A separability condition
 - All demands must be decomposable into <u>at most two demands</u>
- Satisfied by linear demands
 - Linear demand \Rightarrow more price discrimination is bad
 - Pigou's idea generalizes

Model

A family of demand curves $\mathcal{D} = \{D(p, \theta)\}_{\theta \in \Theta}$, a distribution $\mu \in \Delta(\Theta)$.

Each downward sloping with concave revenue function.

A segmentation: a distribution $f \in \Delta(\Delta(\Theta))$ over "markets" $\nu \in \Delta(\Theta)$.

▶ s.t. $E_f[\nu] = \mu$.

▶ Seller chooses a profit-maximizing price for every market $\nu \in f$.

"Information is always bad" (IAB) if for every two segmentations f, f'

if f is a garbling of f'(f' finer than f)

 \Rightarrow f gives a higher (α -weighted) surplus $V^{\alpha} = \alpha CS + (1 - \alpha)R$.

Bergeman, Brooks, Morris 2015

A family of demand curves $\mathcal{D} = \{D(p, \theta)\}_{\theta \in \Theta}$, a distribution $\mu \in \Delta(\Theta)$.

A segmentation: a distribution $f \in \Delta(\Delta(\Theta))$ over "markets" $\nu \in \Delta(\Theta)$.

▶ s.t. $E_f[\nu] = \mu$.

Seller chooses a profit-maximizing price for every market $\nu \in f$.

Bergeman, Brooks, Morris 2015

A family of demand curves $\mathcal{D} = \{D(p, \theta)\}_{\theta \in \Theta}$, a distribution $\mu \in \Delta(\Theta)$.

Each representing a single unit-demand consumer.

A segmentation: a distribution $f \in \Delta(\Delta(\Theta))$ over "markets" $\nu \in \Delta(\Theta)$.

▶ s.t. $E_f[\nu] = \mu$.

Seller chooses a profit-maximizing price for every market $\nu \in f$.

Bergeman, Brooks, Morris 2015

A family of demand curves $\mathcal{D} = \{D(p, \theta)\}_{\theta \in \Theta}$, a distribution $\mu \in \Delta(\Theta)$.

Each representing a single unit-demand consumer.

A segmentation: a distribution $f \in \Delta(\Delta(\Theta))$ over "markets" $\nu \in \Delta(\Theta)$.

▶ s.t. $E_f[\nu] = \mu$.

Seller chooses a profit-maximizing price for every market $\nu \in f$.

Observation: If IAB holds for $\ensuremath{\mathcal{D}}$, then

 $\blacktriangleright D(p^*(\theta'),\theta) > 0, \forall \theta, \theta'.$

Observation: If IAB holds for $\ensuremath{\mathcal{D}}$, then

 $\blacktriangleright D(p^*(\theta'),\theta) > 0, \forall \theta, \theta'.$

Similar to BBM'15, Pram'21.

- Suppose $D(p^*(\theta'), \theta) = 0$.
- Consider $f \ni \mu$ that puts almost all mass on θ' , some mass on θ .
- ▶ θ will be "excluded" in μ .
- Separating some θ consumers is an improvement.

Observation: If IAB holds for $\ensuremath{\mathcal{D}}$, then

 $\blacktriangleright D(p^*(\theta'),\theta) > 0, \forall \theta, \theta'.$

Similar to BBM'15, Pram'21.

- Suppose $D(p^*(\theta'), \theta) = 0$.
- Consider $f \ni \mu$ that puts almost all mass on θ' , some mass on θ .
- ▶ θ will be "excluded" in μ .
- Separating some θ consumers is an improvement.

Observation: If IAB holds for $\ensuremath{\mathcal{D}}$, then

► $D(p^*(\theta'), \theta) > 0, \forall \theta, \theta'$. No-exclusion.

Similar to BBM'15, Pram'21.

- Suppose $D(p^*(\theta'), \theta) = 0$.
- Consider $f \ni \mu$ that puts almost all mass on θ' , some mass on θ .
- \triangleright θ will be "excluded" in μ .
- Separating some θ consumers is an improvement.

IAB holds for a family of demand curves {D(p, θ)}_θ if and only if (A) there is no exclusion and

- **1** IAB holds for a family of demand curves $\{D(p, \theta)\}_{\theta}$ if and only if
 - (A) there is no exclusion and
 - (B) there exist two functions $f_1, f_2 \ge 0$ and two demand curves D_1, D_2 such that
 - (i) $D(p,\theta) = f_1(\theta)D_1(p) + f_2(\theta)D_2(p)$ for all θ and
 - (ii) IAB holds for $\{D_1, D_2\}$

- **1** IAB holds for a family of demand curves $\{D(p, \theta)\}_{\theta}$ if and only if
 - (A) there is no exclusion and
 - (B) there exist two functions $f_1, f_2 \ge 0$ and two demand curves D_1, D_2 such that

(i)
$$D(p,\theta) = f_1(\theta)D_1(p) + f_2(\theta)D_2(p)$$
 for all θ and

- (ii) IAB holds for $\{D_1, D_2\}$
- 3 IAB holds for $\{D_1, D_2\}$, with $p_1^* \leq p_2^*$ (WLOG) if and only if

$$V_2(p)-V_1(p)+rac{-rac{R_1'(p)}{R_2'(p)}V_2'+V_1'}{-rac{R_1'(p)}{R_2'(p)}R_2''+R_1''}(R_1'(p)-R_2'(p))$$

is decreasing on (p_1^*, p_2^*) .

- **1** IAB holds for a family of demand curves $\{D(p, \theta)\}_{\theta}$ if and only if
 - (A) there is no exclusion and
 - (B) there exist two functions $f_1, f_2 \ge 0$ and two demand curves D_1, D_2 such that

(i)
$$D(p,\theta) = f_1(\theta)D_1(p) + f_2(\theta)D_2(p)$$
 for all θ and

- (ii) IAB holds for $\{D_1, D_2\}$
- 3 IAB holds for $\{D_1, D_2\}$, with $p_1^* \leq p_2^*$ (WLOG) if and only if

$$V_2(p)-V_1(p)+rac{-rac{R_1'(p)}{R_2'(p)}V_2'+V_1'}{-rac{R_1'(p)}{R_2'(p)}R_2''+R_1''}(R_1'(p)-R_2'(p))$$

is decreasing on (p_1^*, p_2^*) .

$$V_i(p) = V_i^{lpha}(p) = lpha CS_i(p) + (1-lpha)R_i(p).$$

The second condition: interpretation

$$V_2(p) - V_1(p) + rac{-rac{R_1'(p)}{R_2'(p)}V_2' + V_1'}{-rac{R_1'(p)}{R_2'(p)}R_2'' + R_1''}(R_1'(p) - R_2'(p))$$

The second condition: interpretation

$$V_2(p) - V_1(p) + rac{-rac{R_1'(p)}{R_2'(p)}V_2' + V_1'}{-rac{R_1'(p)}{R_2'(p)}R_2'' + R_1''}(R_1'(p) - R_2'(p))$$

Let μ_2 = measure of demand 2. Increase μ_2 slightly

effect =
$$\Delta(p) := \underbrace{V_2(p) - V_1(p)}_{\text{composition effect}} + \underbrace{E[V'_i(p)]p'(\mu_2)}_{\text{price change effect}}$$

The second condition: interpretation

$$V_2(p) - V_1(p) + rac{-rac{R_1'(p)}{R_2'(p)}V_2' + V_1'}{-rac{R_1'(p)}{R_2'(p)}R_2'' + R_1''}(R_1'(p) - R_2'(p))$$

Let μ_2 = measure of demand 2. Increase μ_2 slightly

$$\mathsf{effect} = \Delta(p) := \underbrace{V_2(p) - V_1(p)}_{\mathsf{composition effect}} + \underbrace{E[V_i'(p)]p'(\mu_2)}_{\mathsf{price change effect}}$$

If decreasing, then splitting μ_2 to $\frac{1}{2}(\mu_2 + \epsilon)$ and $\frac{1}{2}(\mu_2 - \epsilon)$ decreases value

Proposition

Consider $\mathcal{D} = \{a(D+b) \mid a \in [\underline{a}, \overline{a}] \ge 0, b \in [\underline{b}, \overline{b}] \le 0\}$

Proposition

Consider $\mathcal{D} = \{a(D+b) \mid a \in [\underline{a}, \overline{a}] \ge 0, b \in [\underline{b}, \overline{b}] \le 0\}$ and $\alpha = 0.5$.

The second condition: examples $V^{0.5} = 0.5CS + 0.5R$: total surplus.

Proposition

Consider $\mathcal{D} = \{a(D+b) \mid a \in [\underline{a}, \overline{a}] \ge 0, b \in [\underline{b}, \overline{b}] \le 0\}$ and $\alpha = 0.5$.

 $V^{0.5} = 0.5CS + 0.5R$: total surplus. Let f(p) = -D'(p) be the density of values. Let $p_1 : R'(p_1) + \underline{b} = 0, p_2 : R'(p_2) + \overline{b} = 0.$

Proposition

Consider $\mathcal{D} = \{a(D+b) \mid a \in [\underline{a}, \overline{a}] \ge 0, b \in [\underline{b}, \overline{b}] \le 0\}$ and $\alpha = 0.5$.

 $V^{0.5} = 0.5CS + 0.5R$: total surplus. Let f(p) = -D'(p) be the density of values. Let $p_1 : R'(p_1) + \underline{b} = 0, p_2 : R'(p_2) + \overline{b} = 0$.

Proposition

Consider $\mathcal{D} = \{a(D + b) \mid a \in [\underline{a}, \overline{a}] \ge 0, b \in [\underline{b}, \overline{b}] \le 0\}$ and $\alpha = 0.5$. IAB holds for \mathcal{D} if and only if $\log p^2 f(p)$ is concave over $[p_1, p_2]$.

 $V^{0.5} = 0.5CS + 0.5R$: total surplus. Let f(p) = -D'(p) be the density of values. Let $p_1 : R'(p_1) + \underline{b} = 0, p_2 : R'(p_2) + \overline{b} = 0.$

Proposition

Consider $\mathcal{D} = \{a(D+b) \mid a \in [\underline{a}, \overline{a}] \ge 0, b \in [\underline{b}, \overline{b}] \le 0\}$ and $\alpha = 0.5$.

• IAB holds for \mathcal{D} if and only if $\log p^2 f(p)$ is concave over $[p_1, p_2]$.

2 IAG holds for \mathcal{D} if and only if $\log p^2 f(p)$ is convex over $[p_1, p_2]$.

 $V^{0.5} = 0.5CS + 0.5R$: total surplus. Let f(p) = -D'(p) be the density of values. Let $p_1 : R'(p_1) + \underline{b} = 0, p_2 : R'(p_2) + \overline{b} = 0.$

Proposition

Consider $\mathcal{D} = \{a(D+b) \mid a \in [\underline{a}, \overline{a}] \ge 0, b \in [\underline{b}, \overline{b}] \le 0\}$ and $\alpha = 0.5$.

• IAB holds for \mathcal{D} if and only if $\log p^2 f(p)$ is concave over $[p_1, p_2]$.

2 IAG holds for \mathcal{D} if and only if $\log p^2 f(p)$ is convex over $[p_1, p_2]$.

If f is log-concave $\Rightarrow \log p^2 f(p)$ is concave. Uniform: f(p) = 1 is log-concave. Edge case: $f(p) = a_1 \frac{a_p^2}{p^2}$ both IAB and IAG! $\blacktriangleright D$ is a Gamma function.

Conclusions

A characterization of when no-segmentation is optimal.

- A strong separability condition
 - All demands must be decomposable into <u>at most two demands</u>
- Satisfied by linear demands
 - Pigou's intuition generalizes
 - \blacktriangleright Linear demand \Rightarrow no-segmentation is best among all segmentations

Conclusions

A characterization of when no-segmentation is optimal.

- A strong separability condition
 - All demands must be decomposable into <u>at most two demands</u>
- Satisfied by linear demands
 - Pigou's intuition generalizes
 - \blacktriangleright Linear demand \Rightarrow no-segmentation is best among all segmentations

Thanks!

Related Literature

Segmented versus non-segmented, downward sloping demands:

Pigou 1920; Robinson 1933; Varian 1985; Aguirre, Cowan, Vickers 2010

All segmentations, unit demands:

Bergemann, Brooks, Morris 2014

Duality approaches in persuasion:

 Dworczak, Martini 2019; Kolotilin, Corrao, Wolitzky 2023; Smolin, Yamashita 2023; Dworczak, Kolotilin 2023