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The Elements

For more than two thousand years, Euclid's Elements was held to be the paradigm for
rigorous argumentation.
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Fig. 1

c

If therefore 4 D [Fig. 1] is made 1 fourth power! and CD and DE are made
3 squares, and DF is made 9, BA will necessarily be a square and BC will
necessarily be 3. Since we wish to add some squares to DC and DE, let these
[additions] be [the rectangles] CL and K M. Then in order to complete the square
it will be necessary to add the area LN M. This has been shown to consist of the
square on GC, which is half the number of [added] squares, since C L is the area
[made] from [the product of] GC times 4 B, where AB is a square, 4D having
been assumed to be a fourth power. But #L and MN are each equal to GC times
CB, by Euclid I, 42, and hence the area LMN, which is the number to be
added, is a sum composed of the product of GC into twice CB, that is, into the
number of squares which was 6, and GC into itself, which is the number of
squares to be added. This is our proof [of the possibility of a solution].

This having been completed, you will always reduce the part containing the
fourth power to a root, viz, by adding enough to each side so that the fourth
power with the square and number may have a root. This is easy when you take
half the number of the squares as the root of the number; and you will at the

1 Cardan writes ‘‘square-square,” quadratum quadratum (gg?), hence z*.



SECTION III.

Of the motion of bodies in eccentric conie sections.

PROPOSITION XI.

PROBLEM VL

If a body revolves in an ellipsis ; it is required to find the law of the

centripetal force tending to the focus of the ellipsis.

Lt S be the focus
of the ellipsis. Draw
SP cutting the diame-
ter DK of the ellipsis
in E, and the ordinate
Qv in z; and com-
plete the pnrﬂlelotrmm
QaPR. It is ev1dent
that EP is equ‘ll to the
greater semi-axis AC:
for drawing HI fromn
the other focus H of
the ellipsis P'll‘d.l]el to
EC, because CS,
are equal, ES, EI wﬂl

\

=

/A

be also equal; so that EP is the half sum of PS, PI, that is (because of
the parallels HI, PR, and the equal angles IPR, HPZ), of P'S, PH, which
taken together are equal to the whole axis 2AC. Draw QT perpendicu-
lar to SP, and putting L for the princi al latus rectum of the ellipsis (or for
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The Elements

The nineteenth century raised concerns:

e Conclusions are drawn from diagrams, using “intuition” rather than precise rules.

e Particular diagrams are used to infer general results (without suitable justification).

Axiomatizations due to Pasch and Hilbert, and Tarski's formal axiomatization later on,
were thought to make Euclid rigorous.



The Elements

But in some ways, they are unsatisfactory.

e Proofs in the new systems look very different from Euclid’s.
e The initial criticisms belie the fact that Euclidean practice was remarkably stable

for more than two thousand years.

Our project (Mumma, Dean, and me):

e Describe a formal system that is much more faithful to Euclid.

e Argue that the system is sound and complete (for the theorems it can express)
relative to Euclidean fields.

e Show that the system can easily be implemented using contemporary automated

reasoning technology.



Proposition 10

1o bisect a given finite straight line.

Let AB be the given finite straight line. S
Thus it is required to bisect the finite straight line AB.
Let the equilateral triangle ABC be constructed on it, .1
and let the angle ACB be bisected by the straight line CD;
. 9]
I'say that the straight line AB has been bisected at the point D. i ]

For, since AC is equal to CB, and CD is common,
the two sides AC, CD are equal to the two sides BC CD respectively;
and the angle ACD is equal to the angle BCD;
therefore the base AD is equal to the base BD. 1. 4]

Therefore the given finite straight line AB has been bisected at D.
QEFE



Proposition 16

In any triangle, if one of the sides be produced, the exterior angle is greater than

either of the interior and opposite angles.

Let ABC be a triangle, and let one side of it BC be
produced to D;

I say that the exterior angle ACD is greater
than either of the interior and opposite angles
CBA, BAC.

Let AC be bisected at E, [1. 10
and let BE be joined and produced in a straight
line to E;

let EF be made equal to BE, [i. 3]
let FC be joined, [Post. 1]
and let AC be drawn through to G. [Post. 2]

Then, since AE is equal to EC, and BE to EE
the two sides AE, EB are equal to the two sides
CE, EF respectively;

and the angle AEB is equal to the angle FEC, for they are vertical angles.

i

G

[1. 15]

Therefore the base AB is equal to the base FC, and the triangle ABE is equal to



The nature of diagrammatic inference

A F

B C D

By side-angle-side, AAEB = NCEF. So /BAC = ZACF.
Clearly ZACD > ZACF. So LACD > ZBAC.

But why is it clear that ZACD > ZACF?

10



First salient feature: the use of diagrams

Observation: the diagram is inessential to the communication of the proof. (Rather, it
is used to “see” that the inferences are correct.)

Exercise:
e Let p and g be points on a line.

e Let r be between p and q.

Let s be between p and r.
e Let t be between r and g.

Is s necessarily between p and t?

Methodological stance: from a logical perspective, the way to characterize
diagrammatic reasoning is in terms of the class of inferences that are licensed.

11



First salient feature: the use of diagrams

Observation: the diagram is inessential to the communication of the proof. (Rather, it
is used to “see” that the inferences are correct.)

Exercise:
e Let p and g be points on a line.

e Let r be between p and q. oo o
psrtq

Let s be between p and r.
e Let t be between r and g.

Is s necessarily between p and t?

Methodological stance: from a logical perspective, the way to characterize
diagrammatic reasoning is in terms of the class of inferences that are licensed.

12



First salient feature: the use of diagrams

Observation (Manders): In a Euclidean proof, diagrams are only used to infer “co-exact”
(regional / topological) information, such as incidence, intersection, containment, etc.

Exact (metric) information, like congruence, is always made explicit in the text.
Poincaré: “Geometry is the art of precise reasoning from badly constructed diagrams.”

Solution: take the “diagram” to be a representation of the relevant data.

13



Second salient feature: generality

Some aspects of diagrammatic inference are puzzling:

Let p and g be distinct points.

Let L be a line though p and g.

Let r and s be on opposite sides of L.

Let M be the line through r and s.
Let t be the intersection of L and M.

Is t necessarily between r and s? Is t necessarily between p and g7

Not every feature found in a particular diagram is generally valid.

We need an explanation as to what secures the generality.

14



Third salient feature: logical form

Theorems in Euclid are of the form:

Given points, lines, circles, satisfying ..., there are points, lines, circles satis-
fying . ..
where each ... is a conjunction of literals.

(If the inner existential quantifier is absent, it is a “"demonstration” rather than a
“construction.”)

Proofs contain a construction part, and a deduction part.
Reasoning is linear, assertions are literals.
Exceptions: proof by contradiction, using a case distinction (sometimes “without loss of

generality”). s



Fourth salient feature: nondegeneracy

In the statement of a theorem, points are generally assumed to be distinct, triangles are

nondegenerate, etc.

Two issues:

e Sometimes the theorem still holds in some degenerate cases.

e When the theorems are applied, Euclid doesn't always check nondegeneracy.

| will have little to say about this; in our system, nondegeneracy requirement are stated
explicitly.

16



Formalizing Euclid

Prior efforts:

e Nathaniel Miller's Ph.D. thesis (2001): system is very complicated; generality is
attained by considering cases exhaustively.
e John Mumma's Ph.D. thesis (2006): employs diagrams (and equivalence relation

on diagrams); generality is attained using rules.

Our formal system, E, is derived from Mumma's. But now a “diagram” is nothing more
than an abstract representation of topological information. The system spells out what

can be inferred from the diagram.

17



The language of £

Basic sorts:

e diagram sorts: points p,q,r,..., lines L, M, N, ..., circles o, 3,7, ...
e metric sorts: lengths, angles, and areas.

Basic symbols:

e diagram relations: on(p, L), same-side(p, g, L), between(p, g, r), on(p, ),
inside(p, ), center(p, ), intersects(L, M), =

e metric functions and relations: +, <, =, right-angle

e connecting functions: pg, Zpqr, Apgr

Other relations can be defined from these; e.g.

diff-side(p, g, L) = —on(p, L) A —on(q, L) A —same-side(p, q, L)
18



Sequents
The proof system establishes sequents of the following form:
= 3§,M,53. A

where I and A are sets of literals.

Applying a construction rule or prior theorem augments g, M, 3, A.

Applying deductive inferences augments A.
Case splits and suppositional reasoning temporarily augment TI.

| need to describe:

e Construction rules.
e Deductive inferences.

19



Construction rules

“Let p be a point on L"

No prerequisites.

“Let p be a point distinct from g and r”
No prerequisites.

“Let L be the line through p and ¢"
Requires p # q.

“Let p be the intersection of L and M."

Requires that L and M intersect.

And so on. ..

20



Deductive inferences

Four types:

1. Diagram inferences: any fact that can be “read off” from the diagram.
2. Metric inferences: essentially linear arithmetic on lengths, angles, and areas.

3. Diagram to metric: for example, if g is between p and r, then pg + gr = pr, and

similarly for areas and angles.

4. Metric to diagram: for example, if p is the center of v, g is on ~, and pr < pq,
then r is inside .

21



Diagram inferences

Both construction inferences and diagram inferences require an account of what can be
“read off” from the diagram.
We get this by closing the diagrammatic data in ' U A under various rules, including:

e properties of “between”
properties of “same side”

e “Pasch rules,” relating “between” and “same side”
e triple incidence rules

e circle rules

e intersection rules

These yield conclusions that are generally valid, that is, common to all possible

realizations.
22)



Proposition 1.10. Assume a and b are distinct points on L.
Construct a point d such that d is between a and b, and ad = db.

By Proposition |.1 applied to a and b, let ¢ be a point such that ab = bc and bc = ca

and c is not on L.

Let M be the line through ¢ and a.

Let N be the line through ¢ and b.

By Proposition 1.9 applied to a, ¢, b, M, N, let
e be a point such that Zace = Zbce, b and e
are on the same side of M, and a and e are on
the same side of \V.

Let K be the line through ¢ and e.

Let d be the intersection of K and L.

Hence Zace = Zacd.

Hence Zbce = Zbcd.

By Proposition |.4 applied to a, ¢, d, b, ¢, d have ad = bd. Q.E.F.

23



Completeness

Tarski's first-order axiomatization of Euclidean geometry yields a complete theory of the

Euclidean plane (inter-interpretable with real closed fields).

Drop the completeness axiom, and replace it with an axiom asserting that if a line L

passes through a point inside a circle «, then L and « intersect.

The resulting theory is inter-interpretable with the theory of “Euclidean fields,” and so is
complete wrt “ruler and compass constructions.” (Ziegler: it is also undecidable.)

Theorem. If a sequent of E is valid wrt to ruler and compass constructions, it can be
derived in E.

24



Completeness

One strategy: interpret Tarski's theory in E.
Problem: Tarski includes full first-order logic!

Solution: With slight tinkering, Tarski's theory can be made “geometric,” i.e. the
axioms can be put in a restricted logical form.

A cut-elimination theorem due to Sara Negri then implies that any geometric assertion
provable in Tarski's theory has a geometric proof.

Such a proof can be simulated in E.

25



Completeness

Outline of the proof:

1. Suppose a sequent A of E is valid for the intended semantics.

N

Then a translation 7(A) to Tarki's language is also valid for the intended
semantics.

So it is provable in Tarski's theory.
So it has a cut-free proof.

This proof can be translated back to E, so E proves p(m(A)).

e & =~ @

From this, E can derive the original sequent, A.

26



Implementation

Can we get a computer to carry out the diagrammatic inferences?

We experimented with:

e first-order theorem provers
e SMT solvers (CVC3, Z3)

e bespoke saturation procedures

SMT solvers were particularly good, and could carry out the metric inferences as well.

27
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Some conclusions

Our

modest claims:

We have a clean analysis of the type of reasoning that is used in books I-IV of the
Elements.

Our system is sound and complete for the expected semantics.

The analysis makes it easy to verify formal texts that are very close to proofs in
the Elements.

This provides a clear sense in which the Elements is more rigorous than commonly
acknowledged.

We have analyzed the logical form of diagrammatic inference, separating these
questions from cognitive, computational, pedagogical, and historical terms.

The analysis can support further inquiry into why these inferences are basic to the
practice.

29
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Abstract

Topological relations such as inside, outside, or intersection are ubiquitous to our spatial think-
ing. Here, we examined how people reason deductively with topological relations between points,
lines, and circles in geometric diagrams. We hypothesized in particular that a counterexample
search generally underlies this type of reasoning. We first verified that educated adults without
specific math training were able to produce correct diagrammatic representations contained in the
premisses of an inference. Our first experiment then revealed that subjects who correctly judged



2. Formal characterization of diagram-based geometric inferences

The formal characterization of diagram-based geometric inferences adopted in this
study is based on the formal system developed by Avigad et al. (2009). Following this
system, we considered a formal language 2" with three types of objects:

o poins denoted by A, B, C, etc.,

o lines denoted by L, M, N, etc.,

e circles denoted by a. B, y. etc.,

together with the following set of relations:

point A is {inside, on, outside} circle a,

point A is {on, off} line L,

points A and B are {on the same side, on opposite sides} of line L,
point B is {between, not between} points A and C on line L,

line L {intersects, does not intersect} line M,

line L {intersects, does not intersect} circle o,

circle a [intersects, does not intersect} circle p,

circle a is {inside. outside} circle p.

A proposition in the language ¢ is always an atomic formula consisting of a single
relation between particular geometric objects, for example, “point A is inside circle a” or
“circle a intersects circle p.”

In this setting a diagram-based geometric inference 1 is entirely characterized by a set
of premisses and a conclusion in the language .. Here are two examples of such infer-
ences:

Point A is inside circle a Point A is eutside circle a
Point A is on line L Point A is on line L

(any 12)
Line L intersects circle a Line L intersects circle a

In order to say when a diagram-based geometric inference is valid or invalid, we have

tn dofina thae nntinn f a mandal (in thae lamisal concal fnar a cot nf mennncitiane in @@ A



4.1. Method

4.1.1. Design and materials
In this experiment, we presented 12 invalid scanning problems that were seen once
with a diagram of low counterexample density and once with a diagram of high

L

(A) (B)

Fig. 5. Two examples of scanning operations starting with the diagram displayed in Fig. 2B. (A) Scanning
operation with line L. (B) Scanning operation with circle o

/ @
a
L L

(A) (B)

Fig. 6. Two possible diagrams in the case of inference I,. When considering a scanning problem with line L,
(A) is a diagram of high counterexample density and (B) is a diagram of low counterexample density.



ABSTRACT OF THE DISSERTATION
Formalized Synthetic Geometry

By ANDRE HERNANDEZ-ESPIET

Dissertation Director:

Alex Kontorovich

We offer a formalization of Book I of Euclid’s Elements in Leand (with tools from
Mathlib4) using System E by Avigad, Dean, and Mumma. We contrast the proofs
in this system to those of Euclid’s himself. We give detailed explanations for every
theorem proved in Leand in order to complete Book 1. Finally, we talk about the
importance of tactics in Leand for the shortening and simplification of the proofs

encountered in a geometric setting,.



Autoformalizing Euclidean Geometry

Logan Murphy ! * Kaiyu Yang?~ Jialiang Sun' ZhaoyuLi' Anima Anandkumar’ Xujie Si'

Abstract

Autoformalization involves automatically trans-
lating informal math into formal theorems and
proofs that are machine-verifiable, Euclidean ge-
ometry provides an interesting and controllable
domain for studying autoformalization. In this
paper, we introduce a neuro-symbolic framework
for autoformalizing Euclidean geometry, which
combines domain knowledge, SMT solvers, and
large language models (LLMs). One challenge in
Euclidean geometry is that informal proofs rely
on diagrams, leaving gaps in texts that are hard to
formalize. To address this issue, we use theorem
provers to fill in such diagrammatic information
automatically, so that the LLM only needs to aut-
oformalize the explicit textual steps, making it
easier for the model. We also provide automatic
semantic evaluation for autoformalized theorem
statements. We construct LeanEuclid, an auto-
formalization benchmark consisting of problems

task, autoformalization: Can Al understand human-written
problems/solutions and translate them automatically into for-
mal theorems/proofs? Specifically, we focus on the setting
where formal theorems/proofs can be verified by the Lean
proof assistant (de Moura & Ullrich, 2021). Lean provides
a language for writing formal proofs. It is popular among
mathematicians and has a growing ecosystem of integration
with large language models (LLMs), e.g., LeanDojo (Yang
et al., 2023) and Lean Copilot (Song et al., 2024).

We demonstrate that Euclidean geometry provides an inter-
esting and controllable domain for autoformalization. First,
an automatic evaluation of autoformalized theorems is diffi-
cult in general but feasible in Euclidean geometry. Second,
the logical gaps in informal proofs are well understood in
Euclidean geometry, making it easier to faithfully formalize
the proofs. Third, combining text-based and diagrammatic
reasoning makes Euclidean geometry a natural domain to
study multimodal reasoning models. Therefore, autoformal-
izing Euclidean geometry is an attractive target for Al



ofthecircle O, euclid_intros

AC is equal 10 AB.[Def. 1.15]. Agan, since the point

“Thus, the trangle ABC is equilateral, and has been
iven ine sagh line AB. (Which, use ¢

i) thevery thing it was required o do. euclid_finish

Informal Euclidean geometry problem

euctid_apply circle_fron_points a b as 6D
euctid_apply circle_fron_points b a as ACE
euclid_apply intersection_circles BCD ACE as ¢ [y
euclid_apply point_on_circle_onlyif a b c BCD
euclid_apply point_on_circle_onlyif b a c ACE

Autoformalized proof

onLircie a AL
HVN - intersects BCD ACE

z3
CVvCs \

Diagrammatic reasoning gaps

Figure 1. Left: Proposition 1 in Euclid’s Elements (Book I). The orange text involves diagrammatic reasoning: Euclid did not explicitly
prove the two circles actually intersect, but the reader can use the diagram to implicitly fill in the logical gap. Top right: The model
autoformalizes the problem into a formal theorem (proposition_17), which is evaluated by checking its logical equivalence with the
ground truth (proposition_1), leveraging domain knowledge and a symbolic automated reasoning engine based on SMT (satisfiability
modulo theories) solvers. Bottom right: A proof autoformalized by the model. Like Euclid’s proofs, it does not need to handle
diagrammatic reasoning explicitly. Lean can check the proof to identify a list of diagrammatic reasoning gaps, e.¢., “intersects BCD
ACE". Then, it attempts to fill in all gaps automatically using the symbolic reasoning engine based on SMT solvers.

bolic reasoning engine based on SMT solvers. As Fig. 1
(Top right) shows, given a ground-truth formal theorem T},
and the autoformalized theorem 7,4 produced by a lan-
guage model, we use the symbolic engine to try to prove
their equivalence (Ty; < Tpreq). If successful, their logi-
cal gap is small enough to conclude that T},,..q is correct.
Even if the symbolic engine cannot prove Ty; < Tprea, it
can provide partial results useful for a more fine-grained
analysis. We validate this evaluation protocol by showing it
correlates well with human evaluation.

LeanEuclid: Formalizing Proofs and Diagrams. We
construct LeanEuclid, a benchmark for testing machine
learning on autoformalizing Euclidean geometry. As in Fig 1
(Left), each example in LeanEuclid has an informal theorem,
proof, and diagram in I£TEX, as well as a formal theorem
and proof in Lean. Data examples in LeanEuclid are manu-
allv formalized into Lean from Euclid’s Elements (Heibere.

Euclid uses the intersection of two circles (C') without prov-
ing its existence. Most readers would not find the proof
problematic, as the two circles intersect in the diagram.
Such implicit diagrammatic reasoning is ubiquitous in in-
formal geometric proofs but needs to be handled explicitly
in formal proofs (Beeson et al., 2019). Therefore, a naive
attempt to autoformalize the proofs would be difficult, as it
requires the model to fill in many diagrammatic reasoning
gaps, with nothing to reference in the informal texts.

To mitigate diagrammatic gaps, LeanEuclid adopts a for-
mal system named E (Avigad et al., 2009), introduced by
philosophers for modeling diagrammatic reasoning in Eu-
clid’s Elements. It teases out a set of diagrammatic rules
s0 that diagrammatic reasoning can be modeled as logical
deductions. We implement E in Lean and provide proof
automation to fill in diagrammatic reasoning gaps, using the
same symbolic reasoning engine developed for equivalence
checking. Our system enables formalizing all 48 theorems
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More conclusions

e When you look at any piece of mathematics and think about how it works, you
notice interesting things.
e Understanding how mathematics works is useful for:

e mathematics

e philosophy of mathematics
e history of mathematics

e cognitive science

e education

e automated reasoning

o Al

e It's also deeply satisfying.
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