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STARKs and formal verification

StarkWare has developed means of “running” decentralized

applications (dapps) on blockchain more efficiently.

• They use this to run a cryptocurrency exchange.

• They have a platform for developers to run their applications.

Both use a family of programming languages, Cairo, that they

have developed.

We have been using Lean to verify their methods and code.
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Blockchain

The magic:

• A ledger in the sky.

• The ledger grows, but nothing is ever deleted.

• Users can own resources, like bitcoin, and transfer them.

Application: banking without government or institutional control

(or oversight).

Under the hood:

• Decentralized maintenance.

• Proof of work or proof of stake.

• Clever incentives to maintain and extend the blockchain.

• Cryptography.
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Smart contracts

The magic:

• One can put a computer program on the ledger that executes

when some conditions are met.

Applications: contracts, auctions, exchanges, trading NFTs, selling

concert tickets, voting, etc., again without government or

institutional control.

Under the hood:

• A programming language.

• Blockchain.
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Smart contracts

Limitations:

• It is expensive (everyone maintaining the blockchain has to

execute the code).

• It is slow. (For example, the number of transactions that Visa

performs in a second dwarf what can be done on blockchain.)

Solution:

• Design a suitable programming language.

• Write programs in such a way that successful completion

guarantees the result (of the exchange, auction, etc.) is

correct.

• Use a cryptographic protocol to publish a short (probabilistic)

proofs that programs run to completion.
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Cairo

I am a powerful prover, and you are a resource-limited verifier.

• We agree on a program in a programming language, Cairo,

such that successful termination guarantees my claim.

• A compiler translates it to assembly code and then machine

code for the Cairo CPU.

• The claim that there is an assignment to memory, extending

the program and input data, such that the CPU runs to

completion is encoded as the existence of solutions to a

parametric family of polynomials.

• The Cairo runner publishes to blockchain short cryptographic

certificates that guarantee the existence of the solutions.
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Cairo

Should you trust it?

• You have to believe the Cairo program does what it is

supposed to.

• You have to believe that the translation to machine code is

correct.

• You have to believe that the polynomial encoding is correct.

• You have to believe the cryptographic protocol.
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Cairo verification

Our approach:

• (CPP ’22) We proved the correctness of the polynomial

encoding.

• (ITP ’23) We provide means of proving that CPU execution of

explicit machine code meets high-level specifications.

• The result is an end-to-end formal proof: if these explicit

polynomials have a solution, then that high-level claim holds.

• We trust the cryptographic protocol and its implementation.
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Cairo verification

More precisely, Cairo is an architecture and a family of languages:

• the Cairo virtual CPU and instruction set

• Cairo assembly language, Casm

• a programming language, CairoZero, that adds variables,

structures, function definitions, etc.

• a higher-level programming language, Cairo, that includes

type safety guarantees.
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Cairo verification

The successful completion of a Cairo program is meant to prove

something.

• Soundness: successful completion implies that the prover

knows an assignment to memory that guarantees that a

property holds.

• Completeness: if the property holds, the prover can assign

values to memory to ensure successful completion.

This talk is about proving soundness of programs written in

CairoZero.
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Cairo verification

We have:

1. Verified the algebraic encoding of Cairo CPU execution traces.

2. Built a verifying compiler for CairoZero.

3. Verified the correctness of functions in the CairoZero library

for mathematical computation, simulating read-write data

structures, elliptic curve computation, digital signatures

4. Built a verifying compiler for Cairo libfuncs.

5. Proved soundness and completeness of Cairo libfuncs.

6. Begun working on verifying other proof schemes.

This talk is about the second and third items.
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Cairo verification

Programs are used to prove claims to a skeptical verifier. To prove

f (x) = y , write a program that computes f (x), compares it to y ,

and fails if they don’t agree.

Consider the instruction y = x + 5.

You can think of this as a hint to the prover saying: “make sure

you put the value of x + 5 in the memory location assigned to y .”

From a soundness perspective, it says “the prover has assigned

values to memory making y = x + 5.”
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Cairo verification

Novelties:

1. The fact that the programming language is used to prove

things introduces some quirks (e.g. memory is read only).

2. The cryptographic foundation introduces some quirks (e.g. all

values are elements of a large finite field).

3. From the high-level specification down to the table of

polynomials, our proofs are verified entirely in Lean.

4. We harvest just enough information from the compiler to

construct, automatically, long source-code proofs in Lean.

5. We provide flexible means to prove our own specifications

from autogenerated ones.

6. The compiler developers barely even noticed that we were

there.
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Where to find stuff

Our public repository for the verification is here:

https://github.com/starkware-libs/formal-proofs.

There are a CPP paper and a talk on the verification of the

reduction to the AIR (algebraic intermediate representation).

There are an the ITP paper and a talk.

You can learn about the latest programming language, Cairo.
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The Cairo CPU

The CPU state consists of three registers: a program counter, an

allocation pointer, and a frame pointer.

An instruction consists of 15 one-bit flags and three 16-bit

bitvectors.

Instructions:

• Assert two things are equal (e.g. [ap + 3] = [fp− 5] + 3).

• Jump.

• Conditional jump.

• Call.

• Return.

Memory consists of values in a large finite field. Arithmetic

operations are + and ∗.
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Semantics

We have a formal specification of the execution semantics.

def ensures (mem : F → F) (σ : register_state F)

(P : N → register_state F → Prop) : Prop :=

∀ n : N, ∀ exec : fin (n+1) → register_state F,

is_halting_trace mem exec → exec 0 = σ →
∃ i : fin (n + 1), ∃ κ ≤ i, P κ (exec i)

“Given memory mem and starting state σ, if execution runs to

completion, then at some point P holds.”

Modulo the algebraic encoding, the cryptographic certificate

verifies that the execution runs to completion.

For technical reasons, we sometimes need to know that some value

is less than the length of the execution.
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Modeling the assembly language in Lean

The compiler emits assembly code as well as the machine
translations:

. . .

[ap] = [fp + (-4)]; ap++

[ap] = [fp + (-3)]; ap++

call rel -11

ret

We can also get it to emit hackish Lean notation that

approximates the assembly syntax:

def starkware.cairo.common.math.code_assert_nn_le : list F := [

. . .

'assert_eq['dst[ap] === 'res['op1[fp+ -4]];ap++].to_nat,

'assert_eq['dst[ap] === 'res['op1[fp+ -3]];ap++].to_nat,

'call_rel['op1[imm]].to_nat, -11,

'ret[].to_nat ]
16



Modeling the assembly language in Lean

The Lean notation represents Lean definitions of machine code

instructions.

We can evaluate them and compare them to the values output by

the compiler.

So we are really proving things about the Cairo machine code.

We then wrote tactics that enable us to step through the machine

code.
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Modeling the assembly language in Lean
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CairoZero

CairoZero code looks like this:

func assert_nn{range_check_ptr}(a) {

a = [range_check_ptr];

let range_check_ptr = range_check_ptr + 1;

return (); }

func assert_le{range_check_ptr}(a, b) {

assert_nn(b - a);

return (); }

func assert_nn_le{range_check_ptr}(a, b) {

assert_nn(a);

assert_le(a, b);

return (); }

There are also conditionals, structures, recursive calls, . . .
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Verifying CairoZero

We want to write specifications about the high-level CairoZero

functions, and verify that the machine code meets the

specifications.

Steps:

• Write a Python tool that extracts a (naive) high-level

specification of each Cairo function, and proves that the

compiled code satisfies the naive specification.

• For each particular program, show (iteratively) that the naive

specifications imply our own specifications.

We have used this method to verify parts of the CairoZero library,

including a validation procedure for cryptographic signatures.
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Verifying CairoZero

Notes:

• Memory is read only; the CPU makes assertions about the

contents of memory.

• Programs are used to prove claims to a skeptical verifier. To

prove f (x) = y , write a program that computes f (x),

compares it to y , and fails if they don’t agree.

• Memory locations contain elements of a field, but there are

cryptographic primitives that allow us to say that x is the cast

of an integer in [0, 2128).

• In this phase, we only cared about soundness. Termination

and memory management are free.
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Elliptic curve computations

Any elliptic curve over a field of characteristic not equal to 2 or 3

can be described as the set of solutions to an equation

y2 = x3 + ax + b, the so-called affine points, together with one

additional point at infinity.
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Elliptic curve computations

Assuming the curve is nonsingular, the set of such points has the

structure of an abelian group, where the zero is defined to be the

point at infinity and addition between affine points defined as

follows:

• To add (x , y) to itself, let s = (3x2 + a)/2y , let x ′ = s2 − 2x ,

and let y ′ = s(x − x ′)− y . Then (x , y) + (x , y) = (x ′, y ′).

This is known as point doubling.

• (x , y) + (x ,−y) = 0, that is, the point at infinity. In other

words, −(x , y) = (x ,−y).

• Otherwise, to add (x0, y0) and (x1, y1), let

s = (y0 − y1)/(x0 − x1), let x
′ = s2 − x0 − x1, and let

y ′ = s(x0 − x ′)− y0. Then (x0, y0) + (x1, y1) = (x ′, y ′).
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Elliptic curve computations

We verified functions that compute the scalar product n · x , for:

• secp256k1: the curve y2 = x3 + 7 over the finite field of

integers modulo the prime p = 2256 − 232 − 977.

• secp256r1: y2 = x3 − 3x + b over the finite field of integers

modulo the prime p = 2256 − 2224 + 2192 + 296 − 1, where b is

the big number below:

0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b

Cairo’s underlying field has characteristic p = 2251 + 17 · 2192 + 1.
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Elliptic curve computations

Our Lean verification has to mediate between at least three

different representations:

• Elements x of the secp field of integers modulo the secp prime

number.

• Triples (i0, i1, i2) of integers, suitably bounded, that represent

such elements.

• Triples of elements (d0, d1, d2) of the underlying field F of the

Cairo machine model, assumed or checked to be casts of such

integers.

The code used optimization tricks.

Verification required a subtle bounds and careful side conditions.
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Verifying CairoZero

// Given a scalar, an integer m in the range [0, 250), and a point on

// the elliptic curve, point, verifies that 0 <= scalar < 2**m and

// returns (2**m * point, scalar * point).

func ec_mul_inner{range_check_ptr}(point: EcPoint, scalar: felt,

m: felt) -> (pow2: EcPoint, res: EcPoint)

{

if (m == 0) {

scalar = 0;

let ZERO_POINT = EcPoint(BigInt3(0, 0, 0), BigInt3(0, 0, 0));

return (pow2=point, res=ZERO_POINT);

}

alloc_locals;

let (double_point: EcPoint) = ec_double(point);

%{ memory[ap] = (ids.scalar % PRIME) % 2 %}

jmp odd if [ap] != 0, ap++;

return ec_mul_inner(point=double_point, scalar=scalar / 2, m=m - 1);

. . .

}
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Verifying CairoZero

-- Do not change this definition.

def auto_spec_ec_mul_inner (mem : F → F) (κ : N)
(range_check_ptr : F) (point : EcPoint mem)

(scalar m ρ_range_check_ptr : F)

(ρ_pow2 ρ_res : EcPoint mem) : Prop :=

((m = 0 ∧
scalar = 0 ∧
∃ ZERO_POINT : EcPoint mem, ZERO_POINT = {

x := { d0 := 0, d1 := 0, d2 := 0 },

y := { d0 := 0, d1 := 0, d2 := 0 }

} ∧
16 ≤ κ ∧
ρ_range_check_ptr = range_check_ptr ∧
ρ_pow2 = point ∧
ρ_res = ZERO_POINT) ∨

(m ̸= 0 ∧
∃ (κ1 : N) (range_check_ptr1 : F) (double_point : EcPoint mem),

spec_ec_double mem κ1 range_check_ptr point range_check_ptr1

double_point ∧
∃ anon_cond : F,

((anon_cond = 0 ∧ . . .)))) 27



Verifying CairoZero

-- You may change anything in this definition except the name and

-- arguments.

def spec_ec_mul_inner (mem : F → F) (κ : N) (range_check_ptr : F)

(point : EcPoint mem) (scalar m ρ_range_check_ptr : F)

(ρ_pow2 ρ_res : EcPoint mem) : Prop :=

∀ (secpF : Type) [hsecp : secp_field secpF],

point.x ̸= ⟨0, 0, 0⟩ →
∀ hpt : BddECPointData secpF point,

∃ nm : N,
m = ↑nm ∧
nm < ring_char F ∧

(nm ≤ SECP_LOG2_BOUND →
∃ scalarn : N,

scalar = ↑scalarn ∧
scalarn < 2^nm ∧

∃ hpow2 : BddECPointData secpF ρ_pow2,

ρ_pow2.x ̸= ⟨0, 0, 0⟩ ∧
hpow2.toECPoint = 2^nm · hpt.toECPoint ∧

∃ hres : BddECPointData secpF ρ_res,

hres.toECPoint = scalarn · hpt.toECPoint)
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Verifying CairoZero

-- Do not change the statement of this theorem. You may change the proof.

theorem sound_ec_mul_inner

{mem : F → F} (κ : N)
(range_check_ptr : F) (point : EcPoint mem)

(scalar m ρ_range_check_ptr : F) (ρ_pow2 ρ_res : EcPoint mem)

(h_auto : auto_spec_ec_mul_inner mem κ range_check_ptr point

scalar m ρ_range_check_ptr ρ_pow2 ρ_res) :

spec_ec_mul_inner mem κ range_check_ptr point scalar m

ρ_range_check_ptr ρ_pow2 ρ_res :=

begin

intros secpF _ ptxnez hpt,

rcases h_auto with ⟨neq, scalareq, _, rfl, _, _, ret1eq, ret2eq⟩ |

⟨nnz, _, _, double_pt, hdouble_pt, _, heven_or_odd⟩,
{ use 0, split,

{ rw [neq, nat.cast_zero] }, split,

{ rw PRIME.char_eq, apply PRIME_pos },

intro _,

use 0, split,

. . . }

. . .

end 29



Verifying CairoZero

theorem auto_sound_ec_mul_inner

-- arguments

(range_check_ptr : F) (point : EcPoint F) (scalar m : F)

-- code is in memory at σ.pc

(h_mem : mem_at mem code_ec_mul_inner σ.pc)

-- all dependencies are in memory

(h_mem_0 : mem_at mem code_nondet_bigint3 (σ.pc - 407))

. . .

(h_mem_9 : mem_at mem code_fast_ec_add (σ.pc - 143))

-- input arguments on the stack

(hin_range_check_ptr : range_check_ptr = mem (σ.fp - 11))

(hin_point : point = cast_EcPoint mem (σ.fp - 10))

(hin_scalar : scalar = mem (σ.fp - 4))

(hin_m : m = mem (σ.fp - 3))

-- conclusion

: ensures_ret mem σ (λ κ τ, ∃ µ ≤ κ,

rc_ensures mem (rc_bound F) µ (mem (σ.fp - 11)) (mem $ τ.ap - 13)

(spec_ec_mul_inner mem range_check_ptr point scalar m

(mem (τ.ap - 13)) (cast_EcPoint mem (τ.ap - 12))

(cast_EcPoint mem (τ.ap - 6)))) := . . .
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Verifying CairoZero

Summary:

• Our tool generates Lean descriptions of the machine code,

which the user never has to see.

• It also generates naive specifications.

• Users write their own specifications, and prove their that they

are implied by the naive ones.

• Later autogenerated specifications refer to the user

specifications.

• Our tool automatically uses the user’s theorems in end-to-end

correctness proofs that the user never has to see.
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Verifying CairoZero

Additional notes:

• We do a control flow analysis, divide code into blocks, and

handle regular graphs appropriately.

• We handle recursive calls appropriately.

• We handle a lot of range-check plumbing automatically.

• Our tool regenerates the specification files gracefully, without

overwriting the parts the user has written.
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Observations

We carried out everything in a single proof system:

• low-level semantics

• algebraic encodings

• integer and field arithmetic

• definitions and properties of elliptic curves.

Also notable: rather than verifying the compiler, we make it

proof-producing.

• We don’t have to handle every language feature.

• We can build capability incrementally.

• We required minimal interactions with compiler developers.

• It was o.k. that the compiler kept changing.
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Observations

Automatically generating source code for an interactive theorem

prover sounds weird, but it worked out surprisingly well.

As developers, we could:

• Work out small examples or additions by hand, and then write

code to do what we just did.

• Debug failures by hand, and then do the same.

As users, the workflow was also convenient. We could focus on

proving specifications from manageable Hoare-style descriptions.
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The group law for elliptic curves

def add : ECPoint F → ECPoint F → ECPoint F

| ZeroPoint b := b

| a ZeroPoint := a

| (AffinePoint a) (AffinePoint b) :=

if axbx: a.x = b.x then

if ayby: a.y = -b.y then

-- a = -b

ZeroPoint

else

have a.y = b.y, from eq_of_on_ec a.h b.h axbx ayby,

have a.y ̸= 0,

by { contrapose! ayby, rw ←[this, ayby, neg_zero] },

let p := ec_double (a.x, a.y) in

AffinePoint ⟨p.1, p.2, on_ec_ec_double a.h this⟩
else

let p := ec_add (a.x, a.y) (b.x, b.y) in

AffinePoint ⟨p.1, p.2, on_ec_ec_add a.h b.h axbx⟩

35



The group law for elliptic curves

Our formalization of the secp elliptic curves initially had one sorry

each.
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The group law for elliptic curves

instance : add_comm_group (ECPoint F) :=

{ add := ECPoint.add,

neg := ECPoint.neg,

zero := ECPoint.ZeroPoint,

add_assoc := sorry,

zero_add := by { intro a, cases a; simp [ECPoint.add] },

add_zero := by { intro a, cases a; simp [ECPoint.add] },

add_left_neg := ECPoint.add_left_neg,

add_comm := ECPoint.add_comm }
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The group law for elliptic curves

As we were finishing the secp256k1 verification, David Angdinata

and Junyan Xu verified the group law in Lean, in great generality.
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The group law for elliptic curves

def curve_to_ECPoint : (@curve F _).point → ECPoint F

| point.zero := ECPoint.ZeroPoint

| (@point.some _ _ _ x y h) :=

ECPoint.AffinePoint ⟨x, y, on_ec_of_nonsingular h⟩

def ECPoint_to_curve : ECPoint F → (@curve F _).point

| ECPoint.ZeroPoint := point.zero

| (ECPoint.AffinePoint ⟨x, y, h⟩) :=

point.some (nonsingular_of_on_ec h)

lemma left_inverse_curve_to_ECPoint :

left_inverse (@curve_to_ECPoint F _) (@ECPoint_to_curve F _) :=

begin

rintro (⟨⟩ | ⟨x, y, h⟩), { refl },

simp [curve_to_ECPoint, ECPoint_to_curve]

end

theorem ECPoint_to_curve_add (a b : ECPoint F) :

ECPoint_to_curve (a.add b) = ECPoint_to_curve a + ECPoint_to_curve b

:= . . .
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The group law for elliptic curves

instance : add_comm_group (ECPoint F) :=

{ add := ECPoint.add,

neg := ECPoint.neg,

zero := ECPoint.ZeroPoint,

add_assoc :=

begin

intros a b c,

apply (left_inverse_curve_to_ECPoint).injective,

simp [ECPoint_to_curve_add, add_assoc]

end,

zero_add := by { intro a, cases a; simp [ECPoint.add] },

add_zero := by { intro a, cases a; simp [ECPoint.add] },

add_left_neg := ECPoint.add_left_neg,

add_comm := ECPoint.add_comm }
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Conclusions

• Blockchain verification is a good market for verification.

• It’s possible to do fun and interesting projects in an industrial

setting.

• Our approach worked.

41


