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Overview

Today, I will discuss:

● Interactive Proof Assistants and Formalization
● Automated Reasoning and Symbolic AI
● Machine Learning and Neural AI

I will refer to these collectively as “AI for Mathematics.”

I will also tell you about a remarkable programming language and proof 
assistant called Lean.
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Overview

The digital library, Mathlib, has >160K theorems and >1.5M lines of code.

High-profile formalizations of contemporary research in Lean:

● the Polynomial Freiman–Ruzsa Project
● a strengthening of Carleson’s Theorem

High-profile uses of automated reasoning for mathematics:

● Keller’s conjecture
● refutation of the Kaplansky unit conjecture

High-profile advances in machine learning for mathematics:

● results in representation theory, knot theory, graph theory
● DeepMind’s AlphaProof and AlphaGeometry
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Tao’s Predictions

“I think in the future, instead of typing up our proofs, we would explain 
them to some GPT. And the GPT will try to formalize it in Lean as you go 
along. If everything checks out, the GPT will [essentially] say, ‘Here’s your 
paper in LaTeX; here’s your Lean proof. If you like, I can press this button 
and submit it to a journal for you.’”
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Tao’s Predictions

“There could be collaborative projects where we don’t know how to 
prove the whole thing. But people have ideas on how to prove little 
pieces, and they formalize that and try to put them together. In the 
future, I could image a big theorem being proven by a combination of 20 
people and a bunch of AIs each proving little things. And over time, they 
will get connected, and you can create some wonderful thing. That will 
be great.”
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AlphaProof and AlphaGeometry

“It’s a fairly safe bet that if Google DeepMind can solve at least some 
hard I.M.O. problems, then a useful research tool can’t be all that far 
away.”

– Timothy Gowers, Rouse Ball Professor of Mathematics at the 
University of Cambridge 

8



9



10



11



Overview

These technologies will impact mathematics:

● verification of mathematical results and mathematical computation
● communication and collaboration
● mathematical reference and search
● exploration and discovery of new mathematics
● teaching and learning

I will discuss the technologies and their importance.
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Interactive Theorem Provers

We have known since the early twentieth century that mathematics can 
be formalized:

● Mathematical statements can be expressed in formal languages, 
with precise grammar.

● Theorems can be proved from formal axioms, using prescribed 
rules of inference.

With the help of computational proof assistants, this can be carried out 
in practice.

In many systems, the formal proof can be extracted and verified 
independently.



Interactive Theorem Provers

Some proof assistants for mathematics:

● Mizar (1973, set theory)
● Isabelle (1986, simple type theory)
● Rocq (1989, dependent type theory)
● HOL Light (1994, simple type theory)
● Lean (2013, dependent type theory)

Proof assistants are now commonly used for hardware and software 
verification.

I will give a demonstration of Lean.



Lean and Mathlib

Few mathematicians were using formal methods in 2017. Since then:

● Mathlib has more than 1.6 million lines of code.
● The Lean Zulip channel more than members, about 850 active in 

any two-week period.
● There are have been a number of celebrated successes.
● There are interesting collaborative projects.
● There have been a number of articles in the general press.
● There are several meetings and workshops related to Lean.
● There is growing interest and enthusiasm in the mathematical 

community.

https://github.com/leanprover-community/mathlib4
https://leanprover-community.github.io/mathlib_stats.html
https://leanprover.zulipchat.com/
https://leanprover-community.github.io/events.html






Overview

I said I would discuss:

● Interactive Proof Assistants and Formalization
● Automated Reasoning and Symbolic AI
● Machine Learning and Neural AI
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Automated Reasoning

By automated reasoning, I mean the use of computational, logic-based 
methods to carry out logical and mathematical inferences.

Some problems are decidable, and some aren’t. 

Two types of procedures:

● Decision procedures: decide whether an inference is valid / true in 
an interpretation (and possibly produce a proof)

● Search procedures: search for a proof or justification



Decision Procedures

Early history:

● In 1915, Löwenheim proved the decidability of monadic first-order 
logic.

● Presburger presented his decision procedure for linear integer 
arithmetic in 1929.

● Tarski had a decision procedure for real closed fields in 1930.



Decision Procedures

Today:

● propositional logic (SAT solvers)
● ground equational reasoning
● linear integer and real arithmetic (equations and inequalities)
● real polynomial arithmetic (equations and inequalities)
● symbolic calculation (e.g. equations in an arbitrary ring)

Satisfiability modulo theories (SMT) solvers combine these.



Keller’s Conjecture

In 1930, Ott-Heinrich Keller conjectured that for every n, any tiling of 
n-dimensional space with unit n-dimensional cubes has to have at least 
two cubes that fully share a face.



Keller’s Conjecture

History:

● In 1940, Perron showed that the conjecture is true up to dimension 
6.

● In 1992, Lagarias and Shor showed that the conjecture is false in 
dimensions 10 and up.

● In 2002, Mackey showed that it is false in dimensions 8 and 9.
● In 2020, Brakensiek, Heule, Mackey, and Narváez showed that it is 

true in dimension 7.



Keller’s Conjecture

In 1990, Corradi and Szabo showed that the 
conjecture is true if and only if there are no 
cliques of a certain size in certain associated 
graphs, now known as Keller graphs.

Brakensiek, Heule, Mackey, and Narváez used 
a SAT solver, with additional reductions and 
symmetry breaking, to establish this.

The images are taken from their web page.

https://www.cs.cmu.edu/~mheule/Keller/


Kaplansky’s Unit Conjecture

In 1940, Higman conjectured that if K is a field and G is a torsion-free 
group, then the group ring K[G] has no nontrivial units.

In 2021, Giles Gardam gave a counterexample with K = 𝐅2.

In a talk, Solving Semidecidable Problems in Group Theory, he explains 
how he used a SAT solver to find the counterexample.

He has since used a Gröbner basis algorithm to find a counterexample 
with K = 𝐂.

https://www.youtube.com/watch?v=is7Gw5SDPsQ&t=1782s&ab_channel=SydneyMathematicalResearchInstitute-SMRI


Decision Procedures

Decision procedures like 
linear arithmetic are 
commonly used to help 
formalize mathematics.



Automated Reasoning

Early history:

● Martin Davis implemented Presburger's decision procedure at the 
IAS in 1954.

● Allen Newell, Herbert Simon, and Cliff Shaw introduced the Logic 
Theorist in 1956.

● Henry Gelernter, J. R. Hansen, and Donald Loveland published an 
article on the Geometry Machine in 1960.

● Hao Wang implemented a prover for predicate logic in 1958.
● Davis and Hilary Putnam introduced the propositional resolution 

rule in 1960.
● John Alan Robinson introduced a unification algorithm in 1965.



Search Procedures

Larry Paulson, Jasmin Blanchette, and colleagues developed a powerful 
sledgehammer for the Isabelle proof assistant.

Given an inference to perform, it:

● selects about 200 potentially relevant facts from the mathematical 
library (from tens of thousands),

● sends the problem to an automated theorem prover,
● reconstructs a formally checked proof.

We are currently working on a similar tool for Lean.

Another tool, called Aesop, helps prove theorems automatically.



Overview

I said I would discuss:

● Interactive Proof Assistants and Formalization
● Automated Reasoning and Symbolic AI
● Machine Learning and Neural AI
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Machine Learning for Mathematics

The last few years have brought exciting progress in machine learning, 
including deep learning and generative AI.

Two ways machine learning can be applied to mathematics:

● using formal representations of mathematics
● not using formal representations of mathematics

○ searching for interesting mathematical objects
○ detecting patterns in computational data.



Machine Learning for Mathematics

Direct applications:

● Knot invariants (sensitivity analysis): Lackenby and Juhász with 
DeepMind.

● Kazhdan-Lustig polynomials and Bruhat intervals (sensitivity 
analysis): Williamson with DeepMind.

● Counterexamples in graph theory (reinforcement learning): Wagner
● Ribbons in knot theory (reinforcement learning): Gukov, Halverson, 

Manolescu, and Ruehle
● Approximating singularities in solutions to PDEs (neural networks): 

Buckmaster, Gómez-Serrano, Lai, Wang
● Finding constructions of large cap sets (LLMs): Ellenberg with 

DeepMind



Finding Counterexamples in Graph Theory

For example, Adam Wagner used reinforcement learning to find 
counterexamples to dozens of conjectures in graph theory.



Machine Learning and Formal Methods

Several efforts in machine learning for mathematics build on proof 
assistants like Lean:

● helping formalize theorems
○ search engines
○ premise selection
○ copilots
○ automated reasoning tools

● discovering proofs of theorems
○ Harmonic / Aristotle
○ DeepSeek
○ DeepMind / AlphaProof













Machine Learning and Formal Methods

Machine learning and large language models raise a host of concerns:

● reliability
● explainability
● alignment.

Mathematical language, concepts, and rigor are needed to supplement 
these.

There is a growing awareness that a combination of neural and 
symbolic methods is the key to general intelligence, and that AI for 
mathematics is the frontier.
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Machine Learning and Formal Methods

“We may hope that machines will eventually compete with men in all 
purely intellectual fields. But which are the best ones to start with? Even 
this is a difficult decision. Many people think that a very abstract activity, 
like the playing of chess, would be best. It can also be maintained that it 
is best to provide the machine with the best sense organs that money 
can buy, and then teach it to understand and speak English. This 
process could follow the normal teaching of a child. Things would be 
pointed out and named, etc. Again I do not know what the right answer 
is, but I think both approaches should be tried.”

Alan Turing, “Computing Machinery and Intelligence,” 1950



Final Thoughts

“Today we serve technology. We need to reverse the machine-centered 
point of view and turn it into a person-centered point of view: 
Technology should serve us.”

From Things That Make Us Smart: Defending Human Attributes in the Age 
of the Machine, by Donald A. Norman

The question is not “how can mathematicians use the technology?” but 
rather “what can technology do for mathematicians?”
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Final Thoughts

As long as we continue to reason, deliberate, and communicate with one 
another, mathematical language and concepts will be essential.

Mathematics is fundamental to human endeavors from science and 
technology to public policy and finance.

In the face of technological change, we need to preserve mathematical 
values and maintain a mathematical outlook, and pass them on to the 
next generation.

The new technologies hold great promise, but they must enhance our 
ability to do mathematics, not replace it.
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