Bibliography
Below is a list of works relevant to the seminar. To avoid flagrant copyright violations, some of the works are in
a password protected directory. This bibliography is currently work in progress, and will be filled out over the course of the semester.
General references
Primary sources
- Euler, Theorems on residues obtained by the division of powers, E262 on the Euler archive.
- Gauss, Disquisitiones Arithmeticae, 1801: GDZ. Translation by Arthur A. Clarke,
Yale University Press, 1965: publisher.
Text, through III, 66 together with 76 (Wilson's theorem): pdf.
- Dirichlet, Peter Gustav Lejeune, Vorlesungen über Zahlentheorie (edited
by Richard Dedekind), 1837. Translated with introductory notes by John Stillwell
as Lectures on Number Theory, AMS, 1999. Stillwell's introduction is
available online.
- Weber, Heinrich, Lehrbuch der Algebra, Vieweg, Braunschweig, 1895.
Secondary sources
- Corry, Leo, Modern Algebra and the Rise of Mathematical Structures, Birkhäuser, 1996. Chapters 1, 2, 3.1-3.2, 4.1-4.2, and 5. Excerpts:
Chapter 1: pdf,
Chapter 2: pdf,
Chapter 3: pdf.
- Edwards, Harold, Fermat's Last Theorem: a genetic introduction to algebraic
number theory, Springer Verlag, 1977.
- Goldman, Jay, The Queen of Mathematics: a historically motivated guide to number theory. A K Peters, 1998.
- Goldstein et al., eds., The Shaping of Arithmetic after C. F. Gauss' Disquisitiones Arithmeticae, Springer, 2007.
- Knoebel et al, Mathematical Masterpieces, Springer, 2007. Chapter 4, Patterns in the Prime Numbers:
The Quadratic Reciprocity Law: pdf.
- Stahl, Saul, Introductory Modern Algebra: A Historical Approach, John
Wiley & Sons, New York, 1996.
- Tignol, Jean-Pierre, Galois' Theory of Algebraic Equations, World Scientific, 2001.
- Weil, André , Number theory: an approach through history, from Hamumurapi to Legendre. Birkhaüser, 1984.
Mathematical background
- Birkhoff, Garret, and Saunders Mac Lane, A Survey of Modern Algebra,
third edition, Macmillan, New York, 1965.
- Ireland, Kenneth and Michael Rosen, A Classical Introduction to Modern Number
Theory, second edition, Springer, 1990
- Manin, Yu. I. and Alexei A. Panchishkin, Introduction to Modern Number Theory: Fundamental Problems, Ideas and Theories, Springer, 2005.
- Milne, J.S., Fields and Galois theory: html
- Pollard, Harry and Harold Diamond, The Theory of Algebraic Numbers, 1998 Dover reprinting.
- Stewart, Ian and David Tall, Algebraic Number Theory and Fermat's Last
Theorem, third edition, AK Peters, 2002.
- Swinnerton-Dyer, Peter, A Brief Guide to Algebraic Number Theory, Cambridge, 2001.
Useful sites
Quadratic reciprocity
Primary sources
- Gauss, DA, Section IV, 94-120: pdf.
- Gauss, third proof of quadratic reciprocity:
pdf. English translation, from Struik's A Source Book in Mathematics: pdf
- Gauss, all six published proofs translated into German by Netto: pdf
- Cayley's translation of Eisenstein's proof: pdf
- Eisenstein's second and fourth proofs (from Vol II of his Werke): pdf
- Dedekind, Supplement X, ...
- Dedekind, 1877 monograph, section 27.
Secondary sources
- Brown, Ezra, "The First Proof of the Reciprocity Law, Revisited." American Mathematical Monthly, vol 88, pp. 257-64.
JSTOR.
- Cox, David, "Quadratic Reciprocity: Its Conjecture and Application," American Mathematical Monthly, vol. 95, pp. 442-448.
JSTOR,
pdf.
- Davenport, H, The Higher Arithmetic, excerpt on quadratic reciprocity:
pdf.
- Edwards, Harold, "Euler and Quadratic Reciprocity," Mathematics Magazine, vol. 56, pp. 285-291.
JSTOR,
pdf.
- Everest and Ward, An introduction to number theory, Springer, 2005, excerpt on quadratic reciprocity:
pdf.
- R. Lautenbacher and D. Pengelley, "Eisenstein's Misunderstood Geometric Proof of the Quadratic reciprocity Theorem."
The College Mathematics Journal (25) 1994, pp. 29--34. JSTOR,
pdf.
- Lemmermeyer, Franz, Reciprocity Laws from Euler to Eisenstein, Springer, 2000.
- Serre, J.P., excerpt from A course in arithemetic: pdf.
- Tate, John, "Problem 9: The general reciprocity law". In F. Browder,ed., Mathematical developments arising from HILBERT PROBLEMS. AMS, 1976, Part 2, p.311-322. pdf.
- Webster, Ben,
Math overflow posting.
- Wyman, B. F., "What is a reciprocity law?," American Mathematical Monthly, 79:571-586, 1972:
JSTOR.
- Zuser, R., [233] Proofs of the Quadratic Reciprocity Law.
Quadratic forms and the theory of algebraic integers
Primary sources
- Euler, Theorems on divisors of numbers, E134 on the Euler archive.
- Gauss, DA, Section V. Excerpt: pdf.
- Dirichlet, P. G. Lejeune, De formarum binariarum secundi gradus compositione, 1851.
- Dedekind's preface to the second edition of Dirichlet's Lectures on Number Theory.
Draft translation by Jeremy Avigad: pdf.
- Dedekind, Richard, Sur la théorie des nombres entiers algébrique,
translated with introductory notes by John Stillwell as Lectures on the
Algebraic Integers, Cambridge University, 1996. Introduction:
pdf,
part 1: pdf,
part 2: pdf,
part 3: pdf.
- Dirichlet's Lectures on Number Theory, Chapter 4, On quadratic forms. Stillwell translation:
pdf.
- Dedekind, Richard, treatment of composition of binary quadratic forms in Supplement X to the
second edition of Dirichlet's Vorlesungen. Draft translation by Jeremy Avigad:
pdf.
- Dedekind, Richard, treatment of ideal theory in the same supplement.
Translation by Jeremy Avigad, with an introduction:
pdf.
Secondary sources
- Avigad, Jeremy, "Mathematical method and proof," Synthese 153:105-159, 2006 (specifically sections 2.2 and 2.3):
doi,
pdf.
- Avigad, Jeremy, "Methodology and metaphysics in the development of Dedekind's theory of ideals,"
in José Ferreirós and Jeremy Gray, editors, The Architecture of Modern Mathematics,
Oxford University Press: pdf.
- Buell, Duncan A., Binary quadratic forms, Springer, 1989.
- Cohn, Harvey, Advanced Number Theory, Dover reprint, 1980. Excerpt on the relationship
between ideals and quadratic forms:
pdf.
- Edwards, Fermat's Last Theorem, Chapters 7 and 8. Excerpt on composition of forms:
pdf.
- Edwards, Harold, "Dedekind's invention of ideals," Bulletin
of the London Mathematics Society, 15:8-17, 1983. Also in E. R. Phillips,
editor, Studies in the History of Mathematics, MAA, 1988.
- Edwards, Harold, "Mathematical Ideas, Ideals, and Ideology," The
Mathematical Intelligencer, 14:6-19, 1992:
journal,
>pdf.
- Goldman, Chapter 5, Lagrange: pdf.
- Goldman, Chapter 12, Binary Quadratic Forms I:
pdf.
- Excerpts from Weil, on Brahmagupta's identity and Legendre's composition of quadratic forms:
pdf.
Cyclotomy and Galois theory
Primary sources
- Gauss, DA, Section VII.
- Abel, Niels Henrik, "Mémoire sur les équations algébriques,
où l'on démontre l'impossibilité de la résolution
de l'équation générale du cinquième degré,"
1824. In his Ouvres,
1:28-33. Pesic translation: pdf.
- Abel, Niels Henrik, "Démonstration de l'impossibilité
de la résolution algébrique des équations générales
qui passent le quatrième degré," 1826. In his Ouvres,
1:66-86. German version published in Crelle's Journal, volume 1,
1826.
- Abel, Niels Henrik, summary of the preceding article, published in Bulletin
des sciences math., astr., phys., et chim. 6:347, 1826. In his Ouvres,
1:87-94. Manders translation: pdf.
- Galois, Évariste, "Mémoire sur les conditions de resolubilité
des equations par radicaus,"1831-1832. Translation by Harold Edwards.
pdf.
- Dedekind, Richard, 1857 lecture notes on Galois theory, translation by Edward Dean:
pdf.
- Dedekind, Richard, Suplement XI to the fourth edition Dirichlet's Vorlesungen
über Zahlentheorie, Vieweg, Braunschweig, 1894. Reprinted in Dedekind's
Werke,
volume 3, 1-222. Excerpt: pdf.
Translation by Edward Dean, with an introduction: pdf.
- Wantzel, M.L. "Recherches sur les moyens de reconnaitre si un Problème de Géométrie peut se résoudre avec la règle et le compas". Journal de Mathématiques Pures et Appliquées 1: 366-372, 1837:
pdf.
- Weber ...
Secondary sources
- Edwards, Harold M., Galois Theory, Springer-Verlag, New York, 1984.
Excerpts: pdf,
pdf,
pdf.
- Edwards, excerpt on cyclotomic integers from Fermat's last theorem:
pdf.
- Kiernan, B. M., "The development of Galois theory from Lagrange to
Artin," Archive for History of Exact Science 8, 1971, 40-154. pdf.
- Pesic, Peter, Abel's Proof: an essay on the sources and meaning of mathematical
unsolvability, MIT Press, Cambridge, MA, 2003.
- Tignol's book, Chapter 11, Vandermonde: pdf.
- Tignol's book, Chapter 12, Gauss on cyclotomy: pdf.
- Tignol's book, Chapter 14, Galois: pdf.
Miscellaneous
- Sandborg, David, Explanation in Mathematical Practice, PhD thesis, University of Pittsburgh, 1997.
Chapter 4: (and title page) pdf,
Chapter 5: pdf,
Chapter 6: pdf,
references: pdf.
- Niven, Ivan and H. S. Zuckerman, "Lattice points and polygonal area," AMS Monthly, 74:1195-1200, 1967.
JSTOR,
pdf.
- Kleiner, Israel, "From Numbers to Rings: the early history of ring theory,"
Elemente der Mathematik, 53:12-35, 1998.