Up to index of Isabelle/HOL/HOL-Complex/NumberTheory
theory BijectionRel = Main:(* Title: HOL/NumberTheory/BijectionRel.thy ID: $Id: BijectionRel.thy,v 1.5 2002/10/08 06:20:17 nipkow Exp $ Author: Thomas M. Rasmussen Copyright 2000 University of Cambridge *) header {* Bijections between sets *} theory BijectionRel = Main: text {* Inductive definitions of bijections between two different sets and between the same set. Theorem for relating the two definitions. \bigskip *} consts bijR :: "('a => 'b => bool) => ('a set * 'b set) set" inductive "bijR P" intros empty [simp]: "({}, {}) ∈ bijR P" insert: "P a b ==> a ∉ A ==> b ∉ B ==> (A, B) ∈ bijR P ==> (insert a A, insert b B) ∈ bijR P" text {* Add extra condition to @{term insert}: @{term "∀b ∈ B. ¬ P a b"} (and similar for @{term A}). *} constdefs bijP :: "('a => 'a => bool) => 'a set => bool" "bijP P F == ∀a b. a ∈ F ∧ P a b --> b ∈ F" uniqP :: "('a => 'a => bool) => bool" "uniqP P == ∀a b c d. P a b ∧ P c d --> (a = c) = (b = d)" symP :: "('a => 'a => bool) => bool" "symP P == ∀a b. P a b = P b a" consts bijER :: "('a => 'a => bool) => 'a set set" inductive "bijER P" intros empty [simp]: "{} ∈ bijER P" insert1: "P a a ==> a ∉ A ==> A ∈ bijER P ==> insert a A ∈ bijER P" insert2: "P a b ==> a ≠ b ==> a ∉ A ==> b ∉ A ==> A ∈ bijER P ==> insert a (insert b A) ∈ bijER P" text {* \medskip @{term bijR} *} lemma fin_bijRl: "(A, B) ∈ bijR P ==> finite A" apply (erule bijR.induct) apply auto done lemma fin_bijRr: "(A, B) ∈ bijR P ==> finite B" apply (erule bijR.induct) apply auto done lemma aux_induct: "finite F ==> F ⊆ A ==> P {} ==> (!!F a. F ⊆ A ==> a ∈ A ==> a ∉ F ==> P F ==> P (insert a F)) ==> P F" proof - case rule_context assume major: "finite F" and subs: "F ⊆ A" show ?thesis apply (rule subs [THEN rev_mp]) apply (rule major [THEN finite_induct]) apply (blast intro: rule_context)+ done qed lemma inj_func_bijR_aux1: "A ⊆ B ==> a ∉ A ==> a ∈ B ==> inj_on f B ==> f a ∉ f ` A" apply (unfold inj_on_def) apply auto done lemma inj_func_bijR_aux2: "∀a. a ∈ A --> P a (f a) ==> inj_on f A ==> finite A ==> F <= A ==> (F, f ` F) ∈ bijR P" apply (rule_tac F = F and A = A in aux_induct) apply (rule finite_subset) apply auto apply (rule bijR.insert) apply (rule_tac [3] inj_func_bijR_aux1) apply auto done lemma inj_func_bijR: "∀a. a ∈ A --> P a (f a) ==> inj_on f A ==> finite A ==> (A, f ` A) ∈ bijR P" apply (rule inj_func_bijR_aux2) apply auto done text {* \medskip @{term bijER} *} lemma fin_bijER: "A ∈ bijER P ==> finite A" apply (erule bijER.induct) apply auto done lemma aux1: "a ∉ A ==> a ∉ B ==> F ⊆ insert a A ==> F ⊆ insert a B ==> a ∈ F ==> ∃C. F = insert a C ∧ a ∉ C ∧ C <= A ∧ C <= B" apply (rule_tac x = "F - {a}" in exI) apply auto done lemma aux2: "a ≠ b ==> a ∉ A ==> b ∉ B ==> a ∈ F ==> b ∈ F ==> F ⊆ insert a A ==> F ⊆ insert b B ==> ∃C. F = insert a (insert b C) ∧ a ∉ C ∧ b ∉ C ∧ C ⊆ A ∧ C ⊆ B" apply (rule_tac x = "F - {a, b}" in exI) apply auto done lemma aux_uniq: "uniqP P ==> P a b ==> P c d ==> (a = c) = (b = d)" apply (unfold uniqP_def) apply auto done lemma aux_sym: "symP P ==> P a b = P b a" apply (unfold symP_def) apply auto done lemma aux_in1: "uniqP P ==> b ∉ C ==> P b b ==> bijP P (insert b C) ==> bijP P C" apply (unfold bijP_def) apply auto apply (subgoal_tac "b ≠ a") prefer 2 apply clarify apply (simp add: aux_uniq) apply auto done lemma aux_in2: "symP P ==> uniqP P ==> a ∉ C ==> b ∉ C ==> a ≠ b ==> P a b ==> bijP P (insert a (insert b C)) ==> bijP P C" apply (unfold bijP_def) apply auto apply (subgoal_tac "aa ≠ a") prefer 2 apply clarify apply (subgoal_tac "aa ≠ b") prefer 2 apply clarify apply (simp add: aux_uniq) apply (subgoal_tac "ba ≠ a") apply auto apply (subgoal_tac "P a aa") prefer 2 apply (simp add: aux_sym) apply (subgoal_tac "b = aa") apply (rule_tac [2] iffD1) apply (rule_tac [2] a = a and c = a and P = P in aux_uniq) apply auto done lemma aux_foo: "∀a b. Q a ∧ P a b --> R b ==> P a b ==> Q a ==> R b" apply auto done lemma aux_bij: "bijP P F ==> symP P ==> P a b ==> (a ∈ F) = (b ∈ F)" apply (unfold bijP_def) apply (rule iffI) apply (erule_tac [!] aux_foo) apply simp_all apply (rule iffD2) apply (rule_tac P = P in aux_sym) apply simp_all done lemma aux_bijRER: "(A, B) ∈ bijR P ==> uniqP P ==> symP P ==> ∀F. bijP P F ∧ F ⊆ A ∧ F ⊆ B --> F ∈ bijER P" apply (erule bijR.induct) apply simp apply (case_tac "a = b") apply clarify apply (case_tac "b ∈ F") prefer 2 apply (simp add: subset_insert) apply (cut_tac F = F and a = b and A = A and B = B in aux1) prefer 6 apply clarify apply (rule bijER.insert1) apply simp_all apply (subgoal_tac "bijP P C") apply simp apply (rule aux_in1) apply simp_all apply clarify apply (case_tac "a ∈ F") apply (case_tac [!] "b ∈ F") apply (cut_tac F = F and a = a and b = b and A = A and B = B in aux2) apply (simp_all add: subset_insert) apply clarify apply (rule bijER.insert2) apply simp_all apply (subgoal_tac "bijP P C") apply simp apply (rule aux_in2) apply simp_all apply (subgoal_tac "b ∈ F") apply (rule_tac [2] iffD1) apply (rule_tac [2] a = a and F = F and P = P in aux_bij) apply (simp_all (no_asm_simp)) apply (subgoal_tac [2] "a ∈ F") apply (rule_tac [3] iffD2) apply (rule_tac [3] b = b and F = F and P = P in aux_bij) apply auto done lemma bijR_bijER: "(A, A) ∈ bijR P ==> bijP P A ==> uniqP P ==> symP P ==> A ∈ bijER P" apply (cut_tac A = A and B = A and P = P in aux_bijRER) apply auto done end
lemma fin_bijRl:
(A, B) ∈ bijR P ==> finite A
lemma fin_bijRr:
(A, B) ∈ bijR P ==> finite B
lemma aux_induct:
[| finite F; F ⊆ A; P {}; !!F a. [| F ⊆ A; a ∈ A; a ∉ F; P F |] ==> P (insert a F) |] ==> P F
lemma inj_func_bijR_aux1:
[| A ⊆ B; a ∉ A; a ∈ B; inj_on f B |] ==> f a ∉ f ` A
lemma inj_func_bijR_aux2:
[| ∀a. a ∈ A --> P a (f a); inj_on f A; finite A; F ⊆ A |] ==> (F, f ` F) ∈ bijR P
lemma inj_func_bijR:
[| ∀a. a ∈ A --> P a (f a); inj_on f A; finite A |] ==> (A, f ` A) ∈ bijR P
lemma fin_bijER:
A ∈ bijER P ==> finite A
lemma aux1:
[| a ∉ A; a ∉ B; F ⊆ insert a A; F ⊆ insert a B; a ∈ F |] ==> ∃C. F = insert a C ∧ a ∉ C ∧ C ⊆ A ∧ C ⊆ B
lemma aux2:
[| a ≠ b; a ∉ A; b ∉ B; a ∈ F; b ∈ F; F ⊆ insert a A; F ⊆ insert b B |] ==> ∃C. F = insert a (insert b C) ∧ a ∉ C ∧ b ∉ C ∧ C ⊆ A ∧ C ⊆ B
lemma aux_uniq:
[| uniqP P; P a b; P c d |] ==> (a = c) = (b = d)
lemma aux_sym:
symP P ==> P a b = P b a
lemma aux_in1:
[| uniqP P; b ∉ C; P b b; bijP P (insert b C) |] ==> bijP P C
lemma aux_in2:
[| symP P; uniqP P; a ∉ C; b ∉ C; a ≠ b; P a b; bijP P (insert a (insert b C)) |] ==> bijP P C
lemma aux_foo:
[| ∀a b. Q a ∧ P a b --> R b; P a b; Q a |] ==> R b
lemma aux_bij:
[| bijP P F; symP P; P a b |] ==> (a ∈ F) = (b ∈ F)
lemma aux_bijRER:
[| (A, B) ∈ bijR P; uniqP P; symP P |] ==> ∀F. bijP P F ∧ F ⊆ A ∧ F ⊆ B --> F ∈ bijER P
lemma bijR_bijER:
[| (A, A) ∈ bijR P; bijP P A; uniqP P; symP P |] ==> A ∈ bijER P