(* Title: HOL/NumberTheory/Chinese.thy ID: $Id: Chinese.thy,v 1.8 2004/01/12 15:51:49 paulson Exp $ Author: Thomas M. Rasmussen Copyright 2000 University of Cambridge *) header {* The Chinese Remainder Theorem *} theory Chinese = IntPrimes: text {* The Chinese Remainder Theorem for an arbitrary finite number of equations. (The one-equation case is included in theory @{text IntPrimes}. Uses functions for indexing.\footnote{Maybe @{term funprod} and @{term funsum} should be based on general @{term fold} on indices?} *} subsection {* Definitions *} consts funprod :: "(nat => int) => nat => nat => int" funsum :: "(nat => int) => nat => nat => int" primrec "funprod f i 0 = f i" "funprod f i (Suc n) = f (Suc (i + n)) * funprod f i n" primrec "funsum f i 0 = f i" "funsum f i (Suc n) = f (Suc (i + n)) + funsum f i n" consts m_cond :: "nat => (nat => int) => bool" km_cond :: "nat => (nat => int) => (nat => int) => bool" lincong_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int => bool" mhf :: "(nat => int) => nat => nat => int" xilin_sol :: "nat => nat => (nat => int) => (nat => int) => (nat => int) => int" x_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int" defs m_cond_def: "m_cond n mf == (∀i. i ≤ n --> 0 < mf i) ∧ (∀i j. i ≤ n ∧ j ≤ n ∧ i ≠ j --> zgcd (mf i, mf j) = 1)" km_cond_def: "km_cond n kf mf == ∀i. i ≤ n --> zgcd (kf i, mf i) = 1" lincong_sol_def: "lincong_sol n kf bf mf x == ∀i. i ≤ n --> zcong (kf i * x) (bf i) (mf i)" mhf_def: "mhf mf n i == if i = 0 then funprod mf (Suc 0) (n - Suc 0) else if i = n then funprod mf 0 (n - Suc 0) else funprod mf 0 (i - Suc 0) * funprod mf (Suc i) (n - Suc 0 - i)" xilin_sol_def: "xilin_sol i n kf bf mf == if 0 < n ∧ i ≤ n ∧ m_cond n mf ∧ km_cond n kf mf then (SOME x. 0 ≤ x ∧ x < mf i ∧ zcong (kf i * mhf mf n i * x) (bf i) (mf i)) else 0" x_sol_def: "x_sol n kf bf mf == funsum (λi. xilin_sol i n kf bf mf * mhf mf n i) 0 n" text {* \medskip @{term funprod} and @{term funsum} *} lemma funprod_pos: "(∀i. i ≤ n --> 0 < mf i) ==> 0 < funprod mf 0 n" apply (induct n) apply auto apply (simp add: zero_less_mult_iff) done lemma funprod_zgcd [rule_format (no_asm)]: "(∀i. k ≤ i ∧ i ≤ k + l --> zgcd (mf i, mf m) = 1) --> zgcd (funprod mf k l, mf m) = 1" apply (induct l) apply simp_all apply (rule impI)+ apply (subst zgcd_zmult_cancel) apply auto done lemma funprod_zdvd [rule_format]: "k ≤ i --> i ≤ k + l --> mf i dvd funprod mf k l" apply (induct l) apply auto apply (rule_tac [2] zdvd_zmult2) apply (rule_tac [3] zdvd_zmult) apply (subgoal_tac "i = k") apply (subgoal_tac [3] "i = Suc (k + n)") apply (simp_all (no_asm_simp)) done lemma funsum_mod: "funsum f k l mod m = funsum (λi. (f i) mod m) k l mod m" apply (induct l) apply auto apply (rule trans) apply (rule zmod_zadd1_eq) apply simp apply (rule zmod_zadd_right_eq [symmetric]) done lemma funsum_zero [rule_format (no_asm)]: "(∀i. k ≤ i ∧ i ≤ k + l --> f i = 0) --> (funsum f k l) = 0" apply (induct l) apply auto done lemma funsum_oneelem [rule_format (no_asm)]: "k ≤ j --> j ≤ k + l --> (∀i. k ≤ i ∧ i ≤ k + l ∧ i ≠ j --> f i = 0) --> funsum f k l = f j" apply (induct l) prefer 2 apply clarify defer apply clarify apply (subgoal_tac "k = j") apply (simp_all (no_asm_simp)) apply (case_tac "Suc (k + n) = j") apply (subgoal_tac "funsum f k n = 0") apply (rule_tac [2] funsum_zero) apply (subgoal_tac [3] "f (Suc (k + n)) = 0") apply (subgoal_tac [3] "j ≤ k + n") prefer 4 apply arith apply auto done subsection {* Chinese: uniqueness *} lemma zcong_funprod_aux: "m_cond n mf ==> km_cond n kf mf ==> lincong_sol n kf bf mf x ==> lincong_sol n kf bf mf y ==> [x = y] (mod mf n)" apply (unfold m_cond_def km_cond_def lincong_sol_def) apply (rule iffD1) apply (rule_tac k = "kf n" in zcong_cancel2) apply (rule_tac [3] b = "bf n" in zcong_trans) prefer 4 apply (subst zcong_sym) defer apply (rule order_less_imp_le) apply simp_all done lemma zcong_funprod [rule_format]: "m_cond n mf --> km_cond n kf mf --> lincong_sol n kf bf mf x --> lincong_sol n kf bf mf y --> [x = y] (mod funprod mf 0 n)" apply (induct n) apply (simp_all (no_asm)) apply (blast intro: zcong_funprod_aux) apply (rule impI)+ apply (rule zcong_zgcd_zmult_zmod) apply (blast intro: zcong_funprod_aux) prefer 2 apply (subst zgcd_commute) apply (rule funprod_zgcd) apply (auto simp add: m_cond_def km_cond_def lincong_sol_def) done subsection {* Chinese: existence *} lemma unique_xi_sol: "0 < n ==> i ≤ n ==> m_cond n mf ==> km_cond n kf mf ==> ∃!x. 0 ≤ x ∧ x < mf i ∧ [kf i * mhf mf n i * x = bf i] (mod mf i)" apply (rule zcong_lineq_unique) apply (tactic {* stac (thm "zgcd_zmult_cancel") 2 *}) apply (unfold m_cond_def km_cond_def mhf_def) apply (simp_all (no_asm_simp)) apply safe apply (tactic {* stac (thm "zgcd_zmult_cancel") 3 *}) apply (rule_tac [!] funprod_zgcd) apply safe apply simp_all apply (subgoal_tac "i<n") prefer 2 apply arith apply (case_tac [2] i) apply simp_all done lemma x_sol_lin_aux: "0 < n ==> i ≤ n ==> j ≤ n ==> j ≠ i ==> mf j dvd mhf mf n i" apply (unfold mhf_def) apply (case_tac "i = 0") apply (case_tac [2] "i = n") apply (simp_all (no_asm_simp)) apply (case_tac [3] "j < i") apply (rule_tac [3] zdvd_zmult2) apply (rule_tac [4] zdvd_zmult) apply (rule_tac [!] funprod_zdvd) apply arith+ done lemma x_sol_lin: "0 < n ==> i ≤ n ==> x_sol n kf bf mf mod mf i = xilin_sol i n kf bf mf * mhf mf n i mod mf i" apply (unfold x_sol_def) apply (subst funsum_mod) apply (subst funsum_oneelem) apply auto apply (subst zdvd_iff_zmod_eq_0 [symmetric]) apply (rule zdvd_zmult) apply (rule x_sol_lin_aux) apply auto done subsection {* Chinese *} lemma chinese_remainder: "0 < n ==> m_cond n mf ==> km_cond n kf mf ==> ∃!x. 0 ≤ x ∧ x < funprod mf 0 n ∧ lincong_sol n kf bf mf x" apply safe apply (rule_tac [2] m = "funprod mf 0 n" in zcong_zless_imp_eq) apply (rule_tac [6] zcong_funprod) apply auto apply (rule_tac x = "x_sol n kf bf mf mod funprod mf 0 n" in exI) apply (unfold lincong_sol_def) apply safe apply (tactic {* stac (thm "zcong_zmod") 3 *}) apply (tactic {* stac (thm "zmod_zmult_distrib") 3 *}) apply (tactic {* stac (thm "zmod_zdvd_zmod") 3 *}) apply (tactic {* stac (thm "x_sol_lin") 5 *}) apply (tactic {* stac (thm "zmod_zmult_distrib" RS sym) 7 *}) apply (tactic {* stac (thm "zcong_zmod" RS sym) 7 *}) apply (subgoal_tac [7] "0 ≤ xilin_sol i n kf bf mf ∧ xilin_sol i n kf bf mf < mf i ∧ [kf i * mhf mf n i * xilin_sol i n kf bf mf = bf i] (mod mf i)") prefer 7 apply (simp add: zmult_ac) apply (unfold xilin_sol_def) apply (tactic {* Asm_simp_tac 7 *}) apply (rule_tac [7] ex1_implies_ex [THEN someI_ex]) apply (rule_tac [7] unique_xi_sol) apply (rule_tac [4] funprod_zdvd) apply (unfold m_cond_def) apply (rule funprod_pos [THEN pos_mod_sign]) apply (rule_tac [2] funprod_pos [THEN pos_mod_bound]) apply auto done end
lemma funprod_pos:
∀i≤n. 0 < mf i ==> 0 < funprod mf 0 n
lemma funprod_zgcd:
∀i. k ≤ i ∧ i ≤ k + l --> zgcd (mf i, mf m) = 1 ==> zgcd (funprod mf k l, mf m) = 1
lemma funprod_zdvd:
[| k ≤ i; i ≤ k + l |] ==> mf i dvd funprod mf k l
lemma funsum_mod:
funsum f k l mod m = funsum (%i. f i mod m) k l mod m
lemma funsum_zero:
∀i. k ≤ i ∧ i ≤ k + l --> f i = 0 ==> funsum f k l = 0
lemma funsum_oneelem:
[| k ≤ j; j ≤ k + l; ∀i. k ≤ i ∧ i ≤ k + l ∧ i ≠ j --> f i = 0 |] ==> funsum f k l = f j
lemma zcong_funprod_aux:
[| m_cond n mf; km_cond n kf mf; lincong_sol n kf bf mf x; lincong_sol n kf bf mf y |] ==> [x = y] (mod mf n)
lemma zcong_funprod:
[| m_cond n mf; km_cond n kf mf; lincong_sol n kf bf mf x; lincong_sol n kf bf mf y |] ==> [x = y] (mod funprod mf 0 n)
lemma unique_xi_sol:
[| 0 < n; i ≤ n; m_cond n mf; km_cond n kf mf |] ==> ∃!x. 0 ≤ x ∧ x < mf i ∧ [kf i * mhf mf n i * x = bf i] (mod mf i)
lemma x_sol_lin_aux:
[| 0 < n; i ≤ n; j ≤ n; j ≠ i |] ==> mf j dvd mhf mf n i
lemma x_sol_lin:
[| 0 < n; i ≤ n |] ==> x_sol n kf bf mf mod mf i = xilin_sol i n kf bf mf * mhf mf n i mod mf i
lemma chinese_remainder:
[| 0 < n; m_cond n mf; km_cond n kf mf |] ==> ∃!x. 0 ≤ x ∧ x < funprod mf 0 n ∧ lincong_sol n kf bf mf x