(* Title: EvenOdd2.thy Authors: Jeremy Avigad, David Gray, and Adam Kramer *) header {*Parity: Even and Odd Integers*} theory EvenOdd2 = NatIntLib:; constdefs zOdd :: "int set" "zOdd == {x. ∃k. x = 2*k + 1}" zEven :: "int set" "zEven == {x. ∃k. x = 2 * k}" (***********************************************************) (* *) (* Some useful properties about even and odd *) (* *) (***********************************************************) lemma one_not_even: "~(1 ∈ zEven)"; apply (simp add: zEven_def) apply (rule allI, case_tac "k ≤ 0", auto) done lemma even_odd_conj: "~(x ∈ zOdd & x ∈ zEven)"; apply (auto simp add: zOdd_def zEven_def) proof -; fix a b; assume "2 * (a::int) = 2 * (b::int) + 1"; then have "2 * (a::int) - 2 * (b :: int) = 1"; by arith then have "2 * (a - b) = 1"; by (auto simp add: zdiff_zmult_distrib) moreover have "(2 * (a - b)):zEven"; by (auto simp only: zEven_def) ultimately show "False"; by (auto simp add: one_not_even) qed; lemma even_odd_disj: "(x ∈ zOdd | x ∈ zEven)"; apply (auto simp add: zOdd_def zEven_def) proof -; assume "∀k. x ≠ 2 * k"; have "0 ≤ (x mod 2) & (x mod 2) < 2"; by (auto intro: pos_mod_sign pos_mod_bound) then have "x mod 2 = 0 | x mod 2 = 1" by arith moreover from prems have "x mod 2 ≠ 0" by arith; ultimately have "x mod 2 = 1" by auto thus "∃k. x = 2 * k + 1"; by (insert zmod_zdiv_equality [of "x" "2"], auto) qed; lemma not_odd_impl_even: "~(x ∈ zOdd) ==> x ∈ zEven"; by (insert even_odd_disj, auto) lemma odd_mult_odd_prop: "(x*y):zOdd ==> x ∈ zOdd"; apply (case_tac "x ∈ zOdd", auto) apply (drule not_odd_impl_even) apply (auto simp add: zEven_def zOdd_def) proof -; fix a b; assume "2 * a * y = 2 * b + 1"; then have "2 * a * y - 2 * b = 1"; by arith then have "2 * (a * y - b) = 1"; by (auto simp add: zdiff_zmult_distrib) moreover have "(2 * (a * y - b)):zEven"; by (auto simp only: zEven_def) ultimately show "False"; by (auto simp add: one_not_even) qed; lemma odd_minus_one_even: "x ∈ zOdd ==> (x - 1):zEven"; by (auto simp add: zOdd_def zEven_def) lemma even_div_2_prop1: "x ∈ zEven ==> (x mod 2) = 0"; by (auto simp add: zEven_def) lemma even_div_2_prop2: "x ∈ zEven ==> (2 * (x div 2)) = x"; by (auto simp add: zEven_def) lemma even_plus_even: "[| x ∈ zEven; y ∈ zEven |] ==> x + y ∈ zEven"; apply (auto simp add: zEven_def) by (auto simp only: zadd_zmult_distrib2 [THEN sym]) lemma even_times_either: "x ∈ zEven ==> x * y ∈ zEven"; by (auto simp add: zEven_def) lemma even_minus_even: "[| x ∈ zEven; y ∈ zEven |] ==> x - y ∈ zEven"; apply (auto simp add: zEven_def) by (auto simp only: zdiff_zmult_distrib2 [THEN sym]) lemma odd_minus_odd: "[| x ∈ zOdd; y ∈ zOdd |] ==> x - y ∈ zEven"; apply (auto simp add: zOdd_def zEven_def) by (auto simp only: zdiff_zmult_distrib2 [THEN sym]) lemma even_minus_odd: "[| x ∈ zEven; y ∈ zOdd |] ==> x - y ∈ zOdd"; apply (auto simp add: zOdd_def zEven_def) apply (rule_tac x = "k - ka - 1" in exI) by auto lemma odd_minus_even: "[| x ∈ zOdd; y ∈ zEven |] ==> x - y ∈ zOdd"; apply (auto simp add: zOdd_def zEven_def) by (auto simp only: zdiff_zmult_distrib2 [THEN sym]) lemma odd_times_odd: "[| x ∈ zOdd; y ∈ zOdd |] ==> x * y ∈ zOdd"; apply (auto simp add: zOdd_def zadd_zmult_distrib zadd_zmult_distrib2) apply (rule_tac x = "2 * ka * k + ka + k" in exI) by (auto simp add: zadd_zmult_distrib) lemma odd_iff_not_even: "(x ∈ zOdd) = (~ (x ∈ zEven))"; by (insert even_odd_conj even_odd_disj, auto) lemma even_product: "x * y ∈ zEven ==> x ∈ zEven | y ∈ zEven"; by (insert odd_iff_not_even odd_times_odd, auto) lemma even_diff: "x - y ∈ zEven = ((x ∈ zEven) = (y ∈ zEven))"; apply (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd even_minus_odd odd_minus_even) proof -; assume "x - y ∈ zEven" and "x ∈ zEven"; show "y ∈ zEven"; proof (rule classical); assume "~(y ∈ zEven)"; then have "y ∈ zOdd" by (auto simp add: odd_iff_not_even) with prems have "x - y ∈ zOdd"; by (simp add: even_minus_odd) with prems have "False"; by (auto simp add: odd_iff_not_even) thus ?thesis; by auto qed; next assume "x - y ∈ zEven" and "y ∈ zEven"; show "x ∈ zEven"; proof (rule classical); assume "~(x ∈ zEven)"; then have "x ∈ zOdd" by (auto simp add: odd_iff_not_even) with prems have "x - y ∈ zOdd"; by (simp add: odd_minus_even) with prems have "False"; by (auto simp add: odd_iff_not_even) thus ?thesis; by auto qed; qed; lemma neg_one_even_power: "[| x ∈ zEven; 0 ≤ x |] ==> (-1::int)^(nat x) = 1"; proof -; assume "x ∈ zEven" and "0 ≤ x"; then have "∃k. x = 2 * k"; by (auto simp only: zEven_def) then show ?thesis; proof; fix a; assume "x = 2 * a"; from prems have a: "0 ≤ a"; by arith from prems have "nat x = nat(2 * a)"; by auto also from a have "nat (2 * a) = 2 * nat a"; by (auto simp add: nat_mult_distrib) finally have "(-1::int)^nat x = (-1)^(2 * nat a)"; by auto also have "... = ((-1::int)^2)^ (nat a)"; by (auto simp add: zpower_zpower [THEN sym]) also have "(-1::int)^2 = 1"; by auto finally; show ?thesis; by auto; qed; qed; lemma neg_one_odd_power: "[| x ∈ zOdd; 0 ≤ x |] ==> (-1::int)^(nat x) = -1"; proof -; assume "x ∈ zOdd" and "0 ≤ x"; then have "∃k. x = 2 * k + 1"; by (auto simp only: zOdd_def) then show ?thesis; proof; fix a; assume "x = 2 * a + 1"; from prems have a: "0 ≤ a"; by arith from prems have "nat x = nat(2 * a + 1)"; by auto also from a have "nat (2 * a + 1) = 2 * nat a + 1"; by (auto simp add: nat_mult_distrib nat_add_distrib) finally have "(-1::int)^nat x = (-1)^(2 * nat a + 1)"; by auto also have "... = ((-1::int)^2)^ (nat a) * (-1)^1"; by (auto simp add: zpower_zpower [THEN sym] zpower_zadd_distrib) also have "(-1::int)^2 = 1"; by auto finally; show ?thesis; by auto; qed; qed; lemma neg_one_power_parity: "[| 0 ≤ x; 0 ≤ y; (x ∈ zEven) = (y ∈ zEven) |] ==> (-1::int)^(nat x) = (-1::int)^(nat y)"; apply (insert even_odd_disj [of x]) apply (insert even_odd_disj [of y]) by (auto simp add: neg_one_even_power neg_one_odd_power) lemma one_not_neg_one_mod_m: "2 < m ==> ~([1 = -1] (mod m))"; by (auto simp add: zcong_def zdvd_not_zless) lemma even_div_2_l: "[| y ∈ zEven; x < y |] ==> x div 2 < y div 2"; apply (auto simp only: zEven_def) proof -; fix k assume "x < 2 * k"; then have "x div 2 < k" by (auto simp add: div_prop1) also have "k = (2 * k) div 2"; by auto finally show "x div 2 < 2 * k div 2" by auto qed; lemma even_sum_div_2: "[| x ∈ zEven; y ∈ zEven |] ==> (x + y) div 2 = x div 2 + y div 2"; by (auto simp add: zEven_def, auto simp add: zdiv_zadd1_eq) lemma even_prod_div_2: "[| x ∈ zEven |] ==> (x * y) div 2 = (x div 2) * y"; by (auto simp add: zEven_def) (* An odd prime is greater than 2 *) lemma zprime_zOdd_eq_grt_2: "p ∈ zprime ==> (p ∈ zOdd) = (2 < p)"; apply (auto simp add: zOdd_def zprime_def) apply (drule_tac x = 2 in allE) apply (insert odd_iff_not_even [of p]) by (auto simp add: zOdd_def zEven_def) (* Powers of -1 and parity *) lemma neg_one_special: "finite A ==> ((-1 :: int) ^ card A) * (-1 ^ card A) = 1"; by (induct set: Finites, auto) lemma neg_one_power: "(-1::int)^n = 1 | (-1::int)^n = -1"; apply (induct_tac n) by auto lemma neg_one_power_eq_mod_m: "[| 2 < m; [(-1::int)^j = (-1::int)^k] (mod m) |] ==> ((-1::int)^j = (-1::int)^k)"; apply (insert neg_one_power [of j]) apply (insert neg_one_power [of k]) by (auto simp add: one_not_neg_one_mod_m zcong_sym) end;
lemma one_not_even:
1 ∉ zEven
lemma even_odd_conj:
¬ (x ∈ zOdd ∧ x ∈ zEven)
lemma even_odd_disj:
x ∈ zOdd ∨ x ∈ zEven
lemma not_odd_impl_even:
x ∉ zOdd ==> x ∈ zEven
lemma odd_mult_odd_prop:
x * y ∈ zOdd ==> x ∈ zOdd
lemma odd_minus_one_even:
x ∈ zOdd ==> x - 1 ∈ zEven
lemma even_div_2_prop1:
x ∈ zEven ==> x mod 2 = 0
lemma even_div_2_prop2:
x ∈ zEven ==> 2 * (x div 2) = x
lemma even_plus_even:
[| x ∈ zEven; y ∈ zEven |] ==> x + y ∈ zEven
lemma even_times_either:
x ∈ zEven ==> x * y ∈ zEven
lemma even_minus_even:
[| x ∈ zEven; y ∈ zEven |] ==> x - y ∈ zEven
lemma odd_minus_odd:
[| x ∈ zOdd; y ∈ zOdd |] ==> x - y ∈ zEven
lemma even_minus_odd:
[| x ∈ zEven; y ∈ zOdd |] ==> x - y ∈ zOdd
lemma odd_minus_even:
[| x ∈ zOdd; y ∈ zEven |] ==> x - y ∈ zOdd
lemma odd_times_odd:
[| x ∈ zOdd; y ∈ zOdd |] ==> x * y ∈ zOdd
lemma odd_iff_not_even:
(x ∈ zOdd) = (x ∉ zEven)
lemma even_product:
x * y ∈ zEven ==> x ∈ zEven ∨ y ∈ zEven
lemma even_diff:
(x - y ∈ zEven) = ((x ∈ zEven) = (y ∈ zEven))
lemma neg_one_even_power:
[| x ∈ zEven; 0 ≤ x |] ==> -1 ^ nat x = 1
lemma neg_one_odd_power:
[| x ∈ zOdd; 0 ≤ x |] ==> -1 ^ nat x = -1
lemma neg_one_power_parity:
[| 0 ≤ x; 0 ≤ y; (x ∈ zEven) = (y ∈ zEven) |] ==> -1 ^ nat x = -1 ^ nat y
lemma one_not_neg_one_mod_m:
2 < m ==> ¬ [1 = -1] (mod m)
lemma even_div_2_l:
[| y ∈ zEven; x < y |] ==> x div 2 < y div 2
lemma even_sum_div_2:
[| x ∈ zEven; y ∈ zEven |] ==> (x + y) div 2 = x div 2 + y div 2
lemma even_prod_div_2:
x ∈ zEven ==> x * y div 2 = x div 2 * y
lemma zprime_zOdd_eq_grt_2:
p ∈ zprime ==> (p ∈ zOdd) = (2 < p)
lemma neg_one_special:
finite A ==> -1 ^ card A * -1 ^ card A = 1
lemma neg_one_power:
-1 ^ n = 1 ∨ -1 ^ n = -1
lemma neg_one_power_eq_mod_m:
[| 2 < m; [-1 ^ j = -1 ^ k] (mod m) |] ==> -1 ^ j = -1 ^ k