(* Title: EvenOdd2.thy
Authors: Jeremy Avigad, David Gray, and Adam Kramer
*)
header {*Parity: Even and Odd Integers*}
theory EvenOdd2 = NatIntLib:;
constdefs
zOdd :: "int set"
"zOdd == {x. ∃k. x = 2*k + 1}"
zEven :: "int set"
"zEven == {x. ∃k. x = 2 * k}"
(***********************************************************)
(* *)
(* Some useful properties about even and odd *)
(* *)
(***********************************************************)
lemma one_not_even: "~(1 ∈ zEven)";
apply (simp add: zEven_def)
apply (rule allI, case_tac "k ≤ 0", auto)
done
lemma even_odd_conj: "~(x ∈ zOdd & x ∈ zEven)";
apply (auto simp add: zOdd_def zEven_def)
proof -;
fix a b;
assume "2 * (a::int) = 2 * (b::int) + 1";
then have "2 * (a::int) - 2 * (b :: int) = 1";
by arith
then have "2 * (a - b) = 1";
by (auto simp add: zdiff_zmult_distrib)
moreover have "(2 * (a - b)):zEven";
by (auto simp only: zEven_def)
ultimately show "False";
by (auto simp add: one_not_even)
qed;
lemma even_odd_disj: "(x ∈ zOdd | x ∈ zEven)";
apply (auto simp add: zOdd_def zEven_def)
proof -;
assume "∀k. x ≠ 2 * k";
have "0 ≤ (x mod 2) & (x mod 2) < 2";
by (auto intro: pos_mod_sign pos_mod_bound)
then have "x mod 2 = 0 | x mod 2 = 1" by arith
moreover from prems have "x mod 2 ≠ 0" by arith;
ultimately have "x mod 2 = 1" by auto
thus "∃k. x = 2 * k + 1";
by (insert zmod_zdiv_equality [of "x" "2"], auto)
qed;
lemma not_odd_impl_even: "~(x ∈ zOdd) ==> x ∈ zEven";
by (insert even_odd_disj, auto)
lemma odd_mult_odd_prop: "(x*y):zOdd ==> x ∈ zOdd";
apply (case_tac "x ∈ zOdd", auto)
apply (drule not_odd_impl_even)
apply (auto simp add: zEven_def zOdd_def)
proof -;
fix a b;
assume "2 * a * y = 2 * b + 1";
then have "2 * a * y - 2 * b = 1";
by arith
then have "2 * (a * y - b) = 1";
by (auto simp add: zdiff_zmult_distrib)
moreover have "(2 * (a * y - b)):zEven";
by (auto simp only: zEven_def)
ultimately show "False";
by (auto simp add: one_not_even)
qed;
lemma odd_minus_one_even: "x ∈ zOdd ==> (x - 1):zEven";
by (auto simp add: zOdd_def zEven_def)
lemma even_div_2_prop1: "x ∈ zEven ==> (x mod 2) = 0";
by (auto simp add: zEven_def)
lemma even_div_2_prop2: "x ∈ zEven ==> (2 * (x div 2)) = x";
by (auto simp add: zEven_def)
lemma even_plus_even: "[| x ∈ zEven; y ∈ zEven |] ==> x + y ∈ zEven";
apply (auto simp add: zEven_def)
by (auto simp only: zadd_zmult_distrib2 [THEN sym])
lemma even_times_either: "x ∈ zEven ==> x * y ∈ zEven";
by (auto simp add: zEven_def)
lemma even_minus_even: "[| x ∈ zEven; y ∈ zEven |] ==> x - y ∈ zEven";
apply (auto simp add: zEven_def)
by (auto simp only: zdiff_zmult_distrib2 [THEN sym])
lemma odd_minus_odd: "[| x ∈ zOdd; y ∈ zOdd |] ==> x - y ∈ zEven";
apply (auto simp add: zOdd_def zEven_def)
by (auto simp only: zdiff_zmult_distrib2 [THEN sym])
lemma even_minus_odd: "[| x ∈ zEven; y ∈ zOdd |] ==> x - y ∈ zOdd";
apply (auto simp add: zOdd_def zEven_def)
apply (rule_tac x = "k - ka - 1" in exI)
by auto
lemma odd_minus_even: "[| x ∈ zOdd; y ∈ zEven |] ==> x - y ∈ zOdd";
apply (auto simp add: zOdd_def zEven_def)
by (auto simp only: zdiff_zmult_distrib2 [THEN sym])
lemma odd_times_odd: "[| x ∈ zOdd; y ∈ zOdd |] ==> x * y ∈ zOdd";
apply (auto simp add: zOdd_def zadd_zmult_distrib zadd_zmult_distrib2)
apply (rule_tac x = "2 * ka * k + ka + k" in exI)
by (auto simp add: zadd_zmult_distrib)
lemma odd_iff_not_even: "(x ∈ zOdd) = (~ (x ∈ zEven))";
by (insert even_odd_conj even_odd_disj, auto)
lemma even_product: "x * y ∈ zEven ==> x ∈ zEven | y ∈ zEven";
by (insert odd_iff_not_even odd_times_odd, auto)
lemma even_diff: "x - y ∈ zEven = ((x ∈ zEven) = (y ∈ zEven))";
apply (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
even_minus_odd odd_minus_even)
proof -;
assume "x - y ∈ zEven" and "x ∈ zEven";
show "y ∈ zEven";
proof (rule classical);
assume "~(y ∈ zEven)";
then have "y ∈ zOdd"
by (auto simp add: odd_iff_not_even)
with prems have "x - y ∈ zOdd";
by (simp add: even_minus_odd)
with prems have "False";
by (auto simp add: odd_iff_not_even)
thus ?thesis;
by auto
qed;
next assume "x - y ∈ zEven" and "y ∈ zEven";
show "x ∈ zEven";
proof (rule classical);
assume "~(x ∈ zEven)";
then have "x ∈ zOdd"
by (auto simp add: odd_iff_not_even)
with prems have "x - y ∈ zOdd";
by (simp add: odd_minus_even)
with prems have "False";
by (auto simp add: odd_iff_not_even)
thus ?thesis;
by auto
qed;
qed;
lemma neg_one_even_power: "[| x ∈ zEven; 0 ≤ x |] ==> (-1::int)^(nat x) = 1";
proof -;
assume "x ∈ zEven" and "0 ≤ x";
then have "∃k. x = 2 * k";
by (auto simp only: zEven_def)
then show ?thesis;
proof;
fix a;
assume "x = 2 * a";
from prems have a: "0 ≤ a";
by arith
from prems have "nat x = nat(2 * a)";
by auto
also from a have "nat (2 * a) = 2 * nat a";
by (auto simp add: nat_mult_distrib)
finally have "(-1::int)^nat x = (-1)^(2 * nat a)";
by auto
also have "... = ((-1::int)^2)^ (nat a)";
by (auto simp add: zpower_zpower [THEN sym])
also have "(-1::int)^2 = 1";
by auto
finally; show ?thesis;
by auto;
qed;
qed;
lemma neg_one_odd_power: "[| x ∈ zOdd; 0 ≤ x |] ==> (-1::int)^(nat x) = -1";
proof -;
assume "x ∈ zOdd" and "0 ≤ x";
then have "∃k. x = 2 * k + 1";
by (auto simp only: zOdd_def)
then show ?thesis;
proof;
fix a;
assume "x = 2 * a + 1";
from prems have a: "0 ≤ a";
by arith
from prems have "nat x = nat(2 * a + 1)";
by auto
also from a have "nat (2 * a + 1) = 2 * nat a + 1";
by (auto simp add: nat_mult_distrib nat_add_distrib)
finally have "(-1::int)^nat x = (-1)^(2 * nat a + 1)";
by auto
also have "... = ((-1::int)^2)^ (nat a) * (-1)^1";
by (auto simp add: zpower_zpower [THEN sym] zpower_zadd_distrib)
also have "(-1::int)^2 = 1";
by auto
finally; show ?thesis;
by auto;
qed;
qed;
lemma neg_one_power_parity: "[| 0 ≤ x; 0 ≤ y; (x ∈ zEven) = (y ∈ zEven) |] ==>
(-1::int)^(nat x) = (-1::int)^(nat y)";
apply (insert even_odd_disj [of x])
apply (insert even_odd_disj [of y])
by (auto simp add: neg_one_even_power neg_one_odd_power)
lemma one_not_neg_one_mod_m: "2 < m ==> ~([1 = -1] (mod m))";
by (auto simp add: zcong_def zdvd_not_zless)
lemma even_div_2_l: "[| y ∈ zEven; x < y |] ==> x div 2 < y div 2";
apply (auto simp only: zEven_def)
proof -;
fix k assume "x < 2 * k";
then have "x div 2 < k" by (auto simp add: div_prop1)
also have "k = (2 * k) div 2"; by auto
finally show "x div 2 < 2 * k div 2" by auto
qed;
lemma even_sum_div_2: "[| x ∈ zEven; y ∈ zEven |] ==> (x + y) div 2 = x div 2 + y div 2";
by (auto simp add: zEven_def, auto simp add: zdiv_zadd1_eq)
lemma even_prod_div_2: "[| x ∈ zEven |] ==> (x * y) div 2 = (x div 2) * y";
by (auto simp add: zEven_def)
(* An odd prime is greater than 2 *)
lemma zprime_zOdd_eq_grt_2: "p ∈ zprime ==> (p ∈ zOdd) = (2 < p)";
apply (auto simp add: zOdd_def zprime_def)
apply (drule_tac x = 2 in allE)
apply (insert odd_iff_not_even [of p])
by (auto simp add: zOdd_def zEven_def)
(* Powers of -1 and parity *)
lemma neg_one_special: "finite A ==>
((-1 :: int) ^ card A) * (-1 ^ card A) = 1";
by (induct set: Finites, auto)
lemma neg_one_power: "(-1::int)^n = 1 | (-1::int)^n = -1";
apply (induct_tac n)
by auto
lemma neg_one_power_eq_mod_m: "[| 2 < m; [(-1::int)^j = (-1::int)^k] (mod m) |]
==> ((-1::int)^j = (-1::int)^k)";
apply (insert neg_one_power [of j])
apply (insert neg_one_power [of k])
by (auto simp add: one_not_neg_one_mod_m zcong_sym)
end;
lemma one_not_even:
1 ∉ zEven
lemma even_odd_conj:
¬ (x ∈ zOdd ∧ x ∈ zEven)
lemma even_odd_disj:
x ∈ zOdd ∨ x ∈ zEven
lemma not_odd_impl_even:
x ∉ zOdd ==> x ∈ zEven
lemma odd_mult_odd_prop:
x * y ∈ zOdd ==> x ∈ zOdd
lemma odd_minus_one_even:
x ∈ zOdd ==> x - 1 ∈ zEven
lemma even_div_2_prop1:
x ∈ zEven ==> x mod 2 = 0
lemma even_div_2_prop2:
x ∈ zEven ==> 2 * (x div 2) = x
lemma even_plus_even:
[| x ∈ zEven; y ∈ zEven |] ==> x + y ∈ zEven
lemma even_times_either:
x ∈ zEven ==> x * y ∈ zEven
lemma even_minus_even:
[| x ∈ zEven; y ∈ zEven |] ==> x - y ∈ zEven
lemma odd_minus_odd:
[| x ∈ zOdd; y ∈ zOdd |] ==> x - y ∈ zEven
lemma even_minus_odd:
[| x ∈ zEven; y ∈ zOdd |] ==> x - y ∈ zOdd
lemma odd_minus_even:
[| x ∈ zOdd; y ∈ zEven |] ==> x - y ∈ zOdd
lemma odd_times_odd:
[| x ∈ zOdd; y ∈ zOdd |] ==> x * y ∈ zOdd
lemma odd_iff_not_even:
(x ∈ zOdd) = (x ∉ zEven)
lemma even_product:
x * y ∈ zEven ==> x ∈ zEven ∨ y ∈ zEven
lemma even_diff:
(x - y ∈ zEven) = ((x ∈ zEven) = (y ∈ zEven))
lemma neg_one_even_power:
[| x ∈ zEven; 0 ≤ x |] ==> -1 ^ nat x = 1
lemma neg_one_odd_power:
[| x ∈ zOdd; 0 ≤ x |] ==> -1 ^ nat x = -1
lemma neg_one_power_parity:
[| 0 ≤ x; 0 ≤ y; (x ∈ zEven) = (y ∈ zEven) |] ==> -1 ^ nat x = -1 ^ nat y
lemma one_not_neg_one_mod_m:
2 < m ==> ¬ [1 = -1] (mod m)
lemma even_div_2_l:
[| y ∈ zEven; x < y |] ==> x div 2 < y div 2
lemma even_sum_div_2:
[| x ∈ zEven; y ∈ zEven |] ==> (x + y) div 2 = x div 2 + y div 2
lemma even_prod_div_2:
x ∈ zEven ==> x * y div 2 = x div 2 * y
lemma zprime_zOdd_eq_grt_2:
p ∈ zprime ==> (p ∈ zOdd) = (2 < p)
lemma neg_one_special:
finite A ==> -1 ^ card A * -1 ^ card A = 1
lemma neg_one_power:
-1 ^ n = 1 ∨ -1 ^ n = -1
lemma neg_one_power_eq_mod_m:
[| 2 < m; [-1 ^ j = -1 ^ k] (mod m) |] ==> -1 ^ j = -1 ^ k