Up to index of Isabelle/HOL/HOL-Complex/NumberTheory
theory Factorization = Primes + Permutation:(* Title: HOL/NumberTheory/Factorization.thy ID: $Id: Factorization.thy,v 1.5 2001/10/05 19:52:51 wenzelm Exp $ Author: Thomas Marthedal Rasmussen Copyright 2000 University of Cambridge *) header {* Fundamental Theorem of Arithmetic (unique factorization into primes) *} theory Factorization = Primes + Permutation: subsection {* Definitions *} consts primel :: "nat list => bool " nondec :: "nat list => bool " prod :: "nat list => nat" oinsert :: "nat => nat list => nat list" sort :: "nat list => nat list" defs primel_def: "primel xs == set xs ⊆ prime" primrec "nondec [] = True" "nondec (x # xs) = (case xs of [] => True | y # ys => x ≤ y ∧ nondec xs)" primrec "prod [] = Suc 0" "prod (x # xs) = x * prod xs" primrec "oinsert x [] = [x]" "oinsert x (y # ys) = (if x ≤ y then x # y # ys else y # oinsert x ys)" primrec "sort [] = []" "sort (x # xs) = oinsert x (sort xs)" subsection {* Arithmetic *} lemma one_less_m: "(m::nat) ≠ m * k ==> m ≠ Suc 0 ==> Suc 0 < m" apply (case_tac m) apply auto done lemma one_less_k: "(m::nat) ≠ m * k ==> Suc 0 < m * k ==> Suc 0 < k" apply (case_tac k) apply auto done lemma mult_left_cancel: "(0::nat) < k ==> k * n = k * m ==> n = m" apply auto done lemma mn_eq_m_one: "(0::nat) < m ==> m * n = m ==> n = Suc 0" apply (case_tac n) apply auto done lemma prod_mn_less_k: "(0::nat) < n ==> 0 < k ==> Suc 0 < m ==> m * n = k ==> n < k" apply (induct m) apply auto done subsection {* Prime list and product *} lemma prod_append: "prod (xs @ ys) = prod xs * prod ys" apply (induct xs) apply (simp_all add: mult_assoc) done lemma prod_xy_prod: "prod (x # xs) = prod (y # ys) ==> x * prod xs = y * prod ys" apply auto done lemma primel_append: "primel (xs @ ys) = (primel xs ∧ primel ys)" apply (unfold primel_def) apply auto done lemma prime_primel: "n ∈ prime ==> primel [n] ∧ prod [n] = n" apply (unfold primel_def) apply auto done lemma prime_nd_one: "p ∈ prime ==> ¬ p dvd Suc 0" apply (unfold prime_def dvd_def) apply auto done lemma hd_dvd_prod: "prod (x # xs) = prod ys ==> x dvd (prod ys)" apply (unfold dvd_def) apply (rule exI) apply (rule sym) apply simp done lemma primel_tl: "primel (x # xs) ==> primel xs" apply (unfold primel_def) apply auto done lemma primel_hd_tl: "(primel (x # xs)) = (x ∈ prime ∧ primel xs)" apply (unfold primel_def) apply auto done lemma primes_eq: "p ∈ prime ==> q ∈ prime ==> p dvd q ==> p = q" apply (unfold prime_def) apply auto done lemma primel_one_empty: "primel xs ==> prod xs = Suc 0 ==> xs = []" apply (unfold primel_def prime_def) apply (case_tac xs) apply simp_all done lemma prime_g_one: "p ∈ prime ==> Suc 0 < p" apply (unfold prime_def) apply auto done lemma prime_g_zero: "p ∈ prime ==> 0 < p" apply (unfold prime_def) apply auto done lemma primel_nempty_g_one [rule_format]: "primel xs --> xs ≠ [] --> Suc 0 < prod xs" apply (unfold primel_def prime_def) apply (induct xs) apply (auto elim: one_less_mult) done lemma primel_prod_gz: "primel xs ==> 0 < prod xs" apply (unfold primel_def prime_def) apply (induct xs) apply auto done subsection {* Sorting *} lemma nondec_oinsert [rule_format]: "nondec xs --> nondec (oinsert x xs)" apply (induct xs) apply (case_tac [2] list) apply (simp_all cong del: list.weak_case_cong) done lemma nondec_sort: "nondec (sort xs)" apply (induct xs) apply simp_all apply (erule nondec_oinsert) done lemma x_less_y_oinsert: "x ≤ y ==> l = y # ys ==> x # l = oinsert x l" apply simp_all done lemma nondec_sort_eq [rule_format]: "nondec xs --> xs = sort xs" apply (induct xs) apply safe apply simp_all apply (case_tac list) apply simp_all apply (case_tac list) apply simp apply (rule_tac y = aa and ys = lista in x_less_y_oinsert) apply simp_all done lemma oinsert_x_y: "oinsert x (oinsert y l) = oinsert y (oinsert x l)" apply (induct l) apply auto done subsection {* Permutation *} lemma perm_primel [rule_format]: "xs <~~> ys ==> primel xs --> primel ys" apply (unfold primel_def) apply (erule perm.induct) apply simp_all done lemma perm_prod [rule_format]: "xs <~~> ys ==> prod xs = prod ys" apply (erule perm.induct) apply (simp_all add: mult_ac) done lemma perm_subst_oinsert: "xs <~~> ys ==> oinsert a xs <~~> oinsert a ys" apply (erule perm.induct) apply auto done lemma perm_oinsert: "x # xs <~~> oinsert x xs" apply (induct xs) apply auto done lemma perm_sort: "xs <~~> sort xs" apply (induct xs) apply (auto intro: perm_oinsert elim: perm_subst_oinsert) done lemma perm_sort_eq: "xs <~~> ys ==> sort xs = sort ys" apply (erule perm.induct) apply (simp_all add: oinsert_x_y) done subsection {* Existence *} lemma ex_nondec_lemma: "primel xs ==> ∃ys. primel ys ∧ nondec ys ∧ prod ys = prod xs" apply (blast intro: nondec_sort perm_prod perm_primel perm_sort perm_sym) done lemma not_prime_ex_mk: "Suc 0 < n ∧ n ∉ prime ==> ∃m k. Suc 0 < m ∧ Suc 0 < k ∧ m < n ∧ k < n ∧ n = m * k" apply (unfold prime_def dvd_def) apply (auto intro: n_less_m_mult_n n_less_n_mult_m one_less_m one_less_k) done lemma split_primel: "primel xs ==> primel ys ==> ∃l. primel l ∧ prod l = prod xs * prod ys" apply (rule exI) apply safe apply (rule_tac [2] prod_append) apply (simp add: primel_append) done lemma factor_exists [rule_format]: "Suc 0 < n --> (∃l. primel l ∧ prod l = n)" apply (induct n rule: nat_less_induct) apply (rule impI) apply (case_tac "n ∈ prime") apply (rule exI) apply (erule prime_primel) apply (cut_tac n = n in not_prime_ex_mk) apply (auto intro!: split_primel) done lemma nondec_factor_exists: "Suc 0 < n ==> ∃l. primel l ∧ nondec l ∧ prod l = n" apply (erule factor_exists [THEN exE]) apply (blast intro!: ex_nondec_lemma) done subsection {* Uniqueness *} lemma prime_dvd_mult_list [rule_format]: "p ∈ prime ==> p dvd (prod xs) --> (∃m. m:set xs ∧ p dvd m)" apply (induct xs) apply (force simp add: prime_def) apply (force dest: prime_dvd_mult) done lemma hd_xs_dvd_prod: "primel (x # xs) ==> primel ys ==> prod (x # xs) = prod ys ==> ∃m. m ∈ set ys ∧ x dvd m" apply (rule prime_dvd_mult_list) apply (simp add: primel_hd_tl) apply (erule hd_dvd_prod) done lemma prime_dvd_eq: "primel (x # xs) ==> primel ys ==> m ∈ set ys ==> x dvd m ==> x = m" apply (rule primes_eq) apply (auto simp add: primel_def primel_hd_tl) done lemma hd_xs_eq_prod: "primel (x # xs) ==> primel ys ==> prod (x # xs) = prod ys ==> x ∈ set ys" apply (frule hd_xs_dvd_prod) apply auto apply (drule prime_dvd_eq) apply auto done lemma perm_primel_ex: "primel (x # xs) ==> primel ys ==> prod (x # xs) = prod ys ==> ∃l. ys <~~> (x # l)" apply (rule exI) apply (rule perm_remove) apply (erule hd_xs_eq_prod) apply simp_all done lemma primel_prod_less: "primel (x # xs) ==> primel ys ==> prod (x # xs) = prod ys ==> prod xs < prod ys" apply (auto intro: prod_mn_less_k prime_g_one primel_prod_gz simp add: primel_hd_tl) done lemma prod_one_empty: "primel xs ==> p * prod xs = p ==> p ∈ prime ==> xs = []" apply (auto intro: primel_one_empty simp add: prime_def) done lemma uniq_ex_aux: "∀m. m < prod ys --> (∀xs ys. primel xs ∧ primel ys ∧ prod xs = prod ys ∧ prod xs = m --> xs <~~> ys) ==> primel list ==> primel x ==> prod list = prod x ==> prod x < prod ys ==> x <~~> list" apply simp done lemma factor_unique [rule_format]: "∀xs ys. primel xs ∧ primel ys ∧ prod xs = prod ys ∧ prod xs = n --> xs <~~> ys" apply (induct n rule: nat_less_induct) apply safe apply (case_tac xs) apply (force intro: primel_one_empty) apply (rule perm_primel_ex [THEN exE]) apply simp_all apply (rule perm.trans [THEN perm_sym]) apply assumption apply (rule perm.Cons) apply (case_tac "x = []") apply (simp add: perm_sing_eq primel_hd_tl) apply (rule_tac p = a in prod_one_empty) apply simp_all apply (erule uniq_ex_aux) apply (auto intro: primel_tl perm_primel simp add: primel_hd_tl) apply (rule_tac k = a and n = "prod list" and m = "prod x" in mult_left_cancel) apply (rule_tac [3] x = a in primel_prod_less) apply (rule_tac [2] prod_xy_prod) apply (rule_tac [2] s = "prod ys" in HOL.trans) apply (erule_tac [3] perm_prod) apply (erule_tac [5] perm_prod [symmetric]) apply (auto intro: perm_primel prime_g_zero) done lemma perm_nondec_unique: "xs <~~> ys ==> nondec xs ==> nondec ys ==> xs = ys" apply (rule HOL.trans) apply (rule HOL.trans) apply (erule nondec_sort_eq) apply (erule perm_sort_eq) apply (erule nondec_sort_eq [symmetric]) done lemma unique_prime_factorization [rule_format]: "∀n. Suc 0 < n --> (∃!l. primel l ∧ nondec l ∧ prod l = n)" apply safe apply (erule nondec_factor_exists) apply (rule perm_nondec_unique) apply (rule factor_unique) apply simp_all done end
lemma one_less_m:
[| m ≠ m * k; m ≠ Suc 0 |] ==> Suc 0 < m
lemma one_less_k:
[| m ≠ m * k; Suc 0 < m * k |] ==> Suc 0 < k
lemma mult_left_cancel:
[| 0 < k; k * n = k * m |] ==> n = m
lemma mn_eq_m_one:
[| 0 < m; m * n = m |] ==> n = Suc 0
lemma prod_mn_less_k:
[| 0 < n; 0 < k; Suc 0 < m; m * n = k |] ==> n < k
lemma prod_append:
prod (xs @ ys) = prod xs * prod ys
lemma prod_xy_prod:
prod (x # xs) = prod (y # ys) ==> x * prod xs = y * prod ys
lemma primel_append:
primel (xs @ ys) = (primel xs ∧ primel ys)
lemma prime_primel:
n ∈ prime ==> primel [n] ∧ prod [n] = n
lemma prime_nd_one:
p ∈ prime ==> ¬ p dvd Suc 0
lemma hd_dvd_prod:
prod (x # xs) = prod ys ==> x dvd prod ys
lemma primel_tl:
primel (x # xs) ==> primel xs
lemma primel_hd_tl:
primel (x # xs) = (x ∈ prime ∧ primel xs)
lemma primes_eq:
[| p ∈ prime; q ∈ prime; p dvd q |] ==> p = q
lemma primel_one_empty:
[| primel xs; prod xs = Suc 0 |] ==> xs = []
lemma prime_g_one:
p ∈ prime ==> Suc 0 < p
lemma prime_g_zero:
p ∈ prime ==> 0 < p
lemma primel_nempty_g_one:
[| primel xs; xs ≠ [] |] ==> Suc 0 < prod xs
lemma primel_prod_gz:
primel xs ==> 0 < prod xs
lemma nondec_oinsert:
nondec xs ==> nondec (oinsert x xs)
lemma nondec_sort:
nondec (sort xs)
lemma x_less_y_oinsert:
[| x ≤ y; l = y # ys |] ==> x # l = oinsert x l
lemma nondec_sort_eq:
nondec xs ==> xs = sort xs
lemma oinsert_x_y:
oinsert x (oinsert y l) = oinsert y (oinsert x l)
lemma perm_primel:
[| xs <~~> ys; primel xs |] ==> primel ys
lemma perm_prod:
xs <~~> ys ==> prod xs = prod ys
lemma perm_subst_oinsert:
xs <~~> ys ==> oinsert a xs <~~> oinsert a ys
lemma perm_oinsert:
x # xs <~~> oinsert x xs
lemma perm_sort:
xs <~~> sort xs
lemma perm_sort_eq:
xs <~~> ys ==> sort xs = sort ys
lemma ex_nondec_lemma:
primel xs ==> ∃ys. primel ys ∧ nondec ys ∧ prod ys = prod xs
lemma not_prime_ex_mk:
Suc 0 < n ∧ n ∉ prime ==> ∃m k. Suc 0 < m ∧ Suc 0 < k ∧ m < n ∧ k < n ∧ n = m * k
lemma split_primel:
[| primel xs; primel ys |] ==> ∃l. primel l ∧ prod l = prod xs * prod ys
lemma factor_exists:
Suc 0 < n ==> ∃l. primel l ∧ prod l = n
lemma nondec_factor_exists:
Suc 0 < n ==> ∃l. primel l ∧ nondec l ∧ prod l = n
lemma prime_dvd_mult_list:
[| p ∈ prime; p dvd prod xs |] ==> ∃m. m ∈ set xs ∧ p dvd m
lemma hd_xs_dvd_prod:
[| primel (x # xs); primel ys; prod (x # xs) = prod ys |] ==> ∃m. m ∈ set ys ∧ x dvd m
lemma prime_dvd_eq:
[| primel (x # xs); primel ys; m ∈ set ys; x dvd m |] ==> x = m
lemma hd_xs_eq_prod:
[| primel (x # xs); primel ys; prod (x # xs) = prod ys |] ==> x ∈ set ys
lemma perm_primel_ex:
[| primel (x # xs); primel ys; prod (x # xs) = prod ys |] ==> ∃l. ys <~~> x # l
lemma primel_prod_less:
[| primel (x # xs); primel ys; prod (x # xs) = prod ys |] ==> prod xs < prod ys
lemma prod_one_empty:
[| primel xs; p * prod xs = p; p ∈ prime |] ==> xs = []
lemma uniq_ex_aux:
[| ∀m<prod ys. ∀xs ys. primel xs ∧ primel ys ∧ prod xs = prod ys ∧ prod xs = m --> xs <~~> ys; primel list; primel x; prod list = prod x; prod x < prod ys |] ==> x <~~> list
lemma factor_unique:
primel xs ∧ primel ys ∧ prod xs = prod ys ∧ prod xs = n ==> xs <~~> ys
lemma perm_nondec_unique:
[| xs <~~> ys; nondec xs; nondec ys |] ==> xs = ys
lemma unique_prime_factorization:
Suc 0 < n ==> ∃!l. primel l ∧ nondec l ∧ prod l = n