(* Title: HOL/NumberTheory/Fib.thy ID: $Id: Fib.thy,v 1.9 2001/10/22 09:54:27 paulson Exp $ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1997 University of Cambridge *) header {* The Fibonacci function *} theory Fib = Primes: text {* Fibonacci numbers: proofs of laws taken from: R. L. Graham, D. E. Knuth, O. Patashnik. Concrete Mathematics. (Addison-Wesley, 1989) \bigskip *} consts fib :: "nat => nat" recdef fib less_than zero: "fib 0 = 0" one: "fib (Suc 0) = Suc 0" Suc_Suc: "fib (Suc (Suc x)) = fib x + fib (Suc x)" text {* \medskip The difficulty in these proofs is to ensure that the induction hypotheses are applied before the definition of @{term fib}. Towards this end, the @{term fib} equations are not declared to the Simplifier and are applied very selectively at first. *} declare fib.Suc_Suc [simp del] lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))" apply (rule fib.Suc_Suc) done text {* \medskip Concrete Mathematics, page 280 *} lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n" apply (induct n rule: fib.induct) prefer 3 txt {* simplify the LHS just enough to apply the induction hypotheses *} apply (simp add: fib.Suc_Suc [of "Suc (m + n)", standard]) apply (simp_all (no_asm_simp) add: fib.Suc_Suc add_mult_distrib add_mult_distrib2) done lemma fib_Suc_neq_0 [simp]: "fib (Suc n) ≠ 0" apply (induct n rule: fib.induct) apply (simp_all add: fib.Suc_Suc) done lemma [simp]: "0 < fib (Suc n)" apply (simp add: neq0_conv [symmetric]) done lemma fib_gr_0: "0 < n ==> 0 < fib n" apply (rule not0_implies_Suc [THEN exE]) apply auto done text {* \medskip Concrete Mathematics, page 278: Cassini's identity. It is much easier to prove using integers! *} lemma fib_Cassini: "int (fib (Suc (Suc n)) * fib n) = (if n mod 2 = 0 then int (fib (Suc n) * fib (Suc n)) - 1 else int (fib (Suc n) * fib (Suc n)) + 1)" apply (induct n rule: fib.induct) apply (simp add: fib.Suc_Suc) apply (simp add: fib.Suc_Suc mod_Suc) apply (simp add: fib.Suc_Suc add_mult_distrib add_mult_distrib2 mod_Suc zmult_int [symmetric] zmult_ac) apply (subgoal_tac "x mod 2 < 2", arith) apply simp done text {* \medskip Towards Law 6.111 of Concrete Mathematics *} lemma gcd_fib_Suc_eq_1: "gcd (fib n, fib (Suc n)) = Suc 0" apply (induct n rule: fib.induct) prefer 3 apply (simp add: gcd_commute fib_Suc3) apply (simp_all add: fib.Suc_Suc) done lemma gcd_fib_add: "gcd (fib m, fib (n + m)) = gcd (fib m, fib n)" apply (simp (no_asm) add: gcd_commute [of "fib m"]) apply (case_tac "m = 0") apply simp apply (clarify dest!: not0_implies_Suc) apply (simp add: fib_add) apply (simp add: add_commute gcd_non_0) apply (simp add: gcd_non_0 [symmetric]) apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel) done lemma gcd_fib_diff: "m ≤ n ==> gcd (fib m, fib (n - m)) = gcd (fib m, fib n)" apply (rule gcd_fib_add [symmetric, THEN trans]) apply simp done lemma gcd_fib_mod: "0 < m ==> gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)" apply (induct n rule: nat_less_induct) apply (subst mod_if) apply (simp add: gcd_fib_diff mod_geq not_less_iff_le diff_less) done lemma fib_gcd: "fib (gcd (m, n)) = gcd (fib m, fib n)" -- {* Law 6.111 *} apply (induct m n rule: gcd_induct) apply simp apply (simp add: gcd_non_0) apply (simp add: gcd_commute gcd_fib_mod) done lemma fib_mult_eq_setsum: "fib (Suc n) * fib n = (∑k ∈ {..n}. fib k * fib k)" apply (induct n rule: fib.induct) apply (auto simp add: atMost_Suc fib.Suc_Suc) apply (simp add: add_mult_distrib add_mult_distrib2) done end
lemma fib_Suc3:
fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))
lemma fib_add:
fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n
lemma fib_Suc_neq_0:
fib (Suc n) ≠ 0
lemma
0 < fib (Suc n)
lemma fib_gr_0:
0 < n ==> 0 < fib n
lemma fib_Cassini:
int (fib (Suc (Suc n)) * fib n) = (if n mod 2 = 0 then int (fib (Suc n) * fib (Suc n)) - 1 else int (fib (Suc n) * fib (Suc n)) + 1)
lemma gcd_fib_Suc_eq_1:
gcd (fib n, fib (Suc n)) = Suc 0
lemma gcd_fib_add:
gcd (fib m, fib (n + m)) = gcd (fib m, fib n)
lemma gcd_fib_diff:
m ≤ n ==> gcd (fib m, fib (n - m)) = gcd (fib m, fib n)
lemma gcd_fib_mod:
0 < m ==> gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)
lemma fib_gcd:
fib (gcd (m, n)) = gcd (fib m, fib n)
lemma fib_mult_eq_setsum:
fib (Suc n) * fib n = (∑k∈{..n}. fib k * fib k)