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Proto-Quipper-M

� We will consider a functional programming language called Proto-Quipper-M.

� Language and model developed by Francisco Rios and Peter Selinger.

� Language is equipped with formal denotational and operational semantics.

� Primary application is in quantum computing, but the language can describe
arbitrary string diagrams.

� Their model supports primitive recursion, but does not support general recursion.
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Circuit Model

Proto-Quipper-M is used to describe families of morphisms of an arbitrary, but �xed,
symmetric monoidal category, which we denote M.

Example

If M = FdCStar, the category of �nite-dimensional C ∗-algebras and completely
positive maps, then a program in our language is a family of quantum circuits.

Example

Shor's algorithm for integer factorization may be seen as an in�nite family of
quantum circuits � each circuit is a procedure for factorizing an n−bit integer, for a
�xed n.

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor's algorithm).1

1Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
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Syntax of Proto-Quipper-M

The type system is given by:

Types A,B ::= α | 0 | A+ B | I | A⊗ B | A( B | !A | Circ(T,U)
Parameter types P ,R ::= α | 0 | P + R | I | P ⊗ R | !A | Circ(T,U)
M-types T ,U ::= α | I | T ⊗ U

The term language is given by:

Terms m, n ::= x | ` | c | let x = m in n
| �Am | leftA,Bm | rightA,Bm | case m of {left x → n | right y → p}
| ∗ | m; n | 〈m, n〉 | let 〈x , y〉 = m in n | λxA.m | mn

| lift m | force n | boxTm | apply(m,n) | (~̀,C, ~̀′)

Bert Lindenhovius, Michael Mislove, Vladimir Zamdzhiev Categorical models of circuit description languages 4 / 22



Introduction Models of base Models of base+dep Models of base+rec Models of base+rec+dep

Our approach

• Consider an abstract categorical model for the same language.

• Describe a candidate categorical model for each of the following language
variants:

� The original Proto-Quipper-M language (base).

� Proto-Quipper-M extended with general recursion (base+rec).

� Proto-Quipper-M extended with dependent types (base+dep).

� Proto-Quipper-M extended with dependent types and recursion
(base+dep+rec).
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An abstract model of the base language

Conjecture

A model of the base language is given by the following data:

1. A cartesian closed category V (the category of parameter values) enriched over
itself such that:

- V has �nite coproducts.

- V has colimits of ω-sequences.

2. A V-enriched symmetric monoidal category M representing the circuits.
3. A V-enriched symmetric monoidal closed category L (the category of (linear)

higher-order circuits) such that:
- L has V-copowers.

- L0 has �nite coproducts.

- L0 has colimits of ω-sequences.

4. A V-enriched fully faithful strong symmetric monoidal embedding E : M→ L.

5. A V-enriched symmetric monoidal adjunction:

V ` L

− � I

L(I ,−)

Less formally, a model of Proto-Quipper-M is given by a model of ILL, where one
has to exploit the enrichment.
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Concrete models of the base language

Fix an arbitrary symmetric monoidal category M, and embed it via the Yoneda
embedding into M = [Mop,Set].

The original Proto-Quipper-M model is given by the model of ILL

Set Fam[M]

−� I

Fam[M](I ,−)

⊥

De�nition

Given a locally small category C, the category Fam[C] consists of the following
data:

� Objects are pairs (X ,A) where X is a discrete category and A : X → C is a
functor.

� A morphism (X ,A)→ (Y ,B) is a pair (f , ϕ) where f : X → Y is a functor and
ϕ : A→ B ◦ f is a natural transformation.

� Composition of morphisms is given by: (g , ψ) ◦ (f , ϕ) = (g ◦ f , ψf ◦ ϕ).

Theorem (Rios & Selinger 2017)

This categorical model of Proto-Quipper-M is computationally sound and adequate
with respect to its operational semantics.
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Concrete models of the base language (contd.)

Fix an arbitrary symmetric monoidal category M.
A simpler model for the same language is given by the model of ILL:

Set M

−� I

M(I ,−)

⊥

where M = [Mop,Set].

Remark

When M = 1, the latter model degenerates to Set which is a model of a
simply-typed (non-linear) lambda calculus.
Equipping M with the free DCPO-enrichment, we can embed it into a
DCPO-enriched category M = [Mop,DCPO] of higher order circuits, which yields
another concrete (order-enriched) Proto-Quipper-M model:

DCPO M

−� I

M(I ,−)

⊥
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Original model revisited

Fix an arbitrary symmetric monoidal category M.
Original Proto-Quipper-M model:

Set Fam[M]

−� I

Fam[M](I ,−)

⊥

Simpler model:

Set M

−� I

M(I ,−)

⊥

Question: What does the extra layer of abstraction provide?
Conjecture: A model of the language extended with dependent types, since

Fam[C]→ Set, (X ,A) 7→ A

is a �bration.
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Dependent types

� Types that depend on terms, i.e., the type of lists of natural numbers of length n

n : N ` NatList(n) : Type.

� Can be regarded as a family of types indexed by term variables n : N:

NatList = (NatList(n))n:N.

� This is like sets depending on sets, i.e., S = (Sx)x∈X with X ∈ Set, or
equivalently, a pair (X , S) with S : X → Set a functor,

� Hence �brations as Fam[Set]→ Set can be used as models for dependent
type theory.
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Linear dependent types

Theorem

The category Fam[M] is a model of dependently typed intuitionistic linear logic
(type dependence is allowed only on intuitionistic terms) 2.

Conjecture

The symmetric monoidal adjunction:

Set Fam[M]

−� I

Fam[M](I ,−)

⊥

is a model of Proto-Quipper-M extended with dependent types.

Remark

If M = 1, the above model degenerates to
Fam[M] = Fam[Mop,Set] ∼= Fam[Set] ' [2op,Set], which is a closed
comprehension category and thus a model of intuitionistic dependent type theory3.

2Matthijs Vákár. In Search of E�ectful Dependent Types. PhD thesis, University of Oxford.
3Bart Jacobs. Categorical Logic and Type Theory. 1999.
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Abstract model with dependent types?

Theorem

A model of dependently typed intuitionistic linear logic is given by a monoidal
�bration with some additional structure, i.e., comprehension4.

Conjecture

An abstract model of Proto-Quipper-M extended with dependent types is given by
an enriched monoidal �bration 5 with some additional structure, i.e.,
comprehension.

4Matthijs Vákár. In Search of E�ectful Dependent Types. PhD thesis, University of Oxford.
5Michael Shulman. Enriched Indexed Categories. Theory and Application of Categories, 2013.
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What about recursion?

• Forget about dependent types for now.
• Consider the base Proto-Quipper-M language.
• How can we model general recursion?

- We already have a concrete order-enriched model:

DCPO M

−� I

M(I ,−)

⊥

where M = [Mop,DCPO], and where the underlying induced (co)monad
endofunctors are algebraically compact.

- Thus, we add partiality to the above model:

DCPO⊥! M∗

−� I

M∗(I ,−)

⊥

where M∗ is the DCPO⊥!-category obtained by freely adding a zero object to
M and M∗ = [Mop

∗ ,DCPO⊥!] is the associated enriched functor category.
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Proposed concrete model of Proto-Quipper-M extended with recursion

DCPO⊥! M∗

−� I

M∗(I ,−)

⊥

−� I

M(I ,−)

⊥DCPO M

a aL L UU

Remark

If M = 1, then the above model degenerates to the left vertical adjunction, which is
a model of a simply-typed lambda calculus with term-level recursion.
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Abstract model with recursion?

Theorem

A categorical model of a linear/non-linear lambda calculus extended with recursion
is given by a model of ILL:

V ` L

F

G

where FG (or equivalently GF ) is algebraically compact 6.

Conjecture

An abstract model of Proto-Quipper-M extended with recursion is given by a model
of Proto-Quipper-M:

V ` L

− � I

L(I ,−)

where the underlying induced (co)monad endofunctors are algebraically compact.

Remark

The above de�nition is not the whole picture, but it describes the essential idea.

6Benton & Wadler. Linear logic, monads and the lambda calculus. LiCS'96.
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What about recursion and dependent types simultaneously?

� Idea: CFam[C], a version of the families construction where objects of a
category C are indexed by dcpo's.

� Must have a linear/non-linear adjunction between CFam[C] and DCPO.

� The induced monad and comonad must be algebraically compact.

� The right adjoint of the adjuction must be a representable functor.

� For this reason CFam[C] must be DCPO-enriched.

� Must have a enriched monoidal �bration CFam[C]→ DCPO with some extra
structure, i.e., comprehension.
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De�nition CFam:

Construction: a generalization of the CFam[DCPO]-construction78 with DCPO
replaced by a DCPO-enriched category C.

• Objects are pairs (X ,A) with X ∈ DCPO and A : X → C is a functor such that:

� A(x ≤ y) is an embedding for each x ≤ y in X ; the corresponding projection is
denoted by A(x ≤ y)p;

� A(supD) = lim−→d∈D Ad for each directed D ⊆ X ;

• A morphism (X ,A)→ (Y ,B) is a pair (f , ϕ) where f : X → Y is a Scott
continuous and ϕ : A→ B ◦ f consists of morphisms ϕx : Ax → B ◦ f (x) satisfying:

� B(f (x) ≤ f (y)) ◦ ϕx ≤ ϕy ◦ A(x ≤ y) for each x ≤ y in X (i.e., ϕ is lax
natural);

� ϕy = supx∈D B(f (x) ≤ f (y)) ◦ ϕx ◦ A(x ≤ y)p for each directed D ⊆ X with
supremum y .

7Erik Palmgren & Viggo Stoltenberg-Hansen. Domain interpretations of Martin-Löf's partial type theory. Annals of Pure

and Applied Logic 1990.
8Bart Jacobs. Categorical Logic and Type Theory. 1999.
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DCPO-enrichment of CFam[C]

We de�ne (f , ϕ) ≤ (g , ψ) in CFam[C]
(
(X ,A), (Y ,B)

)
if f ≤ g in [X → Y ] and

B(f (x) ≤ g(x))ϕx ≤ ψx

in C
(
Ax ,Bf (x)

)
for each x ∈ X .

If {(fi , ϕi) : i ∈ I} is a directed set in CFam[C]
(
(X ,A), (Y ,B)

)
, then its

supremum (f , ϕ) is determined by

f = sup
i∈I

fi

calculated in the dcpo [X → Y ], and

ϕx = sup
i∈I

B
(
fi(x) ≤ f (x)

)
(ϕi)x

calculated in the dcpo C
(
Ax ,Bf (x)

)
for each x ∈ X ;

Bert Lindenhovius, Michael Mislove, Vladimir Zamdzhiev Categorical models of circuit description languages 18 / 22



Introduction Models of base Models of base+dep Models of base+rec Models of base+rec+dep

DCPO-enrichment of CFam[C]

We de�ne (f , ϕ) ≤ (g , ψ) in CFam[C]
(
(X ,A), (Y ,B)

)
if f ≤ g in [X → Y ] and

B(f (x) ≤ g(x))ϕx ≤ ψx

in C
(
Ax ,Bf (x)

)
for each x ∈ X .

If {(fi , ϕi) : i ∈ I} is a directed set in CFam[C]
(
(X ,A), (Y ,B)

)
, then its

supremum (f , ϕ) is determined by

f = sup
i∈I

fi

calculated in the dcpo [X → Y ], and

ϕx = sup
i∈I

B
(
fi(x) ≤ f (x)

)
(ϕi)x

calculated in the dcpo C
(
Ax ,Bf (x)

)
for each x ∈ X ;

Bert Lindenhovius, Michael Mislove, Vladimir Zamdzhiev Categorical models of circuit description languages 18 / 22



Introduction Models of base Models of base+dep Models of base+rec Models of base+rec+dep

Monoidal structure

Let (X ,A) and (Y ,B) be objects in CFam[C]. Then:

(X ,A)⊗ (Y ,B) = (X × Y ,A⊗ B),

where
(A⊗ B)(x , y) = (Ax)⊗ (By).

Question: do we need monoidal closure of the total category? If so it is probably of
the form:

(X ,A)( (Y ,B) = ([X → Y ],A( B),

with

(A( B)f =

∮
x∈X

Ax ( Bf (x),

where
∮

denotes some kind of `lax end' satisfying∮
x∈X

C(Fx ,Gx) = {lax natural transformations F → G}

for functors F ,G : X → C.
Question: what are the requirements on C to assure the existence of this `lax end'.
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Abstract model with recursion and dependent types?

� This is the most complicated case by far.

DCPO⊥! CFam⊥![M∗]

−� I

CFam⊥![M∗](I ,−)

⊥

−� I

CFam[M](I ,−)

⊥DCPO CFam[M]

a aL L UU

Remark

If M = 1, then the model collapses to a model which is very similar to Palmgren
and Stoltenberg-Hansen's model of partial intuitionistic dependent type theory 9.

9Erik Palmgren & Viggo Stoltenberg-Hansen. Domain interpretations of Martin-Löf's partial type theory. Annals of Pure

and Applied Logic 1990.
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Conclusion

� By taking the enrichment of certain denotational models into account, one can
obtain models of circuit description languages

� Systematic construction for concrete models that works for any circuit (string
diagram) model described by a symmetric monoidal category.

� We have identi�ed di�erent candidate models for Proto-Quipper-M depending
on the feature set.

� Plenty of work (and veri�cation) remains to be done...
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Thank you for your attention.
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