Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Categorical models of circuit description languages

Bert Lindenhovius Michael Mislove Vladimir Zamdzhiev

Department of Computer Science Tulane University

29 October 2017

Models of base 000 Models of base+dep

Models of base+rec

Models of base+rec+dep

Proto-Quipper-M

- We will consider a functional programming language called *Proto-Quipper-M*.
- Language and model developed by Francisco Rios and Peter Selinger.
- Language is equipped with formal denotational and operational semantics.
- Primary application is in quantum computing, but the language can describe arbitrary string diagrams.
- Their model supports primitive recursion, but does not support general recursion.

Introduction ○●○○ Models of base

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Circuit Model

Proto-Quipper-M is used to describe *families* of morphisms of an arbitrary, but fixed, symmetric monoidal category, which we denote M.

Example

If M = FdCStar, the category of finite-dimensional C^* -algebras and completely positive maps, then a program in our language is a family of quantum circuits.

Example

Shor's algorithm for integer factorization may be seen as an infinite family of quantum circuits – each circuit is a procedure for factorizing an n-bit integer, for a fixed n.

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor's algorithm).¹

¹Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612

Categorical models of circuit description languages 3 / 22

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Syntax of Proto-Quipper-M

The type system is given by:

TypesA, B::= $\alpha \mid 0 \mid A + B \mid 1 \mid A \otimes B \mid A \multimap B \mid !A \mid Circ(T, U)$ Parameter typesP, R::= $\alpha \mid 0 \mid P + R \mid 1 \mid P \otimes R \mid !A \mid Circ(T, U)$ M-typesT, U::= $\alpha \mid 1 \mid T \otimes U$

The term language is given by:

Terms $m, n ::= x \mid \ell \mid c \mid \text{let } x = m \text{ in } n$ $\mid \Box_A m \mid \text{left}_{A,B} m \mid \text{right}_{A,B} m \mid \text{case } m \text{ of } \{\text{left } x \to n \mid \text{right } y \to p\}$ $\mid * \mid m; n \mid \langle m, n \rangle \mid \text{let } \langle x, y \rangle = m \text{ in } n \mid \lambda x^A . m \mid mn$ $\mid \text{lift } m \mid \text{force } n \mid \mathbf{box_Tm} \mid \mathbf{apply}(\mathbf{m}, \mathbf{n}) \mid (\tilde{\ell}, \mathbf{C}, \tilde{\ell'})$

Introduction	Models of base	Models of base+dep	Models of base+rec	Models of base+rec+dep
000●	000	0000	000	0000000
Our approach				

- Consider an *abstract* categorical model for the same language.
- Describe a *candidate* categorical model for each of the following language variants:
 - The original Proto-Quipper-M language (base).
 - Proto-Quipper-M extended with general recursion (base+rec).
 - Proto-Quipper-M extended with dependent types (base+dep).
 - Proto-Quipper-M extended with dependent types and recursion (base+dep+rec).

An abstract model of the base language

Conjecture

A model of the base language is given by the following data:

- 1. A cartesian closed category \mathbf{V} (the category of parameter values) enriched over itself such that:
 - V has finite coproducts.
 - **V** has colimits of ω -sequences.
- 2. A V-enriched symmetric monoidal category M representing the circuits.
- 3. A **V**-enriched symmetric monoidal closed category **L** (the category of (linear) higher-order circuits) such that:
 - L has V-copowers.
 - L₀ has finite coproducts.
 - L_0 has colimits of ω -sequences.
- 4. A **V**-enriched fully faithful strong symmetric monoidal embedding $E : \mathbf{M} \to \mathbf{L}$.
- 5. A **V**-enriched symmetric monoidal adjunction:

Less formally, a model of Proto-Quipper-M is given by a model of ILL, where one has to exploit the enrichment.

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Concrete models of the base language

Fix an arbitrary symmetric monoidal category \mathbf{M} , and embed it via the Yoneda embedding into $\overline{\mathbf{M}} = [\mathbf{M}^{op}, \mathbf{Set}]$.

Models of base+rec+dep

Concrete models of the base language

Fix an arbitrary symmetric monoidal category \mathbf{M} , and embed it via the Yoneda embedding into $\overline{\mathbf{M}} = [\mathbf{M}^{op}, \mathbf{Set}]$.

The original Proto-Quipper-M model is given by the model of ILL

Models of base+rec

Models of base+rec+dep

Concrete models of the base language

Fix an arbitrary symmetric monoidal category \mathbf{M} , and embed it via the Yoneda embedding into $\overline{\mathbf{M}} = [\mathbf{M}^{op}, \mathbf{Set}]$.

The original Proto-Quipper-M model is given by the model of ILL

Definition

Given a locally small category C, the category Fam[C] consists of the following data:

- Objects are pairs (X, A) where X is a discrete category and $A : X \to \mathbf{C}$ is a functor.
- A morphism $(X, A) \rightarrow (Y, B)$ is a pair (f, φ) where $f : X \rightarrow Y$ is a functor and $\varphi : A \rightarrow B \circ f$ is a natural transformation.
- Composition of morphisms is given by: $(g, \psi) \circ (f, \varphi) = (g \circ f, \psi f \circ \varphi).$

Models of base+rec+dep

Concrete models of the base language

Fix an arbitrary symmetric monoidal category \mathbf{M} , and embed it via the Yoneda embedding into $\overline{\mathbf{M}} = [\mathbf{M}^{op}, \mathbf{Set}]$.

The original Proto-Quipper-M model is given by the model of ILL

Definition

Given a locally small category C, the category Fam[C] consists of the following data:

- Objects are pairs (X, A) where X is a discrete category and $A : X \to \mathbf{C}$ is a functor.
- A morphism $(X, A) \rightarrow (Y, B)$ is a pair (f, φ) where $f : X \rightarrow Y$ is a functor and $\varphi : A \rightarrow B \circ f$ is a natural transformation.
- Composition of morphisms is given by: $(g, \psi) \circ (f, \varphi) = (g \circ f, \psi f \circ \varphi).$

Theorem (Rios & Selinger 2017)

This categorical model of Proto-Quipper-M is computationally sound and adequate with respect to its operational semantics.

Concrete models of the base language (contd.)

Fix an arbitrary symmetric monoidal category **M**. A simpler model for the same language is given by the model of ILL:

where $\overline{\mathbf{M}} = [\mathbf{M}^{op}, \mathbf{Set}]$.

Concrete models of the base language (contd.)

Fix an arbitrary symmetric monoidal category **M**. A simpler model for the same language is given by the model of ILL:

where $\overline{\mathbf{M}} = [\mathbf{M}^{op}, \mathbf{Set}]$.

Remark

When M = 1, the latter model degenerates to **Set** which is a model of a simply-typed (non-linear) lambda calculus.

Concrete models of the base language (contd.)

Fix an arbitrary symmetric monoidal category **M**. A simpler model for the same language is given by the model of ILL:

where $\overline{\mathbf{M}} = [\mathbf{M}^{op}, \mathbf{Set}]$.

Remark

When M = 1, the latter model degenerates to **Set** which is a model of a simply-typed (non-linear) lambda calculus.

Equipping M with the free DCPO-enrichment, we can embed it into a DCPO-enriched category $\overline{M} = [M^{op}, DCPO]$ of higher order circuits, which yields another concrete (order-enriched) Proto-Quipper-M model:

Models of base

Models of base+dep ●000 Models of base+rec

Models of base+rec+dep

Original model revisited

Fix an arbitrary symmetric monoidal category **M**. Original Proto-Quipper-M model:

Simpler model:

Question: What does the extra layer of abstraction provide? **Conjecture:** A model of the language extended with dependent types, since

 $\mathsf{Fam}[\mathsf{C}] \to \mathsf{Set}, \quad (X, A) \mapsto A$

is a fibration.

Models of base+dep ○●○○ Models of base+rec

Models of base+rec+dep

Dependent types

• Types that depend on terms, i.e., the type of lists of natural numbers of length n

 $n: \mathbb{N} \vdash \mathsf{NatList}(n) : \mathsf{Type.}$

• Can be regarded as a family of types indexed by term variables $n:\mathbb{N}$:

NatList = $(NatList(n))_{n:\mathbb{N}}$.

- This is like sets depending on sets, i.e., $S = (S_x)_{x \in X}$ with $X \in \mathbf{Set}$, or equivalently, a pair (X, S) with $S : X \to \mathbf{Set}$ a functor,
- Hence fibrations as $Fam[Set] \rightarrow Set$ can be used as models for dependent type theory.

Models of base

Models of base+dep ○○●○ Models of base+rec

Models of base+rec+dep

Linear dependent types

Theorem

The category $Fam[\overline{M}]$ is a model of dependently typed intuitionistic linear logic (type dependence is allowed only on intuitionistic terms)².

Conjecture

The symmetric monoidal adjunction:

is a model of Proto-Quipper-M extended with dependent types.

Remark

If M = 1, the above model degenerates to $Fam[\overline{M}] = Fam[M^{op}, Set] \cong Fam[Set] \simeq [2^{op}, Set]$, which is a closed comprehension category and thus a model of intuitionistic dependent type theory³.

³Bart Jacobs. Categorical Logic and Type Theory. 1999.

²Matthijs Vákár. In Search of Effectful Dependent Types. PhD thesis, University of Oxford.

Models of base

Models of base+dep 000● Models of base+rec

Models of base+rec+dep

Abstract model with dependent types?

Theorem

A model of dependently typed intuitionistic linear logic is given by a monoidal fibration with some additional structure, i.e., comprehension⁴.

⁴Matthijs Vákár. In Search of Effectful Dependent Types. PhD thesis, University of Oxford.

⁵Michael Shulman. *Enriched Indexed Categories*. Theory and Application of Categories, 2013.

Bert Lindenhovius, Michael Mislove, Vladimir Zamdzhiev

Categorical models of circuit description languages 12 / 22

Models of base

Models of base+dep 000● Models of base+rec

Models of base+rec+dep

Abstract model with dependent types?

Theorem

A model of dependently typed intuitionistic linear logic is given by a monoidal fibration with some additional structure, i.e., comprehension⁴.

Conjecture

An abstract model of Proto-Quipper-M extended with dependent types is given by an **enriched** monoidal fibration ⁵ with some additional structure, i.e., comprehension.

⁴Matthijs Vákár. *In Search of Effectful Dependent Types*. PhD thesis, University of Oxford.

⁵Michael Shulman. *Enriched Indexed Categories*. Theory and Application of Categories, 2013.

Models	of base
000	

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

What about recursion?

- Forget about dependent types for now.
- Consider the base Proto-Quipper-M language.
- How can we model general recursion?

Models	of	b as e	
000			

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

What about recursion?

- Forget about dependent types for now.
- Consider the base Proto-Quipper-M language.
- How can we model general recursion?
 - We already have a concrete order-enriched model:

where $\overline{\mathbf{M}} = [\mathbf{M}^{op}, \mathbf{DCPO}]$, and where the underlying induced (co)monad endofunctors are algebraically compact.

- Thus, we add partiality to the above model:

where M_* is the DCPO_{\perp !}-category obtained by freely adding a zero object to M and $\overline{M_*} = [M_*^{op}, DCPO_{\perp}!]$ is the associated enriched functor category.

Proposed concrete model of Proto-Quipper-M extended with recursion

Remark

If M = 1, then the above model degenerates to the left vertical adjunction, which is a model of a simply-typed lambda calculus with term-level recursion.

Models of base+rec

Models of base+rec+dep

Abstract model with recursion?

Theorem

A categorical model of a linear/non-linear lambda calculus extended with recursion is given by a model of ILL:

where FG (or equivalently GF) is algebraically compact ⁶.

⁶Benton & Wadler. *Linear logic, monads and the lambda calculus.* LiCS'96.

Models of base+rec

Abstract model with recursion?

Theorem

A categorical model of a linear/non-linear lambda calculus extended with recursion is given by a model of ILL:

where FG (or equivalently GF) is algebraically compact ⁶.

Conjecture

An abstract model of Proto-Quipper-M extended with recursion is given by a model of Proto-Quipper-M:

where the underlying induced (co)monad endofunctors are algebraically compact.

Remark

<u>The above definition is not the whole picture, but it describes the essential idea.</u>

⁶Benton & Wadler. *Linear logic, monads and the lambda calculus*. LiCS'96.

Models	of	bas	e
000			

Models of base+dep 0000

What about recursion and dependent types simultaneously?

- Idea: CFam[C], a version of the families construction where objects of a category C are indexed by dcpo's.
- Must have a linear/non-linear adjunction between **CFam**[**C**] and **DCPO**.
- The induced monad and comonad must be algebraically compact.
- The right adjoint of the adjuction must be a representable functor.
- For this reason **CFam**[**C**] must be **DCPO**-enriched.
- Must have a enriched monoidal fibration $CFam[C] \rightarrow DCPO$ with some extra structure, i.e., comprehension.

Models of base

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Definition **CFam**:

Construction: a generalization of the CFam[DCPO]-construction⁷⁸ with DCPO replaced by a DCPO-enriched category C.

⁷Erik Palmgren & Viggo Stoltenberg-Hansen. *Domain interpretations of Martin-Löf's partial type theory*. Annals of Pure and Applied Logic 1990.

⁸Bart Jacobs. *Categorical Logic and Type Theory*. 1999.

Models of base

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep 000000

Definition **CFam**:

Construction: a generalization of the CFam[DCPO]-construction⁷⁸ with DCPO replaced by a DCPO-enriched category C.

• Objects are pairs (X, A) with $X \in \mathsf{DCPO}$ and $A : X \to \mathsf{C}$ is a functor such that:

⁷Erik Palmgren & Viggo Stoltenberg-Hansen. *Domain interpretations of Martin-Löf's partial type theory*. Annals of Pure and Applied Logic 1990.

⁸Bart Jacobs. *Categorical Logic and Type Theory*. 1999.

Models of base

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Definition **CFam**:

Construction: a generalization of the CFam[DCPO]-construction⁷⁸ with DCPO replaced by a DCPO-enriched category C.

- Objects are pairs (X, A) with $X \in \mathsf{DCPO}$ and $A : X \to \mathsf{C}$ is a functor such that:
 - $A(x \le y)$ is an embedding for each $x \le y$ in X; the corresponding projection is denoted by $A(x \le y)^p$;
 - $A(\sup D) = \varinjlim_{d \in D} Ad$ for each directed $D \subseteq X$;

⁷Erik Palmgren & Viggo Stoltenberg-Hansen. *Domain interpretations of Martin-Löf's partial type theory*. Annals of Pure and Applied Logic 1990.

⁸Bart Jacobs. *Categorical Logic and Type Theory*. 1999.

Models of base

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Definition **CFam**:

Construction: a generalization of the CFam[DCPO]-construction⁷⁸ with DCPO replaced by a DCPO-enriched category C.

- Objects are pairs (X, A) with $X \in \mathsf{DCPO}$ and $A : X \to \mathsf{C}$ is a functor such that:
 - $A(x \le y)$ is an embedding for each $x \le y$ in X; the corresponding projection is denoted by $A(x \le y)^p$;
 - $A(\sup D) = \varinjlim_{d \in D} Ad$ for each directed $D \subseteq X$;
- A morphism $(X, A) \rightarrow (Y, B)$ is a pair (f, φ) where $f : X \rightarrow Y$ is a Scott continuous and $\varphi : A \rightarrow B \circ f$ consists of morphisms $\varphi_x : Ax \rightarrow B \circ f(x)$ satisfying:
 - B(f(x) ≤ f(y)) ∘ φ_x ≤ φ_y ∘ A(x ≤ y) for each x ≤ y in X (i.e., φ is lax natural);
 - $\varphi_y = \sup_{x \in D} B(f(x) \le f(y)) \circ \varphi_x \circ A(x \le y)^p$ for each directed $D \subseteq X$ with supremum y.

⁷Erik Palmgren & Viggo Stoltenberg-Hansen. *Domain interpretations of Martin-Löf's partial type theory*. Annals of Pure and Applied Logic 1990.

⁸Bart Jacobs. *Categorical Logic and Type Theory*. 1999.

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

DCPO-enrichment of CFam[C]

We define $(f, \varphi) \leq (g, \psi)$ in $\mathsf{CFam}[\mathsf{C}]((X, A), (Y, B))$ if $f \leq g$ in $[X \to Y]$ and $B(f(x) \leq g(x))\varphi_x \leq \psi_x$

in C(Ax, Bf(x)) for each $x \in X$.

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

DCPO-enrichment of CFam[C]

We define $(f, \varphi) \leq (g, \psi)$ in $\mathsf{CFam}[\mathsf{C}]((X, A), (Y, B))$ if $f \leq g$ in $[X \to Y]$ and $B(f(x) \leq g(x))\varphi_x \leq \psi_x$

in C(Ax, Bf(x)) for each $x \in X$.

If $\{(f_i, \varphi_i) : i \in I\}$ is a directed set in **CFam**[**C**]((X, A), (Y, B)), then its supremum (f, φ) is determined by

$$f = \sup_{i \in I} f_i$$

calculated in the dcpo [X
ightarrow Y], and

$$\varphi_x = \sup_{i \in I} B(f_i(x) \leq f(x))(\varphi_i)_x$$

calculated in the dcpo C(Ax, Bf(x)) for each $x \in X$;

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Monoidal structure

Let (X, A) and (Y, B) be objects in **CFam**[**C**]. Then:

Models of base

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Monoidal structure

Let (X, A) and (Y, B) be objects in CFam[C]. Then: $(X, A) \otimes (Y, B) = (X \times Y, A \otimes B),$

where

 $(A \otimes B)(x, y) = (Ax) \otimes (By).$

Models of base

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Monoidal structure

Let (X, A) and (Y, B) be objects in **CFam**[**C**]. Then: $(X, A) \otimes (Y, B) = (X \times Y, A \otimes B),$

where

$$(A \otimes B)(x, y) = (Ax) \otimes (By).$$

Question: do we need monoidal closure of the total category? If so it is probably of the form:

$$(X,A) \multimap (Y,B) = ([X \rightarrow Y], A \multimap B),$$

with

$$(A \multimap B)f = \oint_{x \in X} Ax \multimap Bf(x),$$

where \oint denotes some kind of 'lax end' satisfying

$$\oint_{x\in X} \mathbf{C}(Fx, Gx) = \{ \text{lax natural transformations } F \to G \}$$

for functors $F, G: X \to \mathbf{C}$.

Models of base

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Monoidal structure

Let (X, A) and (Y, B) be objects in $\mathsf{CFam}[\mathsf{C}]$. Then: $(X, A) \otimes (Y, B) = (X \times Y, A \otimes B),$

where

$$(A \otimes B)(x, y) = (Ax) \otimes (By).$$

Question: do we need monoidal closure of the total category? If so it is probably of the form:

$$(X,A) \multimap (Y,B) = ([X \rightarrow Y], A \multimap B),$$

with

$$(A \multimap B)f = \oint_{x \in X} Ax \multimap Bf(x),$$

where \oint denotes some kind of 'lax end' satisfying

$$\oint_{x\in X} \mathbf{C}(Fx, Gx) = \{ | ax \text{ natural transformations } F \to G \}$$

for functors $F, G : X \to C$. Question: what are the requirements on **C** to assure the existence of this 'lax end'.

Models	of	1
000		

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Abstract model with recursion and dependent types?

• This is the most complicated case by far.

Remark

If M = 1, then the model collapses to a model which is very similar to Palmgren and Stoltenberg-Hansen's model of partial intuitionistic dependent type theory ⁹.

⁹Erik Palmgren & Viggo Stoltenberg-Hansen. *Domain interpretations of Martin-Löf's partial type theory*. Annals of Pure and Applied Logic 1990.

Introduction	Models of base	Models of base+dep	Models of base+rec	Models of base+rec+dep
0000	000	0000	000	0000000
Conclusion				

- By taking the enrichment of certain denotational models into account, one can obtain models of circuit description languages
- Systematic construction for concrete models that works for any circuit (string diagram) model described by a symmetric monoidal category.
- We have identified different *candidate* models for Proto-Quipper-M depending on the feature set.
- Plenty of work (and verification) remains to be done...

Models of base

Models of base+dep 0000 Models of base+rec

Models of base+rec+dep

Thank you for your attention.