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KRIPKE MODELS


1. INTRODUCTION  


Saul Kripke has made fundamental contributions to a variety of areas of logic, and his name is attached to a corresponding variety of objects and results.
 For philosophers, by far the most important examples are ‘Kripke models’, which have been adopted as the standard type of models for modal and related non-classical logics.  What follows is an elementary introduction to Kripke’s contributions in this area, intended to prepare the reader to tackle more formal treatments elsewhere.


2. WHAT IS A MODEL THEORY? 


Traditionally, a statement is regarded as logically valid if it is an instance of a logically valid form, where a form is regarded as logically valid if every instance is true. In modern logic, forms are represented by formulas involving letters and special symbols, and logicians seek therefore to define a notion of model and a notion of a formula’s truth in a model in such a way that every instance of a form will be true if and only if a formula representing that form is true in every model. Thus the unsurveyably vast range of instances can be replaced for purposes of logical evaluation by the range of models, which may be more tractable theoretically and perhaps practically. 


Consideration of the familiar case of classical sentential logic should make these ideas clear. Here a formula, say (p q)  ¬p  ¬q, will be valid if for all statements P and Q the statement ‘(P and Q) or not P or not Q’ is true. The central observation about classical sentential logic is that the truth-value of a compound statement like ‘(P and Q) or not P or not Q’  depends only on the truth-values of its components P and Q. Thus rather than consider the vast range of all instances, of all statements P and Q that might be used to instantiate p and q, one need only consider all combinations of assignments of truth-values to the letters p and q, of which there are only four. If (as is in fact the case) for each of these four (p q)  ¬p  ¬q works out to be true when the assignment of values is extended to compound formulas according to the rules familiar from elementary logic textbooks, then the formula counts as valid. (The method of truth tables expounded in elementary logic texts is one way of exhibiting all the combinations and testing for validity.) 


In general, at the level of classical sentential logic, a model M is simply a valuation V or function assigning a truth-value T or F to each of the atoms, as the letters p, q, r, and so on, may be called. This assignment is then extended to compound formulas by the familiar rules just alluded to. To state these explicitly, for any formulas A and B  one has the following (wherein "iff" abbreviates "if and only if"):

	(0)
	for atomic A, A is true in M
	iff
	V(A) = T

	(1)
	¬A is true in M 
	iff
	A is not true in M

	(2)
	A & B is true in M  
	iff
	A is true in M and B is true in M

	(3)
	A  B is true in M 
	iff
	A is true in M or B is true in M

	(4)
	A  B is true in M  
	iff
	if A is true in M, then B is true in M



A formula is valid if it is true in all, and satisfiable if it is true in some model. Note that A is valid if and only if ¬A is not satisfiable. The truth-value of any given formula A in a given M will depend only on the values V assigns to those of the atoms that appear in A, and as there are only finitely many of these, there will be only finitely many combinations of values to consider. The result is that in principle one could, in a finite amount of time, by considering each of these combinations in turn, decide whether or not the formula A is valid: validity for classical sentential logic is decidable.


Prior to the development of this model theory several proof procedures for classical sentential logic had been introduced. In such a procedure there are generally a certain smallish finite number of axiom schemes or rules to the effect that all formulas of certain types (for instance, all formulas of type ¬¬A  A, where A  may be any formula) are to count as axioms, and a certain small finite number of rules of inference, often just the single rule of modus ponens, permitting inference from A  B and A to B. A demonstration is a sequence of formulas each of which is either an axiom or follows from earlier ones by a rule. A demonstration is called a demonstration of its last formula, and a formula is demonstrable or a theorem if there is a demonstration of it. A is consistent if ¬A is not demonstrable.


The model theory provides a criterion for the acceptability of proof procedures. A procedure is called sound if every demonstrable formula is valid, and complete if every valid formula is demonstrable. The pre-existing proof procedures, and many alternatives introduced since, are in fact all sound and complete. 


3. WHAT IS A MODAL LOGIC? 


At the simplest, sentential level, modal logic adds to classical logic a further symbol  for ‘necessarily’. The symbol ( for ‘possibly’ may be understood as an abbreviation for ¬¬. Originally necessity and possibility were understood in a logical sense with   understood as demonstrability (or validity) and ( correlatively as consistency (or satisfiability). Later other types of modalities were at least briefly noted in the literature:  causal, deontic, epistemic, and — by far the most intensively investigated — temporal. 


At the level of sentential logic, proof procedures had been introduced by C. I. Lewis, the founder of modern modal logic.
 But even for the primary, logical notion of modality there was no general agreement among Lewis’s disciples as to which formulas ought to be demonstrable, and a variety of systems had been recognized.  All the more important systems agreed as to formulas without iterated or nested modalities, but they differed as to more complex formulas. 


The original presentation of these systems was rather clumsy, but an improved approach was suggested by remarks of Kurt Gödel.
 In the improved version, the systems are introduced by adding to any sufficient set of axiom schemes and rules for classical sentential logic further specifically modal axiom schemes and rules. All the more important systems have in fact but a single additional rule of necessitation, permitting inference from A to A. (The intuitive justification of the rule is that if A has been derived as a law of logic, then it is necessary in the logical sense and presumably in any other that may be at issue as well.)


The most important of the additional axiom schemes considered were those that admitted as axioms formulas of the following types:

(A0)
(A  B)  (A  B)

(A1)
A  A
(A2)
A  A
(A3)
A  ¬¬A

The most important systems all include, in addition to the rule of necessitation, the axiom scheme (A0). The system with just these and no more axioms and rules has come to be called K for Kripke, since it first came into prominence in connection with Kripke’s work on model theory. Prior to that work, the systems that had emerged as most important were those obtained by adding certain of (A1)-(A3) to K. Specifically, these were the following systems:


T:
(A1)


S4
(A1), (A2)


B:
(A1), (A3)


S5:
(A1), (A2), (A3)

The discussion below will be largely confined to those systems.


The task of devising a model theory for modal logic was thus really a series of tasks, of devising a model theory for each of the various systems. Or rather, it was to devise a general type of model theory which, by varying certain conditions, could produce specific model theories for which the various systems would be sound and complete. Were that accomplished, it might then be hoped that by comparing and contrasting the conditions required for different systems one might be enabled to determine which system was the most appropriate for a given kind of modality. 


One thing that should be immediately apparent is that one cannot get a suitable model theory for modal sentential logic simply by extending the model theory for classical sentential logic by adding the clauses for  and ( analogous to those for ¬:

	
	A is true in M
	iff
	necessarily A is true in M

	
	(A is true in M
	iff
	possibly A is true in M



For the formulas and the models, after all, are mathematical objects (sequences of letters and special symbols, functions assigning one of the values T or F to each of the atoms), and whether a given formula A is true in M is a mathematical fact about those objects. And mathematical facts are all necessary. Thus if A is true in M, it automatically is necessarily so; whereas we certainly do not want to have A true in M whenever A is true in M, for that would make A  A valid, which it ought not to be. Some more complicated approach will be needed.


4. KRIPKE MODELS FOR MODAL SENTENTIAL LOGIC


A Kripke model for sentential logic will consist of something more than a single valuation. It will, rather, amount to an indexed set of valuations. One of these will represent actuality, the actual combination of truth values of the atoms; others will represent actual possibilities, which is to say, possible combinations of truth values of the atoms; yet others will represent actually possible possibilities, which is to say, possibly possible combinations of truth values of the atoms; and so on.
 


More formally, a model M = (X, a, R, V) will consist of four components. There will be a set X of indices, a distinguished index a, a binary relation R on the indices, and a function V assigning a valuation V(x) to each index x, and therewith a truth-value V(x)(A) to each index x and atom A. The distinguished index a  may be thought of as representing actuality. The relation R may be thought of as representing relative possibility.  Then the x such that aRx represent the actual possibilities; the y such that for some x we have aRx  and xRy represent they actually possible possibilities; the z such that for some x and y we have aRx  and xRy  and yRz represent actually possibly possible possibilities, and so on. The indices in X thus represent ‘possibilities’ in a very broad sense. 


The definition of truth at an index in a model then proceeds as follows:

	(0)
	for atomic A, A is true at x  in M
	iff
	V(x)(A) = T

	(1)
	¬A is true at x in M 
	iff
	A is not true at x in M

	(2)
	A & B is true at x in M  
	iff
	A is true at x in M and B is true at x in M

	(3)
	A  B is true at x in M 
	iff
	A is true at x in M or B is true at x in M

	(4)
	A  B is true at x in M  
	iff
	if A is true at x in M, 

then B is true at x in M

	(5)
	A is true at x in M
	iff
	for all y with xRy,

A is true at y in M

	(6)
	(A is true at x in M
	iff
	for some y with xRy,

A is true at y in M


Here (6) is redundant, since it follows from (5) and the understanding of ( and ¬¬.
 By the truth-value of A in M one may understand the truth-value of A  at a in M. A formula is valid if it is true in all models, and satisfiable if it is true in some model.


The description of the general notion of Kripke model — or as is often said, of Kripke semantics — for modal sentential logic is now complete. Or rather, it is complete except for one piece of picturesque terminology.  In probability theory and decision theory one often considers a range of ‘possibilities’ in the sense of ‘possible outcomes’ or ‘possible events’, often spoken of simply as ‘outcomes’ or ‘events’. In physics one often considers a range of ‘possibilities’ in the sense of ‘possible states of a system’, often spoken of simply as ‘states of the system’. What the indices in a Kripke model represent may often be illuminatingly thought of ‘possibilities’ in the sense of ‘possible states of the world’, or simply ‘states of the world’ for short. 


These are often spoken of as ‘possible worlds’, or simply ‘worlds’ for short. Kripke himself, echoing Leibniz, originally engaged in this way of speaking, though later he concluded that the more pedestrian language of ‘states of the world’ was less misleading than the more picturesque language of ‘worlds’. Despite Kripke’s later reservations about the usage, the indices in Kripke models are still generally called ‘worlds’ in the literature. (To go with the talk of worlds, various expressions such as ‘accessibility’ or ‘alternativeness’ are used for the relative possibility relation R.)

5. SOUNDNESS AND COMPLETENESS


Kripke proved that the system K described in section 3 is sound and complete for the class of all Kripke models. Thus we have: (soundness) if a formula is demonstrable in K, then it is true in all Kripke models; and (completeness) if a formula is true in all Kripke models, it is demonstrable in K. Each of the other systems mentioned in section 3 he showed sound and complete for some special class of Kripke models. 


For instance, the theorems or demonstrable formulas of T correspond to the class of Kripke models in which the relation R is reflexive, meaning that xRx for all x. That is to say, we have: (soundness) if a formula is demonstrable in T, then it is true in all reflexive Kripke models; and (completeness) if a formula is true in all reflexive Kripke models, then it is demonstrable in T. The relation between axiom scheme (A1) of T and the condition of reflexivity is intuitively fairly clear. The truth of A at a  amounts to the truth of A at all x such that aRx, and reflexivity guarantees that a  itself will be among these, so that A will be true at the a. Thus, if A  is true at a, so is A, which is precisely the condition for A   A to be true at a. (This is the key observation in the proof of soundness.)


Other axiom schemes correspond to other conditions on R. Thus axiom (A2) corresponds to transitivity, the condition that for all x and y and z, if xRy and yRz, then xRz. Assuming the truth of A at a  amounts to assuming the truth of A at all x such that aRx, and transitivity guarantees that for any x  such that aRx and any y such that xRy, we have aRy, so that A is true at y. It follows that A is true at x for any x such that aRx, and hence A is true at a, assuming A is true at a. This is precisely the condition for A  A to be true at a. 


Similarly, axiom (A3) corresponds to symmetry, the condition that for all x and y, if xRy  then yRx. Assuming A is true at a, symmetry guarantees that for any x with aRx there is at least one y with xRy, namely a itself, such that A is true at y. This means ¬¬A is true at any x with aRx, and ¬¬A is true at a, assuming A is true at a. This is precisely the condition for A  ¬¬A to be true at a.


Kripke showed that S4 is sound and complete for reflexive, transitive Kripke models and that B is sound and complete for reflexive, symmetric Kripke models. (What has been given the preceding two paragraphs are the key steps in the soundness proofs. The completeness proofs are substantially more difficult, and cannot be gone into here.) As for S5, it is sound and complete for the class of Kripke models where the relation R is reflexive and transitive and symmetric (a combination of conditions called being an equivalence relation).
 Kripke actually obtained a number of other soundness and completeness theorems beyond the scope of the present article, and his successors have found yet others.

6. WARNINGS

At this point, the reader may need to be warned against a misunderstanding that is fairly commonly met with, not only among beginning students of the subject, but even among otherwise distinguished logicians who ought to know better. It is a feature of the definition of Kripke model that nothing in it requires that every  valuation of the atoms be assigned to some index or other. The confused thought is fairly often met with, even in the published literature, that while Kripke models as just described may be appropriate for various non-logical modalities, still owing to the feature just indicated they cannot be appropriate for logical modalities: 

What is needed for logical necessity of a sentence p in a world w0 is more than its truth in each one of some arbitrarily selected set of alternatives to w0.  What is needed is its truth in each logically possible world.  However, in Kripke semantics it is not required that all such worlds are among the alternatives to a given one.


Now it is certainly true, as the complaint alleges, that the valuations to be represented in the model may be ‘arbitrarily chosen’. For any set of valuations, there is a Kripke model M = (X, a, R, V) where just those valuations and no others turn up as the valuations V(x) attached to indices x  in X by the function V   For instance, there are Kripke models where no index is assigned a valuation that assigns the atom p the value T, and there are Kripke models where no index is assigned a valuation that assigns the atom p the value F. 


But contrary to what the above complaint suggests, this is just as it should be, regardless of what notion of necessity, logical or otherwise, is at issue. Truth in all models is supposed to correspond to truth in all instances, and as there are certainly logically impossible statements P that might be used to instantiate the atom p, to represent such instantiations there must be models where no index is assigned a valuation that would assign the atom p the value T. Likewise, there must be models where every index is assigned a valuation that assigns the atom p the value T, since there are logically necessary statements P that might be used to instantiate the atom p.
 And since, of course, there are also many entirely contingent statements P that might be used to instantiate the atom p, there must also be models where the valuations assigned to some indices assign p the value T, while the valuations assigned to other indices assign p the value F.


A further warning may be in order about the picturesque use of ‘worlds’ in connection with Kripke’s model theory. This usage has fired the imaginations of contemporary metaphysicians, the most distinguished of whom, the late David Lewis, took the notion of a plurality of possible worlds with maximal seriousness. But the model theory in itself is simply a piece of mathematical apparatus susceptible to many and varied technical applications and philosophical interpretations, and that its use (and even the casual use of ‘worlds’ talk as a convenient abbreviation) does not seriously commit one to Ludovician polycosmology.


In this connection a further remark about the dangerously ambiguous word ‘semantics’ may be in order. This word is sometimes used as a synonym for ‘model theory’, but it also has a use as a label for the theory of meaning. A serious danger of ambiguity lurks in this double usage, for formal models need not have anything very directly to do with intuitive meaning. It would, for instance, be a fallacy of equivocation of the grossest sort to infer from the fact that ‘possible worlds’ figure in Kripke models the conclusion that ordinary talk of what would or might have been has really meant all along something about ‘possible worlds’ in the sense of Lewis (or for that matter, in any other sense).
 To avoid confusion, a distinguishing adjective is sometimes added, so that one contrasts ‘formal semantics’ with ‘material semantics’ (or ‘linguistic semantics’). But even this usage can be faulted for suggesting that we have to do with two different varieties, formal and material, of one and the same thing, semantics, rather than two things whose relation or irrelevance to each other remains to be investigated. 


7. HISTORICAL NOTE


No major discovery or advance in science or philosophy is without precursors. Kripke obtained his results on models for modal logic while still in high school, but there were results in the literature when he was in elementary school that, if combined in the right way, would have yielded his soundness and completeness theorems for S4 and a number of other important systems. This is not the place for a detailed, technical account of these matters, but the following may be remarked. First, the work of McKinsey and Tarski [1948] connected systems of modal logic with certain ‘algebraic’ models — for the cognoscenti, Boolean algebras with operators — with different axiom schemes corresponding to different algebraic conditions, while work of Jónsson and Tarski [1951] connected the algebraic structures involved structures consisting of a set X with a binary relation R — now generally called frames — with different algebraic conditions corresponding to conditions of reflexivity, transitivity, and symmetry on the frames. 


McKinsey and Tarski made no mention of frames, and Jónsson and Tarski no mention of modal logic, but between them the two teams had done all that was necessary to obtain the kind of soundness and completeness theorems reported in the preceding section. But no one — not even Tarski — put two and two together. Still, the existence of this work by Tarski and students would seem to make other priority questions more or less moot. Nonetheless, following the example of Kripke, who has been scrupulous in citing precursors, one may make mention here of a couple of rough contemporaries of his who were also working to develop model theories for modal logics, and who conjectured — but did not publish proofs of — a connection between systems like T, S4, and S5 and conditions like reflexivity, transitivity, and symmetry.


One of these was Stig Kanger, who presented a model theory for modal logic in his dissertation. In their standard survey article, Bull and Segerberg ascribe the comparative lack of influence of his work to two factors, the ‘unassuming mode of publication’ and the fact that his work is ‘difficult to decipher’. In fact, though the dissertation was printed, as all Swedish dissertations of the period were required to be, it was never published in a journal and was largely unknown outside Scandinavia.
 It is very difficult to read owing to an accumulation of non-standard notations and terminology — even for conditions like reflexivity, transitivity, and symmetry. The two factors are related, since going through the refereeing and editorial process involved in journal publication would surely have resulted in a more reader-friendly presentation. A measure of the reader-unfriendliness of the work is the fact that it was only two decades and more after its appearance that it was realized that the model theory differs in a fundamental way from Kripke’s: it involves the ‘misunderstanding’ warned against at the beginning of the preceding section.


Much closer to Kripke's approach was that of Jaakko Hintikka,
 who is often mentioned as Wallace to Kripke's Darwin. Compared with Kripke’s approach, Hintikka’s is less clearly, cleanly model-theoretic or ‘semantic’: it is proof-theoretic or ‘syntactic’ to the extent that what the relation R  relates are not indices but sets of formulas. As a result there is nothing directly corresponding to the feature of Kripke’s approach that allows duplication, meaning that it allows two indices to have the same valuation assigned to them. But this latter feature is only likely to be appreciated by one who goes into the technicalities of the subject.
 A more immediate reason for the lesser influence of Hintikka’s work is cited by Bull and Segerberg, namely, the absence of proofs, which gives his main paper the aspect of an extended abstract or research announcement.


Differences between Kripke's approach and those of others such as Kanger and Hintikka are more conspicuous at the level of predicate logic (which was not considered at all by the Tarski school). But the main reason why the models with which we are concerned have been called ‘Kripke models’ is perhaps not so much that Kripke was in fact the first to present models of the precise kind that have been most convenient in later technical work, or even that he was the first to make generally available in print complete proofs of soundness and completeness results for systems like T and S4 and B and S5, but rather that he was the first to demonstrate the immense utility and versatility of model-theoretic methods as they apply not only to sentential but to predicate logic, not only to extensions of K but to significantly weaker systems as well, not only to questions of soundness and completeness but to questions of decidability, and not only to modal but to intuitionistic and other logics. There can be no question of describing here all the large body of work to be found in Kripke [1959, 1962, 1963a, 1963b, 1963c, 1965], but something must be said at least about intuitionistic logic and about modal predicate logic.


8. KRIPKE MODELS FOR INTUITIONISTIC LOGIC


Mathematical intuitionists, followers of the Dutch topologist L. E. J. Brouwer, object to non-constructive existence proofs, purported proofs of the existence of a mathematical object with some mathematical property that do not provide any means of identifying any particular object with the property. This objection ultimately leads intuitionists to reject basic laws of classical logic, and led to the development of an alternative logic for which a proof procedure was provided by Arend Heyting [1956].


Consider, for instance, the statement P that there are seven sevens in a row somewhere in the decimal expansion of π. A classical mathematician would accept a derivation of a contradiction from the assumption that ¬P as a demonstration that P; an intuitionist would not, unless there were at least implicit in the proof a method for actually finding out where the seven sevens appear. Thus the intuitionist cannot accept ¬¬P  P as an instance of a law of logic, and it is not a theorem of Heyting’s system.


The intuitionist position is most readily made intelligible by explaining that intuitionists attach a non-classical meaning to such logical connectives as ¬ and . For the intuitionist, every mathematical assertion is the assertion of the constructive provability of something. The denial of the constructive provability of something is not itself the assertion of the constructive provability of anything, and so the intuitionist cannot understand negation as simple denial, but must understand it as something stronger. For the intuitionist ¬P asserts the constructive provability of a contradiction from the assumption that P.


Such explanations suggest a kind of translation of formulas A of intuitionistic sentential into formulas A* of classical modal logic, with necessity  thought of as constructive provability. If A is one of the atoms, the translation A* is A, reflecting the fact that the only statements considered by intuitionists are assertions of constructive provability. The translation (¬A)* of the negation of a formula A is ¬A*, the necessity of the negation of the translation of A. The translation (A  B)* of a conditional is (A*  B*), and similarly for other connectives. It turns out that one can get away with taking as (A & B)* simply A* & B* rather than (A* & B*), mainly because (p & q) is equivalent to p & q in the relevant modal systems. Similarly for disjunction. Such a translation was first proposed by Gödel [1932], who asserted without proof that A will be demonstrable intuitionistically if and only if A* is demonstrable in S4. 


This fact suggests a notion of Kripke model for intuitionistic logic. Such a model M = (X, a, R, V) consists of a set X of indices, a distinguished index a, a reflexive and transitive binary relation R, and a valuation V with the special property called being hereditary, meaning that if A is an atom and if V (x)(A) = T and if xRy, then V (y)(A) = T. (Reflexivity and transitivity are the distinguishing conditions for models of S4, the modal system Gödel claimed to have a special relation to intuitionistic logic. The hereditary property that if V(x)(A) = T and if xRy, then V(y)(A) = T, is one possessed in S4 models by formulas that are — or that are equivalent to formulas that are — of the form A, as the modal translations of intuitionistic formulas are.)


One then defines truth at an index in the model as follows:

	(0)
	for atomic A, A is true at x  in M
	iff
	V(x)(A) = T

	(1)
	¬A is true at x in M 
	iff
	for any y with xRy, A is not true at y in M

	(2)
	A & B is true at x in M  
	iff
	A is true at x in M and B is true at x in M

	(3)
	A  B is true at x in M 
	iff
	A is true at x in M or B is true at x in M

	(4)
	A  B is true at x in M  
	iff
	for any y with xRy, if A is true at y in M, 

then B is true at y in M


The clauses (1) and (4) of the definition correspond to the translation of intuitionistic ¬ as ¬ and intuitionistic  and . 


Every S4 model N = (X, a, R, U) gives rise to an intuitionistic model M = (X, a, R, V) by replacing the original function U by the function V obtained by setting, for each index x and each atom A, the value V(x)(A) to be T or F according as A is true or false at x in N. It can be checked that whatever the old function U, this new function V is hereditary. It can also be checked that for any intuitionistic formula A and any index x, A is true at x in M if and only if its modal translation A* is true at x in N. A proof of soundness and completeness for Heyting's system of intuitionistic logic relative to this notion of model can be obtained by combining the fact just stated with the soundness and completeness of S4 for reflexive and transitive Kripke models and Gödel's translation result stated above. Alternatively, a soundness and completeness proof can also be given directly, as was done by Kripke, and Gödel's translation theorem can then be proved in a new way as a corollary. Various other facts about intuitionistic logic that had previously been established by rather difficult arguments follow directly as corollaries to the soundness and completeness theorem.


Kripke's model theory for modal predicate logic (which will be discussed below) also can be adapted to provide a model theory for intuitionistic predicate logic, which Kripke used to obtain further important results. Notably, whereas the classical logic of one-place predicates is decidable, like classical sentential logic, and undecidability sets in only with the classical logic of two- or many-place predicates, with intuitionistic logic the logic of one-place predicates is already undecidable.


9. KRIPKE MODELS FOR MODAL PREDICATE LOGIC


Modal predicate logic, combining modal operators  and ( with quantifiers  and , was introduced by Ruth Barcan (later Marcus) [1946], and by Rudolf Carnap [1946]. From the beginning the problem of interpretation for formulas combining modalities with quanitifiers was acute. Carnap’s interpretations did not satisfy other philosophical logicians, and Barcan’s work was purely formal and did not broach the question of interpretation at all. 


One, though not the only, source of difficulty was that the earliest proof-procedures for modal predicate logic involved the following mixing laws:


(B1)
vFv  vFv

(B2)
v(Fv  (vFv


(B3) 
vFv  vFv

(B4)
(vFv  v(Fv
Here (B1) and (B2) are commonly called the converse Barcan and (B3) and (B4) the Barcan formulas. A proof procedure simply combining the usual sorts of axioms and rules for modal sentential and for non-modal quantificational logic will automatically yield the former. Following a suggestion of Frederic Fitch, his student Barcan took the latter as additional axioms. 


But none of the four is plausible: (B1) seems to imply that since necessarily whatever exists exists, whatever exists necessarily exists. (B4) seems to imply that if it is possible that there should exist unicorns, then there exists something such that it is possible that it should be a unicorn. Kripke devised a less simplistic proof-procedure in which none of (B1-4) is automatically forthcoming, and none is assumed as axiomatic. Moreover, he devised a model theory for which this proof theory is sound and complete, thus liberating the subject from the counterintuitive mixing laws.


Kripke’s model theory for modal predicate logic is related to his model theory for modal sentential logic rather as the standard model theory for non-modal predicate logic is related to the standard model theory for non-modal sentential logic. Though there can be no question of a full review here, some of the key features of the model theory for non-modal predicate logic may be briefly recalled. A model M  consists of two components, a non-empty set D, called the domain of the model, and an interpretation  function I  assigning to each one-, two-, or many-place predicate F, a one-, two-, or many-place relation FI  on the domain D. 


In order to define what it is for a closed formula A to be true in M we need to define more generally what it is for an open formula A(v1, … , vn) with n free variables  to be satisfied by an n-tuple of elements d1, … , dn of the domain D. The interpretation function essentially gives the definition of satisfaction for atomic formulas. For instance, if F is a three-place predicate, the formula A(u, v, w) = Fuvw will be satisfied by the triple of domain elements c, d, e if and only if the relation FI  holds of that triple c, d, e; the formula B(u, v) = Fuvu will be satisfied by the pair of domain elements c, d if and only if the elation FI  holds of the triple c, d, c; and analogously in other cases. The notion of satisfaction is extended from atomic to more complex formulas by a series of clauses, consisting of the analogues of (1)-(4) of section 2 for ¬, &, , , and two more clauses to handle the quantifiers. 


The quantifier clauses read as follows:

	(5)
	u A(v, u) is satisfied 

by d in M
	iff
	for every c in D, A(u, v) is satisfied

by c, d in M

	(6)
	u A(v, u) is satisfied 

by d in M
	iff
	for some c in D, A(u, v) is satisfied

by c, d in M


It is to be understood that in either of (5) or (6) we may have n variables v1, … , vn in place of v, and n domain elements d1, … , dn in place of d.


Now a Kripke model for modal predicate logic will consist of five components, M = (X, a, R, D, I). Here, as with modal sentential logic, X will be a set of indices, a a designated index, R a relation on indices. As for D and I, the former will a function assigning each x in X and set Dx, the domain at index x, while the latter will be a function assigning to each x in X and each predicate F  a relation FxI, the interpretation of F at x, of the appropriate number of places. The one genuine subtlety in the whole business is that FxI is to be a relation not merely on Dx but rather on the union D* of the Dy for all indices y in x. Thus even when d and e are not both in the domain Dx and in this sense at least one of them does not exist at x, we may ask whether d and e satisfy Fvw  at x. (They will do so if FxI holds of them.)


The definition of satisfaction at an index x then proceeds much as in the case of definition of truth at an index x in modal sentential logic, so far as ¬, &, ,  are concerned. The clauses for quantifiers read as follows (wherein as in (5) and (6) above v and d may be n-tuples):

	(5*)
	u A(v, u) is satisfied 

by d at x in M
	iff
	for every c in Dx, A(u, v) is satisfied

by c, d in M

	(6*)
	u A(v, u) is satisfied 

by d at x in M
	iff
	for some c in Dx, A(u, v) is satisfied

by c, d in M


Note that only c in the domain Dx, only c that exist at x, count in evaluating the quantifiers.


The Barcan formula (2a) fails in a very simply model, with just two indices a and a', both R-related to each other, where the domain Da has a single element d, and the domain Da' has the two elements d and d', where FaI holds of d and of d', and Fa'I holds of d but not of d'. In fact, the Barcan formula (B3), or equivalently (B4), corresponds to the special assumption that when xRy the domain gains no elements as we pass from Dx  to any Dy. The converse Barcan formula (B1), or equivalently (B2), corresponds to the converse assumption that the domain loses no elements. 


There is not space here to discuss soundness and completeness (which are harder to prove in the predicate than in the sentential case), nor to describe the corresponding notion of Kripke model for intuitionistic predicate logic.
 Nor is there space to survey the numerous variant versions have been developed for special purposes.


10. THE PROBLEM OF INTERPRETATION


We have already warned of the danger of confusing model theory or so-called formal semantics with a substantive theory of linguistic meaning. It will be well before closing to look a little more closely at the relationship between the two in three cases, those of temporal ‘modalities’ or tense operators, of intuitionistic logic, and of plain ‘alethic’ modalities.


In temporal or tense logic,  is understood as ‘it is always going to be the case that’ and ( as ‘it is sometimes going to be the case that’. With such a reading, the connection between Kripke models and intuitive meaning is quite clear. The ‘possibilities’ or ‘possible states of the world’ are instants or instantaneous states of the world, the ‘relative possibility’ relation is the ‘relative futurity’ relation, which is to say the earlier-later relation. The clause according to which A is true at x in M  if and only if A is true at y in M for every y with xRy  is simply the formal counterpart of the trivial truism that it is always going to be the case that A  if and only if at every future instant it will be the case that A. Various axioms correspond to conditions on the earlier-later relation, and the question which of the many systems of modal logic is the right one for this notion of modality becomes the question which of these various conditions the earlier-later relation fulfills. That is presumably a question for the physicist, not the logician, to answer; but the theory of Kripke models for temporal modalities indicates clearly just what is at stake with each proposed axiom scheme. The source of clarity in this case is the fact that different physical theories of the structure of time do more or less directly present themselves as theories about what conditions the earlier-later relation among instants fulfills. 


There is more of a gap between Kripke’s formal models for intuitionistic logic, and Brouwer’s and Heyting’s explanations of the intended meaning of intuitionistic negation and other logical operators. In particular, Kripke’s theorem on the ‘formal’ soundness and completeness of Heyting’s system for his model theory does not in and of itself show that Heyting’s system is ‘materially’ sound and complete in the sense of giving as theorems all and only those laws that are correct when the logical operators are taken in their intended intuitionistic senses. As it happens, in this case the formal soundness and completeness proof can serve as an important first step in a proof of material soundness and completeness, but substantial additional steps — beyond the scope of the present article — are needed to make the connection.


In the case of ‘necessity’ and ‘possibility’, the primary readings of  and (, the gap between formal models and intuitive meaning is larger still. Different conceptions of modality do not in general directly present themselves as theories about what conditions the ‘accessibility’ relation between ‘worlds’. There is, for instance, a widespread feeling that something like S5 is appropriate for logical necessity in the sense of validity, and something like S4 for logical necessity in the sense of demonstrability. The locus classicus  for this opinion is Halldèn [1963]. But the considerations advanced there in favor of this opinion have nothing to do with the thought that ‘the accessibility relation between satisfiable worlds is symmetric, but the accessibility relation between consistent worlds is not.’ 


More seriously, the grave objections of W. V. Quine against the very meaningfulness of combinations like vFv  when  is read as ‘it is logically  necessary that’ or ‘it is analytic that’ are not answered by Kripke’s model theory, nor in the nature of things could they be answered by any purely formal construction. Quine’s worry is this: The truth of vFv  would require the existence of some thing such that Fv is analytically true of it, but what can it mean to say an open formula Fv , or rather, an open sentence such as ‘v is rational’ or ‘v is two-legged’ represented by such a formula, is analytically true of a thing, independently of the how or whether it is named or described? 


For instance, ‘Hesperus’ and ‘Phosphorus’ denote the same planet, but the open sentence ‘v is identical with Hesperus’ becomes analytic if one substitutes ‘Hesperus’ for v, and not so if one substitutes ‘Phosphorus’. What on earth — or in the sky — can be meant by saying that the open sentence is or isn’t analytically true of the planet? The problem is a major one, and led early defenders of modal predicate logic (such as Arthur Smullyan, and following him Fitch [1949], and following the latter his student Marcus) to desperate measures, such as maintaining that if ‘Hesperus’ and ‘Phosphorus’ are proper names, denoting the same object, then ‘Hesperus is Phosphorus’ is analytic after all.
 


Kripke was eventually to cut through confusions in this area by distinguishing ‘metaphysical’ possibility, what potentially could have been the case, from logical ‘possibility’, what it is not self-contradictory to say actually is the case. He was then able to say, as in Kripke [1971] that Quine was right that such identities are empirical; Marcus was right that there is a sense in which such identities are necessary; but taking necessity in this sense, both were wrong in confusing necessity with epistemological notions. But by his own account the main ideas in Kripke [1971] and Kripke [1972] date from academic year 1963-64 when he began presenting them in seminars at Harvard. By contrast, his formal work on model theory in large part was a half-decade old by then, and was already (belatedly) in print or at press. The model theory came first, the recognition of the importance of distinguishing different senses of ‘necessity’ came after.  


As Kripke has said in another context, ‘There is no mathematical substitute for philosophy.’ As regards modal predicate logic, Kripke’s early mathematical work in model theory does not settle the disputed issues of interpretation, but rather Kripke’s later philosophical work on language and metaphysics is needed to clarify his model theory. His model theory cannot in and of itself settle disputed questions about the nature of modality. But if that is its weakness, it has a correlative strength: not being bound to any very particular understanding of the nature of modality, the model theory is adaptable to many. It is a very flexible instrument, still very much in use in the greatest variety of contexts today.

NOTES
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� We may remind the cognoscenti of the Kripke-Platek axioms in higher recursion theory, the Brouwer-Kripke scheme in intuitionistic analysis, and the Kripke decision procedure for the implicational fragment of relevance logic.





� Especially Bull and Segerberg [1984], Garson [1984].





� See Lewis [1918] and Lewis and Langford [1932].





� See his [1932]. Gödel left the proofs of the equivalence of his simplified versions to Lewis’s clumsy original versions to be worked out by others.





� There may also be extraneous indices representing neither actuality, actual possibilities, actually possible possibilities, since one gets a simpler definition if one allows them; but their presence or absence will turn out to make no difference to the truth-value assigned any formula.





� In place of V one could use a two-place function, assigning to each pair consisting of an index x and an atom A a truth-value T or F. We could also use a function assigning to each atom A a function assigning to each index x a truth-value T or F. We could also use, in place of the function assigning each index x an assignment of values to atoms a function assigning each index x a set of atoms, namely, those that are true at x. Finally, we could also use, in place of a function assigning each atom A  an assignment of values to indices a function assigning to each atom A  a set of indices, namely, those at which A is true. Each of these variant versions of the model theory can be met with somewhere in the literature, different ones being convenient for different purposes.





� Alternatively, one could equivalently take a model simply to consist of a triple (X, R, V) and call a formula valid if it is true at all indices in all models, and satisfiable if it is true at some index in some models. This option can also be met with in the literature.





� Since in general no indices distinct from those identical with a, those R-related to a, those R-related to something R-related to a, and so on, make a difference to the truth-value of any formula in the model, for R an equivalence relation only those indices equivalent to a make a difference, and we may discard all others. But then all undiscarded indices are equivalent, and we may drop mention of the relation R altogether. The condition for the truth of A  simply becomes truth at all indices.





� Hintikka [1982].





� At any rate, this is how things must be if the atoms are to be used in the usual way --- the way they are used in classical logic, in the various systems T, S4, B, S5 of modal logic, in intuitionistic logic, and elsewhere --- as capable of representing arbitrary statements. If one adopted some special convention --- for instance, that distinct atoms are to represent independent atomic statements, as is in effect done in the rational reconstruction of early twentieth-century ‘logical atomism’ in Cocchiarella [1984] --- then, of course, a different model theory might be appropriate. 





� Neither Kripke nor Lewis is guilty of this confusion, but some nominalists seem to have thought that they must avoid ordinary modal locutions because of their unacceptable ‘ontological commitments’.





� For Kripke's own comments on these figures, and for other names, see the long first footnote to Kripke [1963a]





� Kanger [1957] has only recently been made available in Kanger [2001].





� A more sympathetic description of this difference from Kripke models is given in Lindström [1998]; but the fact of the difference is not denied: rather, it is emphasized.





� See Hintikka [1963].





� Such a reader will, however, recognize its importance, and may have difficulty crediting the claim in Hintikka [1963] to have soundness and completeness theorems for tense logic, since allowing duplication is crucial to such results. One hypothesis is that Hintikka had in mind some non-standard approach to tense logic, in which the temporal modalities are not ‘has always been’ and ‘is always going to be’ but ‘is and has always been’ and ‘is and is always going to be’.





� Surprisingly, Hintikka is the most distinguished of the logicians who has fallen into the confusion warned against in section 5 above. The locus classicus for the confusion is indeed a curious paper of Hintikka [1982], where he in effect simultaneously argues both that he has priority in developing the kind of models used by Kripke, and that the kind of models used by Kripke are inferior to Kanger’s. A comical feature of the paper is that Hintikka carefully avoids the term ‘Kripke models’ (except in scare-quotes) when arguing over priority, but freely uses it whenever the models in question are being criticized.





� One of these is the disjunction property, that if A  B is a theorem of intuitionistic logic, then either A is or B is. In particular, p  ¬p cannot be a theorem, since certainly neither p nor ¬p is!








� It may just be said that in the latter one assumes a kind of hereditary property for domains: if xRy, then Dx must be a subset of Dy.





�  Garson [1984] surveys many of the options. 





� The needed additional ideas were in effect supplied by George Kreisel. For an exposition see Burgess [1981]. A similar situation obtains in the area known as provability logic, where the formal and material semantics are connected by ideas of Robert Solovay. For an exposition of this case, see Boolos [1993].





� Marcus maintained this position in Marcus [1960] with acknowledgments to Fitch, and again in Marcus [1963a] with vaguer acknowledgments that the view is ‘familiar’. In discussion following the latter paper Marcus added that, at least for names in an ideal sense, there would presumably be a dictionary, and that the process of determining that ‘Hesperus is Phosphorus’ is true is not the empirical operation of scientific observation but would be like looking something up in a dictionary, the question being simply be, does this book tell us these two words have the same meaning? This idea is reiterated in Marcus [1963b]: ‘One does not investigate the planets, but the accompanying lexicon.’ Note that the view that a book telling us when two words have the same meaning would also tell us when two names have the same referent is an immediate consequence of the view that the meaning of a name just is its referent.  








