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ABSTRACT
Many assistive home robotics applications assume open-loop in-
teractions: robots incorporate little feedback from people while
autonomously completing tasks. This places undue burden on peo-
ple to condition their actions and environment to maximize the
likelihood of their desired outcomes. We formalize assistive house-
hold rearrangement as collaborative online inverse reinforcement
learning (IRL). Since online IRL can lead to sample inefficient inter-
actions and overfit to specific user objectives, we compare sample
efficiency and generalizability of two initial choices of action repre-
sentations in a simulated household rearrangement task. We show,
under certain assumptions, that representing objects by their mate-
rial properties can increase sample efficiency and generalizability
to out of domain objects.

CCS CONCEPTS
• Computing methodologies → Cooperation and coordina-
tion;Learning from implicit feedback; Inverse reinforcement
learning.
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1 INTRODUCTION
Assistive home robots predominately operate in open-loop
paradigms: robots autonomously complete household chores af-
ter being issued explicit commands by an operator (or according

This work is licensed under a Creative Commons Attribu-
tion International 4.0 License.

HRI ’23 Companion, March 13–16, 2023, Stockholm, Sweden
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9970-8/23/03.
https://doi.org/10.1145/3568294.3580136

Figure 1: One step of a surface rearrangement problem: dish-
washer loading. From left to right: a person picks a bowl to
place in the dishwasher, the robot places this incorrectly,
this is then corrected by the person placing the bowl con-
cave side down.The robot learns that the person likes bowls
placed with the concave side down and is able to place the
next bowl correctly.

to a predetermined routine) without incorporating feedback from
the person during task completion. Prior approaches rely on pre-
programmed routines or operator teleoperation [8] to find solu-
tions to long-horizon household tasks that have complex temporal
dependencies and ambiguous optimality. Recent research resolves
this using deep neural networks, such as large language models
[2]. Both approaches, though, neglect to learn from human feed-
back about robot performance.

While these interaction designsmayworkwell in laboratory set-
tings, they are unlikely to extend to in situ interactions with novice
robot operators whose preferences vary from preprogrammed sub-
routines or the mode of a training data distribution. To express
their preferences, open-loop collaborations require people to ex-
plicitly choose actions or states that include the necessary con-
text for their preferences to be carried out. This can result in cum-
bersome behaviors that are difficult for people to exhibit, such as
overly descriptive natural language instructions or full task demon-
strations. These actions may also be impossible to produce when
a preferences remain latent until discovered through exposure to
a specific stimulus. This interaction design not only introduces ad-
ditional burden on people, but it neglects valuable sources of in-
formation already being disclosed through people’s goal oriented
behavior. Due to this increased burden of action production, re-
lying on action and state conditioning to execute assistive robot
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actions may lead to robot policies that are inconsistent with the
presupposed assistive role of the robot [13].

To address this, we suggest that robots interacting with peo-
ple in their homes should incorporate feedback from naturally ex-
hibited, collaborative user behavior to ensure assistive robotic be-
haviors adhere to people’s preferences. To test this, we formulate
household collaborations as rearrangement problems [5, 17] solved
through online IRL making use of people’s naturalistic behavior.
This setup has been shown to work well when people’s behavior
is interpreted as feedback about low-level robot actions, such as
in shared control [10] and autonomous robot path planning [12],
by employing maximum entropy inverse reinforcement learning
(MaxEntIRL) [4, 19]. Instead of interpreting people’s goal-directed
behavior as feedback about a robot’s low-level actions, we assume
low-level robot policies and interpret people’s behavior as infor-
mation about the high-level plan the robot should execute.

One potential drawback of this method is sample inefficiency.
Depending on the frequency with which people act and the cor-
relation between these actions and people’s goals, it can require
many episodes before converging to a desired solution. We show
how choosing appropriate action and task objective representation
spaces can increase the sample efficiency by, under certain assump-
tions about people’s task objectives, converging more quickly to a
ground truth objective and generalizing to actions not previously
observed during training.

Our goal with this work is to present a first step towards devel-
oping assistive household robots that incorporate user feedback
into their high-level task plans in a manner consistent with the na-
ture of assistive relationships. We first present an extension of on-
line IRL techniques typically used in short-horizon, low-level robot
control tasks to long-horizon, sequentially dependent, high-level
household rearrangement tasks. Then we explore how the choice
of action and objective representations can make more efficient
use of a person’s goal oriented behaviors during task execution.

2 RELATEDWORK
We first present work in state and action-conditioned models that
do not explicitly learn about their human partner. Then, we review
work in online adaptation.

2.1 State and action-conditioned collaboration
Zero-shot coordination is a recent field of research aiming to de-
velop collaborative agents that can successfully and immediately
interact with new people. This is typically done by pretraining
models in simulation against agents designed to mimic human be-
havior [6] or over a diverse population of simulated agents [16].
Large language models that propose task plans executed by robots
[2] have also been used for assistive collaboration in household
tasks. These methods do not continually adapt to individual users,
who may not fit well within the distribution seen during training.
In this work we focus on explicitly adapting the robot’s policy to
an individual, instead of placing the burden on the person to alter
their behavior to achieve a more favorable robot policy. Sophis-
ticated offline pretraining techniques, such as those used in zero-
shot coordination, could be used to initialize adaptive models in
future work.

2.2 IRL for adaptive collaboration
Using IRL for robot control can be difficult, in part, due to the am-
biguity that arises from traditional IRL [1]. Maximum entropy IRL
facilitates this by using the principle of maximum entropy to order
solutions according to how well they match observed user behav-
ior [19]. This solution has also been used in behavioral science to
model people’s ability to infer others’ goals from their behavior
exhibited during goal-directed plans [4].

These insights have been applied to robot trajectory optimiza-
tion for shared control. In the difficult task of teleoperating a high-
degree of freedom robot arm with a low-degree of freedom input
device, such as a joystick, a robot can assist by observing user in-
put commands, inferring the most likely goal from a set of pre-
determined goals, and moving along a path towards this goal [10].
MaxEntIRL can also been used to interpret less direct forms of user
behavior, such as a person physically pushing a robot to express
their preference for the robot’s trajectory when, for example, car-
rying a coffeemug around a laptop computer [12].We adapt online
MaxEntIRL for determining high-level task plans that are consis-
tent with user behavior in household collaborations.

IRL has also been applied to learn robot policies in other types
of human-robot interactions. For example, to learn people’s prefer-
ences from observations of independent task demonstrations [18],
or by learning assistive social actions for therapy combining a ther-
apists’ expertise with their demonstrations [3], or for social health,
as a robot receptionist learning to give hygiene advice in a shop-
ping mall [7]. Our formulation learns preferences from in-situ, col-
laborative behavior, for collaborative rearrangement tasks, ideally
minimizing the distribution between interaction data seen at train-
ing and test time.

3 METHODS
We are interested in developing robots that assist people while
completing collaborative household tasks such as dishwasher load-
ing or table setting. First, we formalize the task of surface rearrange-
ment, a specific instance of rearrangement problems [5, 17], as a
decentralized partially observable Markov decision problem (DEC-
POMDP). Then, we present an algorithm for solving such tasks.

3.1 Problem Setup
To study online adaptation for assistive agents in tightly knit col-
laborations, we model a task which we call surface rearrangement.
Unlike general rearrangement problems, we assume objects can be
instantaneously grabbed and placed, removing the need for navi-
gation and allowing us to focus on the collaboration.

Given this description, we can model surface rearrangement as
a DEC-POMDP which is a tuple of (𝑆,𝐴,𝑈 ,𝑇 , 𝑍,𝑂, 𝑟,𝛾) where:
• S is the set of possible states. As in prior work, we assume

that the state is a tuple of observable and unobservable fea-
tures of the task (𝑥, {𝜃𝑖 }). In our formulation, 𝑥 describes
the observable environment and 𝜃𝑖 describes the objective
for each agent𝑎𝑖 ∈ 𝐴, where 𝜃𝑖 is not observable by an agent
𝑎 𝑗 when 𝑖 ≠ 𝑗 .
• A is the set of agents. We assume two agents, initially.
• 𝑈𝑖 is the set of actions for a particular agent 𝑎𝑖 .
• 𝑍𝑖 is the set of observations for agent 𝑎𝑖 .
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• 𝑇 (𝑠𝑡 , u, 𝑠𝑡+1) denotes the transition dynamics. As in prior
work, these dynamics are dictated by 𝜃 , which we assume
to be constant over time.
• 𝑂𝑖 (𝑠𝑡+1, 𝑢𝑡𝑖 , 𝑧

𝑡+1), the observation distribution for agent 𝑎𝑖 .
• 𝑟𝑖 (𝑠𝑡 , {𝑢𝑖 }𝑡 ) is the reward function for the system. In assis-

tive settings, we assume this is equivalent to the person’s
reward function.
• 𝛾 is the discounting factor.

We assume two agents, one of which is a person over whose pol-
icywe have no control. Given this, we can reduce theDEC-POMDP
to a single agent POMDP. Prior work in online human robot col-
laboration [12] shows how this POMDP can be solved using the
QMDP approximation, [10, 11] and then using online gradient de-
scent [12]. We adapt this for collaborative assistance in Alg. 1.

3.2 Surface Rearrangement

Algorithm 1 Online Learning for Assistive Surface Rearrange-
ment
Require: 𝜃, 𝜃0, 𝜙obj, 𝜙loc, 𝜋𝑙 , 𝜋𝑓 , env,𝛼,𝛾
1: 𝑠0 ← env.reset()
2: placed_objects← []
3: while placed_objects.len() < env.objects.len() do
4: 𝑢𝑡obj, 𝑢

𝑡
loc ← 𝜋𝑙 (·|𝑠𝑡 ;𝜃 )

5: 𝑟𝑡
𝑙
← 𝜙obj

(
𝑢𝑡obj

)
· 𝜃 · 𝜙loc

(
𝑢𝑡loc

)
6: 𝑢𝑡loc ← 𝜋𝑓

(
·|𝑠,𝑢obj;𝜃𝑡

)
7: 𝑠𝑡+1 ← env.step

(
𝑢𝑡obj, 𝑢

𝑡
loc

)
8: 𝑟𝑡

𝑙
← 𝜙obj

(
𝑢𝑡obj

)
· 𝜃 · 𝜙loc

(
𝑢𝑡loc

)
9: if 𝑟𝑡

𝑙
> 𝑟𝑡

𝑙
then

10: 𝑠𝑡+1 ← env.step
(
𝑢𝑡obj, 𝑢

𝑡
loc

)
11: else
12: 𝑢𝑡loc ← 𝑢𝑡loc
13: end if
14: ∇Φ← 𝜙obj

(
𝑢obj

)
· 𝜙loc

(
𝑢𝑡loc

)
− 𝜙obj

(
𝑢obj

)
· 𝜙loc

(
𝑢𝑡loc

)
15: 𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 · 𝛾𝑡 · ∇Φ
16: placed_objects.append

(
𝑢obj

)
17: end while

We aim to model close collaborations among multiple agents
performing household tasks. We model two agents partaking in
a modified, collaborative pick and place task. We call one agent
the “leader” and the other the “follower”. The behavior for each is
dictated by a reward function:

𝑟𝑖 (𝑥,𝑢𝑖 , 𝑢 𝑗 ;𝜃𝑖 ) = 𝜙𝑖 (𝑥,𝑢𝑖 ) · 𝜃𝑖 · 𝜙 𝑗 (𝑥,𝑢 𝑗 ) .
The goal of both agents is to arrange the objects onto the surface in
a manner that maximizes the leader’s reward function, 𝑟𝑙 , which
is initially unknown to the follower. The follower must infer the
parameters of 𝑟𝑙 , 𝜃𝑙 , through the behavior of 𝑎leader.

The leader 𝑎𝑙 selects an object, 𝑢obj, and the 𝑎𝑓 selects a loca-
tion,𝑢loc. In practice either agent could play either role. The leader
selects 𝑢obj such that, if placed correctly, it would maximize 𝑟𝑙 ,

thereby calculating an implicit reward known only to 𝑎𝑙 . The ob-
ject is passed to 𝑎𝑓 who selects 𝑢loc to maximizes 𝑟 𝑓 , given the
current state and estimate of the leader’s objective: 𝜃𝑡

𝑓
= 𝜃𝑡

𝑙
. Once

𝑢loc is executed, 𝑎𝑙 can correct this action if the reward received
for executing 𝑢loc is less than the implicit reward calculated when
selecting 𝑢obj. The follower sees the correction and uses the differ-
ences in the features between the two states (i.e. where 𝑎𝑓 initially
place the object and where 𝑎𝑙 placed it after the correction) to up-
date its estimate of the leader’s objective.

4 INITIAL RESULTS
Online IRL relies on people exhibiting behaviors that are highly
correlated with their goals, often leading to action representations
that do not benefit from shared structure, leading to poor sample
efficiency and out of domain generalization. To study this, we con-
sider two different choices of action representation: per ID, 𝜙 ID,
which represents actions as one-hot vectors, and per Quality,
𝜙Quality, which represents actions by shared properties between
different actions, such as an object’s material, shape or size in the
dishwasher loading domain. We aim to show how 𝜙Quality can im-
prove sample efficiency and generalizability when people’s task
objectives are correlated along their actions, for example people
place glass bowls into the dishwasher in a similar manner to glass
cups.

We first develop a set of simulated user objectives,𝜃 . Eight highly
correlated objectives, shown in the top row of Fig. 2 are blended
with randomly sampled objectives according to 𝜃 = 𝜃correlated∗(1−
𝛽)+𝜃rand∗𝛽 along five correlation thresholds 𝛽 ∈ {0, 0.01, 0.1, 0.5, 1},
shown in the bottom row of Fig. 2, to develop objectives with vary-
ing degrees of correlation along actions. We then train randomly
initialized robot objective,s 𝜃 , to approximate these user objectives,
𝜃 , using Algorithm 1.

Figure 2: Highly correlated objectives across qualities (top)
and those same objectives blendedwith noise (𝛽 = 0.5). Rows
of an objective represent surface locations and columns rep-
resent objects. Elements represent the value associated with
placing that object in that location, ranging from [−1, 1].

Furthermore, we create a set of 𝑂 objects that share features
with another object along at least one quality, (e.g. a glass mug, a
glass bowl, a plastic mug, and a plastic bowl) and represent our
surface by a grid of 𝐿 locations. Objects are split into training and
testing sets.

Per ID representations return one-hot vectors with the element
representing the object or location ID activated. For objects, this
results in an action space 𝑈obj, that is a square identity matrix of
size |𝑂 | × |𝑂 |. For locations,𝑈loc this is a square identity matrix of
size |𝐿 | × |𝐿 |.
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Per quality representations share features across different ob-
ject categories by concatenating one-hot vectors over each quality
(e.g. material or shape), 𝑞 ∈ 𝑄 . Per quality representations of ob-
jects returns an action space𝑈obj that is of size |𝑂 | ×

∑
𝑞∈𝑄obj |𝑞 |, or

similarly for locations,𝑈loc of size |𝐿 |×
∑
𝑞∈𝑄loc |𝑞 |. Per ID represen-

tations imply a 𝜃 of size |𝑂 | × |𝐿 |, while per quality representations
imply a 𝜃 of size

∑
𝑞∈𝑄obj |𝑞 | ×

∑
𝑞∈𝑄loc |𝑞 |. When the total size of

the qualities is less than the number of objects they describe, per
quality representations yield a more efficient representation of the
space.

Figure 3: We report mean average regret (mAR). From left
to right we show per ID representations and per Quality
representations. From top to bottom, we show training and
zero-shot testing on out of domain objects after N iterations.
Colors indicate 𝛽 thresholds as follows: 0 is blue, 0.01 is or-
ange, 0.1 is green, 0.5 is red, and 1 is purple. Both methods
perform similarly in training for well-correlated objectives,
while per ID representations outperform when preferences
are uncorrelated. For per Quality representations, improve-
ments when training on correlated preferences correspond
to improvements in testing set, which does not hold true for
per ID representations.

Each line in Fig. 3 shows a regret curve for a separate objec-
tive, (ranging from highly correlated across qualities to randomly
correlated across features). Shaded regions showing the standard
error over the collection of runs. Mean average regret (mAR) for
a policy taking random actions is shown in black and a reference
zero-line is shown in dotted brown. Per ID results are shown on
the left, per quality representations are shown on the right. Train-
ing mAR curves are shown on top, and zero-shot performance on
the all objects on the bottom. Each increment along the x-axis is
an episode ranging between one and six object placements.

We report regret over other potential metrics, such as accuracy
or corrections, because it reflects the underlying reward our algo-
rithm receives. Accuracy and corrections are both overly critical

metrics: accuracy penalizes an algorithm for choosing an “incor-
rect” placement even if it returns the same reward as the “correct”
label, while corrections penalize all incorrect placements equally,
even when differences in reward received may be negligible.

These results show both representations capture objectives with
strong correlations across object qualities and episodes of in-domain
objects. For highly correlated objectives, per quality representa-
tions converge slightly faster than per ID representations, though
they under perform as objectives become less correlated.

These results also show that per quality representations can gen-
eralize to out of domain objects, when objectives are highly corre-
lated.This is because these representations can express preferences
such as “place all glass objects on the top”, something per ID rep-
resentations are unable to do. Taken with the results on in-domain
training, we show how choosing an appropriate representation
space can improve upon the drawbacks of online IRL, namely that
it can be sample inefficient and overfit to in-domain data.

5 LIMITATIONS AND FUTUREWORK
First, we present results validated only through simulation in low-
dimensional surface rearrangement problems.We do not knowhow
well correlated or uncorrelated people’s objectives are, alongwhich
features they may be correlated, or how they interact with high-
dimensional rearrangement tasks. While we are hopeful that peo-
ple will have preferences that are highly correlated along object
qualities, our approach needs to be validated with user studies.

Not only would human subjects studies provide an opportunity
to verify our models, it would offer opportunity for improvement,
as well. Collecting interaction data through interactive simulators,
such as AI Habitat [15, 17], deployed as experiments on crowd-
sourcing platforms such as AmazonMechanical Turk [9] or Prolific
[14] would allow us to pretrain data-drivenmodels with data about
real human preferences.

Finally, we assume no cost corrections. Assigning costs to cor-
rectionswould disincentivize providing low-reward corrections un-
til the reward associated with executing corrections outweighs the
execution cost, or suppress low-reward corrections altogether.This
emphasizes the importance of having representation spaces that ef-
ficiently interpret information about people’s objectives. We will
explore learning these representation spaces from human data in
future work.

Finally, our approach, also assumes people will provide direct
state corrections.Thismaximizes the correlation between the leader’s
corrections and objectives. We would like to extend our approach
to account for other types of corrections, such as those expressed
through verbal or nonverbal communication.

6 CONCLUSION
We presented a formalization of assistive household collaborations
as online IRL. This formalization is consistent with the assistive
role of the robot and allows people to express preferences for tasks
outcomes through naturalistic behavior. We show initial results
in improving sample efficiency and generalizability of recovered
rewards by choosing efficient representations. Finally, we discuss
plans to extend this work to more naturalistic interactions.
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