
HyperNova: Recursive arguments for
customizable constraint systems

Abhiram Kothapalli Srinath Setty

Carnegie Mellon University Microsoft Research

Abstract.

We introduce HyperNova, a new recursive argument for proving incremen-
tal computations whose steps are expressed with CCS (Setty et al. ePrint
2023/552), a customizable constraint system that simultaneously generalizes
Plonkish, R1CS, and AIR without overheads. HyperNova makes four contri-
butions, each resolving a major problem in the area of recursive arguments.

First, it provides a folding scheme for CCS where the prover’s cryptographic
cost is a single multi-scalar multiplication (MSM) of size equal to the number
of variables in the constraint system, which is optimal when using an MSM-
based commitment scheme. The folding scheme can fold multiple instances at
once, making it easier to build generalizations of IVC such as PCD. Second,
when proving program executions on stateful machines (e.g., EVM, RISC-V),
the cost of proving a step of a program is proportional only to the size of the
circuit representing the instruction invoked by the program step (“a la carte”
cost profile). Third, we show how to achieve zero-knowledge for “free” and
without the need to employ zero-knowledge SNARKs. Fourth, we show how to
efficiently instantiate HyperNova over a cycle of elliptic curves. For this, we
provide a general technique, which we refer to as CycleFold, that applies to all
modern folding-scheme-based recursive arguments.

1 Introduction
Incrementally verifiable computation (IVC) [63] is a powerful cryptographic
primitive that allows a prover to produce a proof of the correct execution of a
“long running” computation in an incremental fashion. For example, it enables
the following workflow: The prover takes as input a proof πi proving the the first
i steps of its computation and then update it to produce a proof πi+1 proving the
correct execution of the first i+ 1 steps. Crucially, the prover’s work to update
the proof does not depend on the number of steps executed thus far, and the
verifier’s work to verify a proof does not grow with the number of steps executed
thus far. IVC has received recent, renewed interest as it enables a wide variety of
applications in decentralized settings including verifiable delay functions [9,67],
succinct blockchains [42], rollups [68,43,50], verifiable state machines [55], and
proofs of machine executions (e.g., EVM, RISC-V)

This is an extended version of a paper from CRYPTO 2024 [40]. Compared
to an initial version, this version of the paper incorporates material from prior
preprints [38,39]. Additionally, this version provides an approach to achieve zero-
knowledge in folding-scheme-based recursive arguments without needing to use zk-
SNARKs.

Early realizations of IVC [63,5] rely on succinct non-interactive arguments of
knowledge (SNARKs) [35,47,30,7]. At step i, the prover produces a SNARK
proving that it has correctly applied a step of the specified computation using
the output of step i − 1 and that the SNARK verifier represented as a circuit
has accepted a SNARK from step i− 1 [8,5]. These works require representing
the SNARK verifier as a circuit. To reduce the size of the SNARK verifier when
encoded as a circuit, prior work [5] uses a two-cycle of elliptic curves.1

A flurry of works [13,19,10,18,41,38] reduce reliance on SNARKs to construct
IVC, culminating in folding schemes [41], a primitive that simply reduces the task
of checking two NP instances with the same “structure” (e.g., circuit description)
into the task of checking a single NP instance. This primitive is sufficient to
construct IVC, and is simpler and far more efficient than a SNARK.

1.1 An overview of the prior state-of-the-art: Nova

Nova’s computational model proves incremental computations where each step
executes a non-deterministic circuit. To prove such computations, Nova uses a
folding scheme for an NP-complete language to (recursively) transform the task
of proving N steps of a computation into the task of proving a single step of the
computation. It then applies a general-purpose zkSNARK (e.g., Spartan [54]) to
prove that single step, obtaining zero-knowledge and additional succinctness.

Compared to employing a general-purpose zkSNARK, built from from polyno-
mial IOPs and polynomial commitment schemes (e.g., Spartan [54], Plonk [28],
Marlin [21], HyperPlonk [20]), to prove the entire incremental computation,
Nova’s approach is substantially cheaper (as long as each step is sufficiently large,
to offset recursion overheads). Specifically, at each incremental step, Nova’s
prover incurs only two MSMs of size proportional to the size of the circuit
proven. Whereas, general-purpose zkSNARKs need many more MSMs. For ex-
ample, Marlin [21, Figure 1] reports 22 MSMs and many more FFTs of size
proportional to the circuit size. In addition, by design, Nova’s proof generation
is incremental (i.e., it produces a proof for each step and then uses its recursion
capabilities to produce a single proof), so it can be more easily distributed and
parallelized than with a non-recursive zkSNARK where one must unroll program
executions into monolithic circuits. The latter rules out applications where one
cannot statically unroll program executions (e.g., VDF) or makes it inconvenient
(e.g., program executions on machines such as EVM or RISC-V). As presented,
Nova does not immediately support parallel proof generation, but there exists a
generic compiler [8] to transform constructions such as Nova to support parallel
proving.

1 A 2-cycle of elliptic curves is a pair of elliptic curves (E1, E2) such that the scalar
field of E1 equals the base field of E2 (i.e., the field over which points in E2 are
defined over) and vice versa (Section 8 provides details on how a 2-cycle of elliptic
curves is used and how they help with concrete efficiency).

2

1.2 Open problems addressed by this work
Our work addresses several open problems in the prior state-of-the-art. We first
discuss these problems and provide sufficient context about each of these. In
Appendix C we further discuss limitations with prior works as well as several
follow-up works to HyperNova with alternative solutions to these problems.
(1) The need to fold customizable, high-degree constraint systems.
In Nova, each step of an incremental computation is expressed with R1CS, an
NP-complete problem that generalizes arithmetic circuit satisfiability [29,56,4].
In practice, when zkSNARKs (e.g., Plonk) are applied to prove program exe-
cutions, practitioners use custom constraint systems (e.g., Plonkish) that are
tailored to a particular classes of applications. Specifically, Plonkish constraints
are multivariate high-degree polynomials. Whereas, R1CS is restricted to check-
ing quadratic constraints in a specific form. These customizable, high-degree
constraint systems are often more compact than equivalent R1CS. As a concrete
example, a single iteration of MinRoot [34] can be represented with one degree-5
constraint in Plonkish [71]. Whereas, R1CS needs three constraints.

Sangria [48] shows that Nova can be adapted to handle Plonkish. However, the
number of cross-terms that the prover must commit to increases linearly with
the degree of the constraints d: The prover must incur O(n ·d) cryptographic op-
erations to commit to O(d) cross-terms, where n is the number of constraints. As
a result, in general, there are not significant benefits to employing high-degree
constraints and use Sangria than use Nova with R1CS. Concretely, Sangria’s
prover applied to MinRoot with degree-5 constraints requires 5 scalar multipli-
cations (and additional field work to compute cross-terms) per MinRoot iteration
whereas Nova applied to MinRoot in R1CS requires 6 scalar multiplications.

A key question is whether one can build a recursive argument for Plonkish, with
Nova-like performance characteristics. In particular, our goal is to prove CCS [57],
a customizable constraint system that simultaneously generalizes Plonkish, R1CS,
and AIR without overheads ([57] provides context on CCS, Plonkish, and AIR).
Additionally, for any solution that handles high-degree constraints, we require
the prover’s cryptographic work to be independent of the degree of constraints
supported. That is, the number of MSMs (or their sizes) performed by the prover
must not depend on the degree of the supported constraints.
(2) The need to achieve an “a la carte” cost profile for proving machine
executions. A classic approach to prove machine executions (e.g., program
executions on EVM) is to employ a universal circuit (e.g., [3,6,52,31,45]) that
can execute any instruction supported by the machine. To prove the correct
execution of programs on the corresponding machine, it suffices to recursively
prove, with an IVC scheme, repeated invocations of this circuit on an input
program and memory state [5]. Unfortunately, the cost of proving a program’s
step is proportional to the size of the universal circuit (i.e., sum of sizes of circuits
of all instructions supported by the machine)—even though the step invokes only
one of the instructions.

3

Given the high costs imposed by universal circuits, designers of these machines
aim to employ a minimal instruction set, to keep the size of the universal circuit
and thereby the cost of proving a program step minimal [6,4,31]. However, this
is a not a panacea: for real applications, one needs to execute an enormous num-
ber of iterations of the minimal circuit (e.g., billions of iterations), making the
prover’s work largely untenable. This also means that emulating real programs
that target existing virtual machines with rich instruction sets (e.g., EVM, RISC-
V, Wasm) via a machine with a minimal instruction set would incur enormous
costs.

An open question is whether one can achieve an “a la carte” cost profile, where
the cost of proving a step of a program execution is proportional only to the
size of the circuit representing the instruction invoked by the program step and
independent of the circuit sizes of the uninvoked instructions.

(3) The need for providing zero-knowledge without needing zkSNARKs.
Nova [41] shows how to efficiently achieve zero-knowledge for its IVC proofs
by producing a zkSNARK proving the knowledge of valid IVC proofs. The zk-
SNARK scheme that is natively compatible with Nova is Spartan [54], which
internally uses the sum-check protocol [44]. The most efficient way to achieve
zero-knowledge in Spartan is to use the Cramer-Damgard transformation [23,66],
where sum-check messages are committed with homomorphic commitments (e.g.,
Pedersen) and the sum-check verifier’s checks are proven in zero-knowledge using
Schnorr-type proofs. This means that the Spartan verifier must perform public
key operations (e.g., group scalar multiplications), which are far too expensive
especially in blockchain settings where the verifier is deployed on-chain.

An open question is whether one can leverage folding schemes to “blind” the
IVC proof such that one can use a non-zk Spartan, where the verifier verifies the
sum-check messages in plaintext (which are orders of magnitude more efficient).

(4) The need for an efficient instantiation over a cycle of elliptic curves.
Folding schemes leverage additively homomorphic commitments, which are typi-
cally instantiated with elliptic curve groups. To realize IVC, the folding scheme’s
verifier must be represented as a circuit. The best known approach for this is
the blueprint of [5], which leverages a cycle of elliptic curves. Nova’s implemen-
tation [1] adapts BCTV’s approach [5] to the context of folding-scheme-based
recursive arguments and was recently proven secure [49].

Unfortunately, Nova’s approach, like in [5], still requires representing a verifier
(which happens to be the the non-interactive folding scheme verifier) as a circuit
on both curves in the cycle of curves. For Nova [41], which is the only fully
implemented folding-scheme-based approach to date, the circuit defined over
the second curve in the cycle is ≈10, 000 multiplication gates (and more than
100,000 non-zero entries in R1CS matrices).

4

In practice, one often wants to use a “half”-pairing cycle E1/E2
2 (e.g., BN254

and Grumpkin, where only BN254 is pairing-friendly). The BN254/Grumpkin
cycle is as efficient as non-pairing-friendly cycle of curves (e.g., Pasta) and also
compatible with Ethereum for proof verification. In this setting, the part of the
IVC proof defined over E1 can be compressed easily into a succinct proof with
Spartan [54] using KZG-based commitment scheme [69,12]; the compressed proof
can be verified with a logarithmic number of group scalar multiplications and
two pairings. However, for E2, the corresponding IVC proof must be verified
with a circuit C defined over E1 and then proven with a SNARK defined over
E1. Unfortunately, |C| > 70 · 106 gates (far too expensive to prove).3

An open question is whether one can substantially reduce the size of the circuit
defined over the second curve in the cycle, which in turn reduces the size of C.

1.3 A technical overview of results in this work
This subsection provides an overview of HyperNova, which resolves all the four
open problems listed in the prior section.
(1) Multi-folding schemes and a multi-folding scheme for CCS. As
noted earlier, HyperNova’s target is to prove incremental computations where
each step of the incremental computation is expressed with CCS [57]. However,
if we naively build a folding scheme for CCS, perhaps for a “relaxed” variant of
CCS (analogous to relaxed R1CS in Nova [41]), it will have the efficiency issues
noted above for Sangria. To avoid those issues, HyperNova takes a different
approach that involves leveraging the power of the sum-check protocol [44].

To construct HyperNova, we introduce a generalization of folding schemes, and
we refer to it as multi-folding schemes. Recall that a folding scheme for a relation
R is a protocol between a prover and verifier in which the prover and the verifier
reduce the task of checking two instances in R with the same structure s into the
task of checking a single instance in R with structure s. A multi-folding scheme
is defined with respect to a pair of relations (R1,R2) and constants (µ, ν), and
it is an interactive protocol in which the prover and the verifier reduce the task
of checking µ instances in R1 with structure s1 and ν instances in R2 with
structure s2 into the task of checking a single instance in R1 with structure s1—
as long as (s1, s2) satisfy a pre-defined predicate (e.g., that the two structures
are equal). Below, we clarify how this generalization unlocks additional power
for constructing IVC.

We also construct a multi-folding scheme for CCS. Our starting point is the
observation that Spartan [54] (more specifically its generalization to handle CCS
called SuperSpartan [57]) transforms the task of checking the satisfiability of a
CCS instance into the task of checking if a multivariate polynomial g of total

2 A 2-cycle of elliptic curves where only one of the curves is pairing-friendly.
3 C proves openings of two vector commitments of 10,000 bases, which costs ≈2·10, 000·
3, 000 = 60 · 106 gates. Also, C evaluates 105 linear combinations, which require field
emulation and we estimate it to be 105×100 = 10 ·106 gates. So, |C| > 70 ·106 gates.

5

degree d+ 1, where d is the degree of the CCS constraints, sums to zero over a
suitable Boolean hypercube. Spartan then invokes the sum-check protocol [44]
to prove that claim about g. At the end of the sum-check invocation, the prover
and the verifier are left with checking certain claims. Fortunately, these claims
concern a restricted form of CCS (we formalize this and refer to it as linearized
CCS). Note that Spartan proves those claims about the restricted form of CCS
with an additional invocation of the sum-check protocol, followed by evaluations
proofs of committed sparse multilinear polynomials.

While an “early stopping” version of Spartan (the one with a single invocation
of the sum-check protocol) provides a reduction of knowledge [37] from CCS to
linearized CCS, it is not a folding (or a multi-folding) scheme. So, our second
idea is to redefine the polynomial g to additionally include claims from a run-
ning linearized CCS instance using a random challenge from the verifier. This
is possible as long as the running instance and the CCS instance that is being
folded share a compatible structure (e.g., the same CCS matrices).

The following theorem summarizes our result about the multi-folding scheme.
Notably, our multi-folding scheme avoids commitments to cross-terms altogether.

Theorem 1 (A multi-folding scheme for CCS). Construction 1 is a public-
coin, multi-folding scheme that reduces the task of checking an arbitrary number
of CCS instances and linearized CCS instances with the same structure into the
task of checking a single linearized CCS instance with the same structure. For a
single CCS instance with m constraints of degree d and q monomials, n witness
variables, t CCS matrices, and N non-zero entries in CCS matrices, and a single
linearized CCS instance, the efficiency characteristics are as follows.

• The prover time is O(N + t ·m+ q ·m · d · log2 d) finite field operations and
O(1) group operations;

• The verifier time is O(d · logm) finite field operations and O(1) group oper-
ations; and

• The communication complexity is O(d · logm) finite field elements.

Since the multi-folding scheme is public coin, we make it non-interactive in the
random oracle model using the Fiat-Shamir transform [26] and heuristically in-
stantiate it in the plain model using a concrete cryptographic hash function.
(2) Achieving “a la carte” costs with non-uniform IVC. We first in-
troduce a generalization of IVC [63] to formally capture an “a la carte” cost
profile. Consider a collection of ℓ + 1 non-deterministic, polynomial-time com-
putable functions ((F1, . . . , Fℓ), φ), where ℓ ≥ 1. Suppose that each function Fj

(1 ≤ j ≤ ℓ) takes s inputs and produces s outputs, where s > 0; Fj can addi-
tionally take an arbitrary non-deterministic input. Furthermore, φ is a function
that takes s inputs and an arbitrary non-deterministic input, and produces an
element of Z∗ℓ+1 (i.e., the set {1, . . . , ℓ}).

6

A non-uniform IVC (NIVC) scheme enables a prover to incrementally prove that
it has performed an n-step computation with an initial input z0 to produce an
output zn. In particular, at step i, the prover proves that it has applied Fj on
input (zi−1, ωi−1) to produce an output zi, where zi−1 is output of step i−1, ωi−1
is a (potentially secret) non-deterministic input from the prover for step i, and
j = φ(zi−1, ωi−1). That is, φ selects one of the possible ℓ functions to apply at
step i using inputs to step i. A bit more concisely, for a specified ((F1, . . . , Fℓ), φ)
and (n, z0, zn), the prover proves the knowledge of a set of non-deterministic
values (ω0, . . . , ωn−1) and (z1, . . . , zn−1) such that for all i ∈ {0, . . . , n − 1},
we have that zi+1 = Fφ(zi,ωi)(zi, ωi). Crucially, the prover’s work at step i is
proportional only to |Fj |, where j = φ(zi, ωi), rather than |F1|+ . . .+ |Fℓ|.

We then provide a generic compiler to construct a non-uniform IVC scheme
from non-interactive multi-folding schemes such as the multi-folding scheme for
CCS discussed above. The compiler requires the multi-folding scheme to satisfy
certain requirements, which we formalize as NIVC-compatibility.

In more detail, suppose that the prover is provided with an NIVC proof πi of
i steps, which consists of a “fresh” instance ui claiming the correct execution
of step i, a collection of “running” instances (one for each function/instruction
supported in NIVC) Ui claiming the correct execution of all prior i − 1 steps,
and the corresponding witnesses wi and Wi. That is, πi = (Ui, ui,Wi,wi).

Then, the prover runs an augmented function, which, in addition to running a
step of the incremental computation, runs a verifier circuit. The verifier circuit
implements the verifier of the multi-folding scheme to fold ui into an appropriate
running instance in Ui to produce new running instances Ui+1 that claims the
correct execution of i steps. Alongside, the prover computes the corresponding
folded witnesses Wi+1. The prover then produces a corresponding fresh instance
ui+1 (and the corresponding witness wi+1) that claims the correct execution
of this augmented function; this fresh instance claims the correctness of the
latest step of the incremental computation and that Ui+1 was produced honestly.
Together, πi+1 = (Ui+1, ui+1,Wi+1,wi+1) represents an NIVC proof of i+1 steps.

Remark 1. Because a multi-folding scheme folds an arbitrary number of running
instances incoming instances into a single running instance, it affords a natural
generalization of IVC [63] called proof-carrying data [8] using the approach of
Bünz et al. [18]. We focus on IVC for its conceptual simplicity.

(3) Achieving zero-knowledge without zkSNARKs. To achieve a zero-
knowledge argument of a valid NIVC proof without relying on zkSNARKs, we
provide a new approach of rerandomizing the NIVC proof using folding schemes.
In particular, given an NIVC proof πi = (Ui, ui,Wi,wi), the prover first folds
the fresh instance ui into an appropriate running instance. Next, the prover uses
a folding scheme to fold in a random instance-witness pairs into (Ui,Wi), effec-
tively rerandomizing them. The prover then produces a randomized proof which
consists of the rerandomized instance-witness pairs and the prover’s messages

7

in the folding scheme. A central challenge with this strategy is that the prover
must prove that folding is done correctly without revealing the input random
instances (and witnesses) used to randomize. To solve this, we have the prover
execute the verifier’s checks for the folding scheme inside a circuit and prove
in zero-knowledge once again using a randomizing folding scheme. The verifier
at this point can directly check the randomized instances, or use a non-zero-
knowledge SNARK if further succinctness is needed.
(4) Efficient instantiation over a two-cycle of elliptic curves. We provide
a new approach, which we refer to as CycleFold, to efficiently instantiate Hyper-
Nova over a two-cycle of elliptic curves. In particular, we provide security proofs
for this instantiation of HyperNova, but the approach and proofs generalize to
other folding-scheme-based (N)IVC schemes.

CycleFold’s starting point is the observation that folding-scheme-based recur-
sive arguments can be efficiently instantiated without a cycle of elliptic curves—
except for a few scalar multiplications in their verifiers (2 in Nova and 1 in Hy-
perNova). Accordingly, CycleFold uses the second curve in the cycle to merely
represent a single scalar multiplication (≈1,000 multiplication gates and ≈4,000
non-zero entries in R1CS matrices). CycleFold then folds invocations of this tiny
circuit on the first curve in the cycle. This is more than an order of magnitude
improvement over the prior state-of-the-art in terms of circuit sizes on the second
curve. Furthermore, to achieve full succinctness for verification of proofs on a
blockchain, |C| is similarly more than 10× smaller, and is now within the feasible
range for proving with a SNARK defined over a pairing-friendly curve (§1.2).

Theorem 2 (HyperNova with CycleFold). Given the multi-folding scheme
for CCS (Construction 7) instantiated with the Pedersen commitment scheme,
HyperNova (Construction 2) produces an NIVC scheme such that for step func-
tions Fj for j ∈ [ℓ] that can be expressed in CCS with mj constraints of degree d
and qj monomials, nj witness variables, tj CCS matrices, and Nj non-zero en-
tries in CCS matrices, and control function φ that can be expressed in CCS with
m constraints of degree d and qφ monomials, nφ witness variables, tφ CCS matri-
ces, and Nφ non-zero entries in the CCS matrices, the efficiency characteristics
are as follows.

• The NIVC prover time for each step is a single MSM of size O(nφ+nj) and
O((Nφ +Nj)+ (tφ + tj) · (mφ +mj)+ (qφ + qj) · (mφ +mj) · d · log2 d) finite
field operations

• The verifier circuit size is o(|φ|+2·G+(d·logmj)·F+logmj ·Rd+2·Hℓ,tj+2·M)
on the first curve and G on the second curve in a cycle of elliptic curves.

where G is the number of constraints required to encode a group scalar multi-
plication natively (i.e., without field emulation), H is the number of constraints
required to encode a hash function, F is the number of constraints to encode
field operations, R is the number of constraints to encode a cryptographic hash

8

function used for randomness, and M is the number of constraints to encode to
memory read/write over a memory of size O(ℓ).

2 Preliminaries
We use λ to denote the security parameter and F to denote a finite field (e.g., the
prime field Fp for a large prime p). We use negl(λ) to denote a negligible function
in λ. We write Pr[X] ≈ ϵ to mean that |Pr[X] − ϵ| = negl(λ). Throughout the
paper, the depicted asymptotics depend on λ, but we elide this for brevity. We
write PPT to refer to probabilistic polynomial time algorithms. For relations R1

and R2 we let R1 × R2 denote a new relation such that ((u1, u2), (w1, w2)) ∈
R1×R2 if and only if (u1, w1) ∈ R1 and (u2, w2) ∈ R2. We write Fd[X1, . . . , Xn]
to denote multivariate polynomials over field F in the variables X1, . . . , Xn with
degree bound d for each variable. We omit the superscript if there is no bound.

Appendix A provides additional preliminaries on multilinear polynomials, the
sum-check protocol, commitment schemes, arguments of knowledge, and IVC.
Customizable constraint systems (CCS). CCS simultaneously generalizes
R1CS, Plonkish, and AIR without overheads. We first provide an arithmetized
variant of the original formulation. The definitions below are characterized by a
finite field F, but we leave this implicit.

Definition 1 (CCS [57]). Consider size bounds m,n,N, ℓ, t, q, d ∈ N where
n > ℓ. Let s = logm and s′ = log n. We define the customizable constraint
system (CCS) relation, RCCS, over structure, instance, witness tuples as follows.

An RCCS structure s consists of

• a sequence of sparse multilinear polynomials in s + s′ variables M̃1, . . . , M̃t

such that they evaluate to a non-zero value in at most N = Ω(m) locations
over the Boolean hypercube {0, 1}s × {0, 1}s′ ;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is
from the domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RCCS instance consists of public input and output vector x ∈ Fℓ. An RCCS

witness consists of a multilinear polynomial w̃ in s′ − 1 variables. We have that
(s, x, w̃) ∈ RCCS if and only if for all x ∈ {0, 1}s,

q∑
i=1

ci ·

∏
j∈Si

 ∑
y∈{0,1}log m

M̃j(x, y) · z̃(y)

 = 0,

where z̃ is an s′-variate multilinear polynomial such that z̃(x) = ˜(w, 1, x)(x) for
all x ∈ {0, 1}s′ .

9

In this work, we introduce linearized CCS, a variant of CCS that only contains
the linear checks of CCS. We later show that we can fold a CCS instance into a
linearized CCS instance to produce a new linearized CCS instance.

Definition 2 (Linearized CCS). Consider size bounds m,n,N, ℓ, t, q, d ∈ N
where n = 2 · (ℓ+1). Let s = logm and s′ = log n. We define the linearized com-
mitted customizable constraint system (LCCS) relation, RLCCS, over structure,
instance, witness tuples as follows.

An RLCCS structure s consists of

• a sequence of sparse multilinear polynomials in s + s′ variables M̃1, . . . , M̃t

such that they evaluate to a non-zero value in at most N = Ω(m) locations
over the Boolean hypercube {0, 1}s × {0, 1}s′ ;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is
from the domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RLCCS instance is a tuple (u, x, r, v1, . . . , vt) ∈ (F,Fℓ,F,Ft). An RLCCS wit-
ness consists of a multilinear polynomial w̃ in s′ − 1 variables. We have that
(s, (u, x, r, v1, . . . , vt), w̃) ∈ RLCCS if and only if for all i ∈ [t]

vi =
∑

y∈{0,1}s′
M̃i(r, y) · z̃(y)

where z̃ is an s′-variate multilinear polynomial such that z(x) = ˜(w, u, x)(x) for
all x ∈ {0, 1}s′ .

R1CS is an NP-complete problem implicit in QAPs [29]. For completeness, we
formally define R1CS in Appendix A.4. Below, we recall its folding-friendly vari-
ant, relaxed R1CS [41]. We utilize relaxed R1CS for our zero-knowledge layer
and our instantiation of HyperNova over a cycle of curves.

Definition 3 (Relaxed R1CS). Consider a finite field F and a commitment
scheme Commit over vectors over F. Consider size bounds m,n, ℓ ∈ N where
m > ℓ. We define the relaxed R1CS relation, RRR1CS, over structure, instance,
witness tuples as follows.4

A RRR1CS structure consists of matrices A,B,C ∈ Fm×m with at most n =
Ω(m) non-zero entries in each matrix. A RRR1CS instance is a tuple (u, x) ∈
(F,Fℓ). A RRR1CS witness is a tuple (E,W) ∈ (Fm,Fm−ℓ−1). We have that
((A,B,C), (u, x), (E,W)) ∈ RRR1CS iff for Z = (W, x, u), AZ ◦BZ = u ·CZ +E.

4 As formulated, any relaxed R1CS is naturally satisfiable by setting E appropriately.
As shown by Kothapalli et al. [41] relaxed R1CS is augmented with honestly gener-
ated commitments to E, which sufficiently restricts the prover’s choice of E.

10

Instead of directly working with all of the above relations, we consider variants
where a commitment to the witness is additionally presented in the instance. We
generically refer to such relations as committed relations.

Definition 4 (Committed relation). Consider a relation R over structure,
instance, witness tuples where witnesses are in some space W . Consider a com-
mitment scheme com = (Gen,Commit) over message space W . We define the
corresponding committed relation over public parameter, structure, instance, wit-
ness tuples characterized by com as follows.

R(com) =

{
(ppcom, s, (C, u), (w, r))

∣∣∣∣ (s, u, w) ∈ R,C = Commit(ppcom, w, r)

}
We say relation R is the underlying relation for committed relation R(com).

Definition 5 ((Linearized) Committed CCS). Consider an additively ho-
momorphic polynomial commitment scheme, PC, for multilinear polynomials over
a finite field F. We define the committed CCS relation RCCCS as RCCS(PC) and
the linearized committed CCS relation RLCCCS as RLCCS(PC).

Definition 6 (Committed relaxed R1CS). Consider a commitment scheme
VC over vectors over field F. We define the committed relaxed R1CS relation
RCRR1CS as RRR1CS(VC′) where VC′ commits to pairs of vectors by applying VC
to each vector.

3 Non-uniform incrementally verifiable computation
This section introduces non-uniform IVC (NIVC), a generalization of IVC, where
at each step of an incremental computation, the prover proves the satisfiability
of a relation chosen from a set of possible relations (the choice of which relation
to use is made by an additional designated relation), whereas in the standard
IVC, there is only one possible relation. As a result of this generalization, the
overall relation proven by non-uniform IVC can be a non-uniform circuit (i.e.,
circuits without repeating structure), which motivates its name.

As detailed in the introduction, non-uniform IVC implies proofs of program
executions on machines with a pre-defined custom instruction set. In the next
section, we construct HyperNova, an efficient NIVC scheme.

In IVC, for a polynomial-time function F , the prover takes as input a claim (i, z0, z)
and a corresponding proof Πi that proves the knowledge of witnesses (ω0, . . . , ωi−1)
such that by computing zj+1 ← F (zj , ωj) for all j ∈ {0, . . . , i− 1} we have that
z = zi. Given a new witness ωi, the prover computes a new proof Πi+1 of the
same size, which proves the statement (i+ 1, z0, zi+1) for zi+1 = F (zi, ωi).

In NIVC, we extend IVC to handle a number of arbitrary polynomial-time func-
tions (F1, . . . , Fℓ). The choice of which function Fj for j ∈ [ℓ] is executed at
a particular step in the incremental computation is handled by an additional

11

polynomial-time function φ. More specifically, NIVC captures an incremental
proof system for the following augmented statement: There exists (ω0, . . . , ωi−1)
such that on initial input z0 and claimed output z, by computing zj+1 ←
Fφ(zj ,ωj)(zj , ωj) for all j ∈ {0, . . . , i− 1}, we have that z = zi.

Observe that if we fix ℓ = 1 and that φ outputs 1, we recovers the definition of
IVC [63]. This means that any NIVC scheme is also an IVC scheme.

Definition 7 (Non-uniform IVC). A non-uniform incrementally verifiable
computation (NIVC) scheme is defined by PPT algorithms (G,P,V) and a de-
terministic K denoting the generator, the prover, the verifier, and the encoder
respectively, with the following interface:

• G(1λ, N) → pp: on input security parameter λ and size bounds N , samples
public parameters pp.

• K(pp, ((F1, . . . , Fℓ), φ))→ (pk, vk): on input public parameters pp, a control
function φ, and functions F1, . . . , Fℓ deterministically produces a prover key
pk and a verifier key vk.

• P(pk, (i, z0, zi), ωi,Πi)→ Πi+1: on input a prover key pk, a counter i, initial
input z0, claimed output after i applications zi, a non-deterministic advice ωi,
and an NIVC proof Πi attesting to zi, produces a new proof Πi+1 attesting
to zi+1 = Fφ(zi,ωi)(zi, ωi).

• V(vk, (i, z0, zi),Πi) → {0, 1}: on input a verifier key vk, a counter i, an
initial input z0, a claimed output after i applications zi, and an NIVC proof
Πi attesting to zi, outputs 1 if Πi is accepting, 0 otherwise.

An NIVC scheme (G,K,P,V) satisfies following requirements.

(i) Completeness: For any PPT adversary A we have that

Pr


b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
(((F1, . . . , Fℓ), φ), (i, z0, zi), (ωi,Πi))← A(pp),
(pk, vk)← K(pp, ((F1, . . . , Fℓ), φ)),
V(vk, (i, z0, zi),Πi) = 1,
zi+1 ← Fφ(zi,ωi)(zi, ωi),
Πi+1 ← P(pk, (i, z0, zi), ωi,Πi),
b← V(vk, (i+ 1, z0, zi+1),Πi+1)


= 1

where ℓ ≥ 1 and φ produces an element in Z∗ℓ+1. Moreover, φ and each Fj

for j ∈ {1, . . . , ℓ} are a polynomial-time computable function represented
as arithmetic circuits.

(ii) Knowledge Soundness: Consider constant n ∈ N. For all expected polynomial-
time adversaries P∗ there exists an expected polynomial-time extractor E

12

such that

Pr
r

 zn = z where
zi+1 ← Fφ(zi,ωi)(zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣
pp← G(1λ, N),
(((F1, . . . , Fℓ), φ), (z0, z),Π)← P∗(pp, r),
(ω0, . . . , ωn−1)← E(pp, r)

 ≈
Pr
r

V(vk, (n, z0, z),Π) = 1

∣∣∣∣∣∣
pp← G(1λ, N),
(((F1, . . . , Fℓ), φ), (z0, z),Π)← P∗(pp, r),
(pk, vk)← K(pp, ((F1, . . . , Fℓ), φ))


where r denotes an arbitrarily long random tape.

(iii) Succinctness: The NIVC proof size is independent of the iteration count.

(iv) Efficiency: The prover’s time complexity at any step i is linear in the size
of the function applied at step i and the total number of functions ℓ.

4 Multi-folding schemes
Recall that a folding scheme [41] for a relation R is a protocol between a prover
and verifier in which the prover and the verifier reduce the task of checking
two instances in R with the same structure s into the task of checking a single
instance in R with structure s.

We introduce a generalization of folding schemes, which we refer to as multi-
folding schemes. A multi-folding scheme is defined with respect to a pair of
relations (R1,R2), a predicate compat, and size parameters µ and ν. It is an
interactive protocol between a prover and a verifier in which the prover and the
verifier reduce the task of checking µ instances in R1 with structure s1 and ν
instances in R2 with structure s2 into the task of checking a single instance in R1

with structure s1—as long as s1 and s2 satisfy a predicate compat (e.g., compat
might require that s1 = s2). Below, we formally define multi-folding schemes.

Definition 8 (Multi-folding schemes). Consider relations R1 and R2 over
public parameters, structure, instance, and witness tuples, a predicate compat
that structures for instances in R1 and R2 must satisfy, and size parameters
µ, ν ∈ N. A multi-folding scheme for (R1,R2, compat, µ, ν) is defined by PPT
algorithms (G,P,V) and deterministic K denoted the generator, prover, verifier
and encoder respectively with the following interface:

• G(1λ, N) → pp: on input security parameter λ and size bounds N , samples
public parameters pp.

• K(pp, (s1, s2)) → (pk, vk): on input pp, and structures s1 and s2 among the
instances to be folded, outputs a prover key pk and a verifier key vk.

• P(pk, (⃗u1, w⃗1), (⃗u2, w⃗2))→ (u,w): on input a vector of instances u⃗1 in R1 of
size µ with structure s1 and a vector of instances u⃗2 in R2 of size ν with
structure s2, and corresponding witness vectors w⃗1 and w⃗2 outputs a folded
instance-witness pair (u,w) in R1 with structure s1.

13

• V(vk, (⃗u1, u⃗2))→ u: on input a vector of instances u⃗1 and a vector of instances
u⃗2 outputs a new instance u.

Let ⟨P ,V⟩ denote the interaction between P and V. We treat ⟨P ,V⟩ as a func-
tion that takes as input ((pk, vk), (⃗u1, w⃗1), (⃗u2, w⃗2)) and runs the interaction on
prover input (pk, (⃗u1, w⃗1), (⃗u2, w⃗2)) and verifier input (vk, (⃗u1, u⃗2)). At the end of
interaction ⟨P ,V⟩ outputs (u,w) where u is the verifier’s output folded instance,
and w is the prover’s output folded witness.

Let R(n) be the relation such that (pp, s, u⃗, w⃗) ∈ R(n) if and only if (pp, s, u⃗i, w⃗i) ∈
R for all i ∈ [n]. A multi-folding scheme for (R1,R2, compat, µ, ν) satisfies the
following requirements.

1. Perfect Completeness: For all PPT adversaries A, we have that

Pr

 (pp, s1, u,w) ∈ R1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
((s1, s2), (⃗u1, u⃗2), (w⃗1, w⃗2))← A(pp),
compat(s1, s2) = true,

(pp, s1, u⃗1, w⃗1) ∈ R(µ)
1 , (pp, s2, u⃗2, w⃗2) ∈ R(ν)

2 ,
(pk, vk)← K(pp, s1, s2),
(u,w)← ⟨P ,V⟩((pk, vk), (⃗u1, u⃗2), (w⃗1, w⃗2))

 = 1.

2. Knowledge Soundness: For any expected polynomial-time adversaries A and
P∗ there is an expected polynomial-time extractor E such that

Pr
r

 (pp, s1, u⃗1, w⃗1) ∈ R(µ)
1 ,

(pp, s2, u⃗2, w⃗2) ∈ R(ν)
2

∣∣∣∣∣∣∣∣
pp← G(1λ, N),
((s1, s2), (⃗u1, u⃗2), st)← A(pp, r),
compat(s1, s2) = true,
(w⃗1, w⃗2)← E(pp, r)

 ≈

Pr
r

 (pp, s1, u, w) ∈ R1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ, N),
((s1, s2), (⃗u1, u⃗2), st)← A(pp, r),
compat(s1, s2) = true,
(pk, vk)← K(pp, (s1, s2)),
(u,w)← ⟨P∗,V⟩((pk, vk), (⃗u1, u⃗2), st)


where r denotes an arbitrarily long random tape.

A multi-folding scheme is secure in the random oracle model if the above require-
ments hold when all parties are provided access to a random oracle.

Definition 9 (Succinct). A multi-folding scheme is succinct if the communi-
cation complexity and verifier time complexity is at most poly-logarithmic in the
size of the structures and witnesses.

Definition 10 (Non-interactive). A multi-folding scheme (G,K,P,V) is non-
interactive if the interaction between P and V consists of a single message from
P to V. This single message is denoted as P’s output and as V’s input.

14

Definition 11 (Public-coin). A multi-folding scheme (G,K,P,V) is called
public-coin if all the messages sent from V to P are sampled uniformly.

By applying the Fiat-Shamir transformation [26] we can transform a public-coin
multi-folding scheme into a non-interactive multi-folding scheme in the random
oracle model. We formally describe this transformation in Appendix B.

Lemma 1 (Fiat-Shamir transformation for multi-folding schemes).
Construction 3 transforms a public-coin multi-folding scheme for

(R1,R2, compat, µ, ν)

into a non-interactive multi-folding scheme for (R1,R2, compat, µ, ν) in the ran-
dom oracle model.

5 A multi-folding scheme for CCS
This section describes a multi-folding scheme for CCS. Specifically, we provide
a multi-folding scheme for R1 = RLCCCS and R2 = RCCCS, with compat(s1, s2)
requiring s1 = s2, with arbitrary values of µ and ν.
Overview. To highlight core ideas, we describe the multi-folding scheme for the
case of µ = ν = 1. Construction 1 formally describes the general case.

Consider structure s1 = s2 = ([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq]), and let s =
logm, and s′ = log n. We design a multi-folding scheme that reduces the verifier’s
task of checking a linearized committed CCS instance (C1, u, x1, rx, v1, . . . , vt)
and a committed CCS instance (C2, x2) to the task of checking a new linearized
committed CCS instance. In particular, the verifier’s goal is to reduce the task
of checking that a prover knows satisfying witnesses w̃1 and w̃2 such that for
z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2) we have that

vj =
∑

y∈{0,1}s′
M̃j(rx, y) · z̃1(y) (1)

for all j ∈ [t] and

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s

M̃j(x, y) · z̃2(y)

 = 0 (2)

for all x ∈ {0, 1}s.

The high-level strategy of the prover and verifier is to first encode the above
claims as a claim about the evaluations of polynomials and then reduce this
claim using the sum-check protocol. The resulting reduced claim is equivalent to
checking two compatible linearized committed CCS instances. The compatibility
ensures that we can reduce the task of checking both instances into the task of
checking a single linearized CCS instance using a random linear combination.

15

In more detail, consider multilinear polynomials

Hj(x) :=
∑

y∈{0,1}s′
M̃j(x, y) · z̃1(y) (3)

and

G(x) :=

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)

. (4)

Then, checking Hj(rx) = vj for all j ∈ [t] implies checking Equation 1. Then, by
Lemma 6, for Lj(x) = ẽq(rx, x) ·Hj(x), this is equivalent to checking

vj =
∑

x∈{0,1}s
Lj(x) (5)

for all j ∈ [t].

Similarly, checking G(x) = 0 for all x ∈ {0, 1}s implies checking Equation 2. We
define a corresponding Lagrange polynomial,

∑
x∈{0,1}s ẽq(X,x) · G(x), which

encodes each evaluation of G into its coefficients. Then checking that this La-
grange polynomial is the zero polynomial implies checking that G(x) = 0 for all
x ∈ {0, 1}s. Then, for a random challenge β ∈ F, by the Schwartz-Zippel Lemma
(Lemma 7), for Q(x) = ẽq(β, x) ·G(x), checking

0 =
∑

x∈{0,1}s
Q(x) (6)

implies checking Equation 2 with high probability.

Equations 5 and 6 can be checked simultaneously with high probability by setting

g(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

T :=

∑
j∈T

γj · vj

+ γt+1 · 0

for some random challenge γ ∈ F and checking

T =
∑

x∈{0,1}s
g(x). (7)

Then, the prover and verifier run the sum-check protocol to reduce the task of
checking Equation 7 to the task of checking

c = g(r′x) (8)

16

for some random point r′x ∈ Fs and claimed evaluation c ∈ F.

To assist the verifier in checking Equation 8, the prover computes claimed values
for sums internal to polynomial g,

σi ←
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y) (9)

θi ←
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃2(y), (10)

for all i ∈ [t], and sends them to the verifier.

Using these values, the verifier can check Equation 8. However, it must still check
Equations 9 and 10, that is, that σi and θi were computed correctly for all i ∈ [t].

We observe now that because both of these equations are defined with respect
to the same sum-check randomness r′x, by linearity, the verifier can sample a
random challenge ρ, and reduce the task of checking Equations 9 and 10 to the
task of checking

σi + ρ · θi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · (z̃1(y) + ρ · z̃2(y)) (11)

for all i ∈ [t].

Conveniently, letting C ′ ← C1 + ρ · C2, u′ ← u + ρ · 1, x′ ← x1 + ρ · x2, and
v′i ← σi+ρ ·θi for all i ∈ [t], checking Equation 11, is equivalent to checking that
the prover knows a witness for the following linearized committed CCS instance

(C ′, u′, x′, r′x, v
′
1, . . . , v

′
t)

thus completing the reduction. We formally describe our folding scheme below.

Construction 1 (A multi-folding scheme for CCS). Let PC = (Gen,Commit)
denote an additively-homomorphic commitment scheme for multilinear polyno-
mials. We construct a multi-folding scheme for (RLCCCS,RCCCS, compat, µ, ν),
where compat is defined as follows.

compat(s1, s2)→ {true, false}: If s1.M̃i = s2.M̃i for i ∈ [t], then return true, oth-
erwise return false.

Let s1 = s2 = ([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq]).

We define the generator and the encoder as follows.

G(1λ, (m,N, ℓ, t, q, d ∈ N))→ pp:

1. Let n = 2 · (ℓ+ 1)

2. ppPC ← Gen(1λ, log n− 1)

3. Output (m,n,N, ℓ, t, q, d, ppPC)

17

K(pp, (s1, s2))→ (pk, vk):

1. Let pk← (pp, s1) and vk← pp

2. Output (pk, vk)

The verifier V takes µ linearized committed CCS instances u⃗1 and ν committed
CCS instances u⃗2. The prover in addition to these instances takes witnesses
to all instances w⃗1 and w⃗2. We denote µ linearized committed CCS instance-
witness pairs with L and use Lk (for k ∈ [µ]) to index into the kth linearized
committed CCS instance-witness pair. Similarly, we denote ν committed CCS
instance-witness pairs C and use Ck (for k ∈ [ν]) to index into the kth committed
CCS instance-witness pair. Inside an instance-witness pair, we use ϕ to index
into the instance and w to index into the witness.

Let s = logm and s′ = log n. Let z̃1,k = ˜(w, u, x), where w = Lk.w, u = Lk.ϕ.u,
and x = Lk.ϕ.x. Similarly, let z̃2,k = ˜(w, 1, x), where w = Ck.w and x = Ck.ϕ.x.

The prover and the verifier proceed as follows.

1. V → P : V samples γ
$← F, β $← Fs, and sends them to P.

2. V: Sample r′x
$← Fs.

3. V ↔ P : Run the sum-check protocol c← ⟨P ,V(r′x)⟩(g, s, d+ 1, T), where:

g(x) :=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(x)

+

∑
k∈[ν]

γµ·t+k ·Qk(x)


Lj,k(x) := ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1,k(y)


Qk(x) := ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


T :=

∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lk.ϕ.vj

4. P → V : {σj,k}, where for all j ∈ [t], k ∈ [µ]:

σj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y)

Similarly, {θj,k}, where for all j ∈ [t] and k ∈ [ν]:

θj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y)

18

5. V: Compute e1 ← ẽq(rx, r
′
x) and e2 ← ẽq(β, r′x), and check that

c =

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · e1 · σj,k

+

∑
k∈[ν]

γµ·t+k · e2 ·

 q∑
i=1

ci ·
∏
j∈Si

θj,k



6. V → P : V samples ρ
$← F and sends it to P.

7. V,P: Output the folded linearized committed CCS instance (C, u, x, r′x, v1, . . . , vt),
where for all j ∈ [t]:

C ←
∑

k∈[µ] ρ
k · Lk.ϕ.C +

∑
k∈[ν] ρ

µ+k · Ck.ϕ.C

u ←
∑

k∈[µ] ρ
k · Lk.ϕ.u +

∑
k∈[ν] ρ

µ+k · 1

x ←
∑

k∈[µ] ρ
k · Lk.ϕ.x +

∑
k∈[ν] ρ

µ+k · Ck.ϕ.x

vj ←
∑

k∈[µ] ρ
k · σj,k +

∑
k∈[ν] ρ

µ+k · θj,k

8. P: Output the folded witness w̃ ←
∑

k∈[µ] ρ
k · Lk.w +

∑
k∈[ν] ρ

µ+k · Ck.w.

Below, we adapt the proof of Kothapalli et al. [41] to prove the correctness of
our multifolding scheme for CCS (Theorem 1).

Proof (intuition). We provide a formal proof in Appendix H.1. Our multi-folding
scheme is an “early stopping” version of SuperSpartan [57] and the claimed
efficiency follows from the analysis of costs for the first sum-check invocation in
SuperSpartan [57, Theorem 1]. To prove knowledge-soundness, we show there
exists an expected polynomial-time extractor that can rewind the interaction
between a verifier and a malicious prover to interpolate for witnesses w⃗1 and w⃗2.
So long as the verifier does not abort, we have that g(r′x) = c. Then, by the
soundness of the sum-check protocol, we have that

∑
j∈[t],k∈[µ] γ

(k−1)·t+j · vj,k +∑
k∈[ν] γ

µ·t+k · 0 =
∑

x∈{0,1}s g(x). By the Schwartz-Zippel lemma, we have that
vj,k =

∑
x∈{0,1}s Lj,k(x) for all j ∈ [t] and k ∈ [µ] and 0 =

∑
x∈{0,1}s Qk(x) for

k ∈ [ν]. This in turn implies that w̃1 and w̃2 are satisfying.

Lemma 2 (Efficiency). Construction 1 is succinct.

Proof. In Step 1 and 2, the verifier begins by sampling and sending random
challenges, which takes work O(logm) work, where m is the number of CCS con-
straints. Next, in Step 3, the verifier verifies sum-check messages which requires
O(d logm) work, where d is the degree of CCS constraints. In Step 5, the verifier
computes ẽq(rx, r

′
x) and ẽq(β, r′x), which requires O(logm) field operations, and

performs O(t · µ + ν) field operations where t, µ, and ν are constants. Finally,
in Step 7, the verifier computes O(µ+ ν) group scalar multiplication operations
and O((µ+ ν) · |x|) field operations. Combining all these, the verifier’s work and

19

the space requirements are logarithmic in the number of constraints and linear
in the degree of CCS constraints. Hence, the verifier’s work is succinct.

By applying the Fiat-Shamir transformation (Construction 3), and instantiating
the random oracle, we have the following.

Assumption 1 (Non-interactivity). There exists a non-interactive multi-
folding scheme for (RLCCCS,RCCCS, compat, µ, ν) in the plain model.

6 HyperNova: NIVC from multi-folding schemes
We now describe HyperNova, a general compiler that takes a multi-folding
scheme for an NP-complete relation with mild requirements and produces an
NIVC scheme. For simplicity, we focus on constructing NIVC, but our construc-
tion extends naturally to provide a generalization of IVC to distributed compu-
tations called proof-carrying data (PCD) [2,8].

In Section 6.1, we provide an informal overview of HyperNova, instantiated with
the multi-folding scheme for CCCS from Section 5. Next, in Section 6.2 we
isolate the necessary properties for a general multi-folding scheme to be used to
construct NIVC. We refer to multi-folding schemes that satisfy these properties
as NIVC-compatible. We then prove that the folding scheme for CCCS is NIVC-
compatible. In Section 6.3 we provide a formal construction of HyperNova.

6.1 Overview of HyperNova
We intentionally overlook certain minor complications. We then address these
complications before providing a formal construction. For concreteness, we fix
CCCS as the NP-complete relation.

Consider efficient functions F1, . . . , Fℓ and φ. Recall that the NIVC statement
(i, z0, zi) claims the knowledge of (ω0, . . . , ωi−1) such that by computing z′k+1 ←
Fφ(z′

k,ωk)(z
′
k, ωk) for all k ∈ {0, . . . , i− 1} for z′0 = z0 we have that z′i = zi.

We now describe a single iterative step of the prover’s work. That is, we explain
how the prover can take a proof Πi for the NIVC statement (i, z0, zi) and effi-
ciently produce an updated proof Πi+1 for the NIVC statement (i+ 1, z0, zi+1).
At a high level, instead of directly proving the knowledge of a satisfying witness
to some prescribed Fj for j ∈ {1, . . . , ℓ} in each step, the prover proves the
knowledge of a satisfying witness to an augmented function F ′j . The augmented
function F ′j , in addition to running Fj , performs additional bookkeeping using
a folding scheme to help verifiably update the NIVC proof.

At first glance, a straw-man approach is to have each F ′j take as input a CCCS
instance that claims the correct execution of the latest iteration and then fold
that instance into a running LCCCS instance using the folding scheme in Sec-
tion 5 (this is the approach taken by Nova [41]). However, the folding scheme for
CCCS requires that both instances have compatible structure (which requires
that they represent the same computation in their matrices). In the case of stan-

20

dard IVC, as there is only one function that can be applied at each iterative
step, this holds naturally. However, this is not the case for non-uniform IVC.

To address this, F ′j instead takes a list Ui of running instances, where Ui[j]
attests to all prior iterations of F ′j up to i−1 steps. As such, checking all of Ui is
equivalent to checking i− 1 steps. In addition, F ′j takes as input a new instance
ui, which claims the correctness of the i’th step. Instead of directly checking this
instance (which would be concretely expensive), F ′j folds ui into the appropriate
instance in Ui according to φ to produce a new list of running instances Ui+1.
To claim the correctness of F ′j itself, the prover produces a new instance ui+1.

We let the NIVC proof Πi contain the list Ui, the fresh instance ui, and the
corresponding witnesses. Thus, the prover can use parts of Πi as input to the
appropriate function F ′j to produce Ui+1 and ui+1, and separately compute the
corresponding witnesses. These terms together define Πi+1. At the end of the
iterative computation (or at any intermediate step, if necessary), the verifier can
check i steps by checking proof Πi directly.

The prior description overlooks the following minor issues. Prior work [41] ad-
dresses these (except for the first one), and we now provide an overview of these
in light of the above overview.

First, we describe how to update a proof Πi to produce a proof Πi+1. However,
we did not define a base case proof Π0 and how the prover, the verifier, and each
function F ′j handles the base case. At a high level, we have F ′j populate U with
satisfying running instances in the base case.

Second, the non-interactive folding scheme’s verifier run by F ′j needs additional
advice generated by the non-interactive folding scheme’s prover. To address this,
the prover provides additional non-deterministic input to F ′j .

Finally, there is a subtle sizing issue in the above description: in each step,
because Ui+1 is produced as the public IO of F ′pci+1

, it must be contained in
the public IO of instance ui+1. In the next iteration, because ui+1 is folded
into Ui+1[pci+1], this means that Ui+1[pci+1] is at least as large as Ui by the
properties of the folding scheme. This means that the list of running instances
grows in each step. To alleviate this issue, we have each F ′j only produce a hash
of its outputs as public output. In the subsequent step, the next augmented
function takes as non-deterministic input a preimage to this hash.

6.2 NIVC-Compatible multi-folding schemes
Generalizing the above discussion, a multi-folding scheme for an arbitrary com-
mitted relation R2 can be used for NIVC if it satisfies the following properties:
First, statements about the correct execution of an efficient function F can be
encoded (and decoded) as statements in the underlying relation of R2. We refer
to this property as NP-completeness. Second, structures and instances can be
encoded (and decoded) independently of witnesses. We refer to this property
as partial functions. Third, we must have that any efficient function F can be

21

encoded as an R2 structure in a way that preserves the size of F . We refer to
this property as monotonicity. Fourth, we must have that there exists a default
satisfying instance-witness pair in R1 (this is required for the base case of our
NIVC construction). We refer to this property as default instances. We formally
define NIVC-compatibility as follows.

Definition 12 (NIVC-compatible multi-folding scheme). Consider a re-
lation R1, and a committed relation R2 over an underlying relation R′2. A suc-
cinct, non-interactive multi-folding scheme (G,K,P,V) with deterministic V for
(R1,R2, compat, 1, 1) is NIVC-compatible if it satisfies the following properties.

1. NP-completeness: There exists a deterministic polynomial-time efficiently
invertible function enc such that for any arithmetic circuit F , input x, non-
deterministic input w, and output y, for structure-instance-witness tuple
(s2, u,w)← enc(F, (x, y), w) we have that (s2, u,w) ∈ R′2 iff F (x,w) = y.

2. Partial functions: There exists deterministic, efficiently-invertible polynomial-
time functions encstr and encinst such that for any arithmetic circuit F ,
input x, non-deterministic input w, and output y, for R′1 and R′2 struc-
tures (s1, s2) ← encstr(F) and R′2 instance u ← encinst((x, y)) we have that
(s2, u,w) = enc(F, (x, y), w) for some R′2 witness w and that compat(s1, s2) =
1.5

3. Monotonicity: For arithmetic circuits F and G, given |F | ≤ |G| we have that
|encstr(F)| ≤ |encstr(G)|. The term |F | denotes the total number of gates in F
and the term |encstr(F)| denotes the total number of constraints in encstr(F).

4. Default instances: There exists (u⊥,w⊥) such that for any public parameters
pp and structure s, we have that (pp, s, u⊥,w⊥) ∈ R1.

Our folding scheme for CCS is NIVC-compatible.

Lemma 3 (NIVC-compatibility). Construction 1 is NIVC-compatible.

Proof (Intuition). NP-completeness of RCCS follows from [57, Lemma 1], which
reduces an NP-complete relation, R1CS, to RCCS. Moreover, a structure, in-
stance, and witness tuple in RCCS has enough information to reconstruct the
original function F and its inputs and outputs. This implies invertibility of enc.
Since CCS generalizes R1CS, we have that that the RCCCS structure (i.e., con-
straint matrices) depends only on the function F (and not inputs) and in turn
can be used to reconstruct F and that the RCCCS instance depends only on
the public inputs and outputs and can be used to reconstruct these values.
This implies the partial function requirement. Moreover, monotonicity holds
from the reasoning in Setty et al. [57]. Finally, we have that RLCCCS has de-
fault instances because for any public parameters and structure, we have that
5 Note that the required property on w is captured in the NP-completeness require-

ment.

22

(u = 0, x = 0⃗, r = 0, v1 = 0, . . . , vt = 0) and w̃ = 0 is a satisfying instance-witness
pair. We provide a formal proof in Appendix H.2.

6.3 A compiler from NIVC-compatible folding schemes to NIVC

Construction 2 (NIVC from multi-folding schemes). Consider a relation
R1 and a committed relation R2 for a commitment scheme (Commit,Gen). Let
NIFS be an NIVC-compatible non-interactive multi-folding scheme for a single
instance of R1 and R2. Let (u⊥,w⊥) be a default instance-witness pair for R1

that satisfies any structure and public parameters. We construct an NIVC scheme
as follows.

Consider a deterministic polynomial-time function φ and ℓ polynomial-time func-
tions (F1, . . . , Fℓ) that take non-deterministic input and a cryptographic hash
function hash. We first define augmented functions F ′j for j ∈ [ℓ], where all input
arguments are taken as non-deterministic advice, as follows.

F ′j(vkfs,Ui, ui, pci, (i, z0, zi), ωi, π)→ x:

1. Compute the next program counter pci+1 ∈ [ℓ]← φ(zi, ωi).

2. Compute the next output zi+1 ← Fj(zi, ωi).

3. If i = 0:

(a) Check that z0 = zi to ensure the statement holds in the base case.

(b) Set Ui+1 ← (u⊥, . . . , u⊥).

4. Otherwise:

(a) Parse ui as (C, u′i), a commitment to the witness and the remainder.

(b) Check that u′i references Ui in the output of the prior iteration:

u′i
?
= encinst(hash(vkfs, i, z0, zi,Ui, pci)).

(c) Check that 1 ≤ pci ≤ ℓ.

(d) Copy Ui+1 ← Ui and update Ui+1[pci]← NIFS.V(vkfs[pci],Ui[pci], ui, π).

5. Output x← hash(vkfs, i+ 1, z0, zi+1,Ui+1, pci+1).

Next, we define the NIVC scheme (G,K,P,V) as follows.

G(1λ, N)→ pp: Output NIFS.G(1λ, N).

K(pp, (φ, (F1, . . . , Fℓ)))→ (pk, vk):

1. Compute (s1,j , s2,j)← encstr(F
′
j) for all j ∈ [ℓ].

23

2. Compute (pkfs,j , vkfs,j)← NIFS.K(pp, s1,j , s2,j) for all j ∈ [ℓ].

3. Compute and output the prover and verifier key.

vk← (pp, (vkfs,1, . . . , vkfs,ℓ), (s1,1, . . . , s1,ℓ), (s2,1, . . . , s2,ℓ))

pk← ((φ, (F1, . . . , Fℓ)), (pkfs,1, . . . , pkfs,ℓ), vk)

P(pk, (i, z0, zi), ωi,Πi)→ Πi+1:

1. Parse Πi as ((Ui,Wi), (ui,wi), pci).

2. Compute the next program counter pci+1 ∈ [ℓ]← φ(zi, ωi).

3. If i = 0: Let (Ui+1,Wi+1, π)← ((u⊥, . . . , u⊥), (w⊥, . . . ,w⊥),⊥).

Otherwise: Copy Ui+1 ← Ui and Wi+1 ←Wi, and update

(Ui+1[pci],Wi+1[pci], π)← NIFS.P(pk[pci], (Ui[pci],Wi[pci]), (ui,wi)).

4. Compute the output y ← F ′pci+1
(vkfs,Ui, ui, pci, (i, z0, zi), ωi, π).

5. Compute an instance-witness pair encoding the valid execution of F ′pci+1
:

(_, u′i+1,wi+1)← enc(F ′pci+1
, (⊥, y), (vkfs,Ui, ui, pci, (i, z0, zi), ωi, π)).

6. Compute the committed instance: ui+1 ← (Commit(pp,wi+1), u
′
i+1).

7. Output Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1), pci+1)

V(vk, (i, z0, zi),Πi)→ {0, 1}:

1. If i = 0, output 1 if zi = z0 and 0 otherwise.

2. Parse Πi as ((Ui,Wi), (ui,wi), pci).

3. Parse ui as (C, u′i). Check that u′i = encinst(hash(vkfs, i, z0, zi,Ui, pci)).

4. Check that 1 ≤ pci ≤ ℓ.

5. Check (pp, s1,j ,Ui[j],Wi[j]) ∈ R1 for j ∈ [ℓ] and (pp, s2,pci , ui,wi) ∈ R2.

We formally prove the following lemma in Appendix H.3.

Lemma 4 (NIVC from multi-folding schemes). Construction 2 takes a
NIVC-compatible multi-folding scheme and produces an NIVC scheme.

Proof (Intuition). To prove knowledge soundness, suppose we have a malicious
prover P∗i that successfully produces a convincing NIVC proof Πi of i iterations
with non-negligible probability. Using prover P∗i , we construct a corresponding
extractor Ei−1 which can use this prover to extract a proof Πi−1 and the witness
ωi−1 by the knowledge soundness of the underlying folding scheme. This extrac-
tor then implies a corresponding prover P∗i−1 which can use this extractor to

24

produce a successful proof Πi−1 with non-negligible property. Then, recursively
repeating this process we can derive the full list of witnesses.

Below, we state the concrete efficiency characteristics of HyperNova instantiated
with the multi-folding scheme for CCS (Construction 1) which in turn is instan-
tiated with the Pedersen commitment scheme. As an immediate optimization we
have the verifier circuit inside F ′j for j ∈ [ℓ] use memory checking to verifiably
read and write the appropriate running instance into externalized memory rather
than directly passing all running instances through each step of F ′j . This pro-
vides asymptotic improvements: For instance the verifier circuits work is O(log ℓ)
hashes when using Merkle trees and O(1) hashes and elliptic curve hash-to-curve
and point additions when using a multiset-CRHF-based memory. Then, we have
an NIVC scheme with an a-la-carte cost profile, where the cost of each recursive
step only scales with the particular function executed at that step.

Theorem 3 (HyperNova). Given the multi-folding scheme in Construction 1
instantiated with the Pedersen commitment scheme, Construction 2 produces an
NIVC scheme such that for step functions Fj for j ∈ [ℓ] that can be expressed
in CCS with mj constraints of degree d and qj monomials, nj witness variables,
tj CCS matrices, and Nj non-zero entries in the CCS matrices, and control
function φ that can be expressed in CCS with m constraints of degree d and
qφ monomials, nφ witness variables, tφ CCS matrices, and Nφ non-zero entries
in the CCS matrices, the efficiency characteristics are as follows: The NIVC
prover time for a step proving the correct execution of Fj is a single MSM of size
O(nφ+nj) and O((Nφ+Nj)+(tφ+tj)·(mφ+mj)+(qφ+qj)·(mφ+mj)·d·log2 d)
finite field operations. The verifier circuit size is o(|φ|+1 ·G+2 ·Hℓ,tj +d · logmj ·
F + logmj · Rd + 2 ·M), where |φ| denotes the size of the constraint system for
encoding φ in the verifier circuit, G is the number of constraints required to
encode a group scalar multiplication, Hℓ,tj is the number of constraints required
to encode hash (which depends on ℓ and tj), F is the number of constraints to
encode field operations, Rd is the number of constraints to encode the RO ρ,
and M is the number of constraints to encode to memory read/write over O(ℓ)
elements.

Proof. The prover time complexity follows from Theorem 1. As for the verifier
circuit size, on input instances U and u, NIFS.V computes U.C ← U.C + ρ · u.C,
which costs a single group scalar multiplication. Verifying the non-interactive
sum-check proof in the non-interactive multi-folding scheme proof requires the
verifier to perform O(d · logmφ +mj) finite field operations and O(logmφ +mj)
calls to the RO to obtain challenges in the sum-check protocol. By construction,
the verifier circuit calls φ once and makes two additional calls to hash. Finally,
two memory operations are required to read and write a running instance.

25

7 HyperNova’s zero-knowledge and succinctness layer
In HyperNova, NIVC proofs are linear in the sizes of circuits for each supported
function and may reveal information about the secret witnesses in each step of
execution. This section describes how to provide a zero-knowledge argument of
a valid NIVC proof. Formally, our goal is to design a zero-knowledge argument
(Definition 23) for the following relation. We achieve this without employing
zkSNARKs (solving the problem motivated earlier in Section 1.2). For additional
succinctness, one can employ a non-zk SNARK.

Definition 13 (Proof of Valid NIVC Proof). Let NIVC denote the NIVC
scheme described in Construction 2. We define the relation RVNIVC over public
parameter, structure, instance, and witness tuples as follows.

RVNIVC =

{
(pp, (F1, . . . , Fℓ, φ), (i, z0, zi),Π)

∣∣∣∣ vk← NIVC.K(pp, (F1, . . . , Fℓ, φ)),
NIVC.V(vk, (i, z0, zi),Π) = 1

}

Recall that an NIVC proof consists of running instances U and corresponding
witnesses W, the latest instance u and corresponding witness w, and the latest
index pc. To check a statement (i, z0, zi), the NIVC verifier checks the list of
running instances U against witnesses W, checks the latest instance u against
witness w with respect to F ′pc, and checks that u references (i, z0, zi) and U.

A straw-man solution is to simply run a zkSNARK proving that the NIVC verifier
accepts some proof Π with respect to a prescribed verifier key vk. However, this
is prohibitively expensive, as it would involve a universal circuit that checks all
running instance-witness pairs internally (including the task of checking if the
provided witnesses are valid openings of commitments in the instances). Also,
as noted in Section 1.2, this entails significant verifier costs in some settings.
Achieving zero-knowledge. To avoid zkSNARKs, our central idea is to in-
stead rerandomize an NIVC proof using a much more efficient folding scheme.

We formalize this construction and prove its properties in Appendix D (Con-
struction 6). Here, we provide an overview.

To ensure that an NIVC proof Π does not reveal any secret information, the
prover does the following: First, to hide the last instruction pc, the prover verifi-
ably folds (u,w) into (U[pc],W[pc]) without revealing any of the involved terms.
Next, the prover verifiably folds in randomized instances (Ur,Wr) into (U,W)
to produce a new set of randomized running instances (U′,W′), that reveal no
information about (U,W) or (Ur,Wr), but can be checked in place of the original
instance-witness pairs. Finally, the prover produces a randomized proof, which
consists of (U′,W′) along with proofs of correct folding.

The central challenge with the above strategy is that the prover must verifiably
fold the instance-witness pairs in the first two steps without revealing any infor-
mation about the randomizing instances (and corresponding witnesses) to the
verifier. Due to this constraint, the prover cannot directly engage in a folding

26

scheme with the verifier. Instead, the prover executes the verifier’s end of the
folding scheme in an auxiliary circuit blind which takes as secret input (u,U, pc)
and randomized instances Ur. blind performs the standard checks on u before
folding in u into U[pc] and then folds each of the randomized instances Ur into
U to produce and output the randomized running instances U′. The prover then
produces a corresponding instance-witness pair (ublind,wblind) that attests to the
correct execution of the blind circuit itself.

Several problems remain. First, we must ensure that there actually exists a
method to sample (Ur,Wr). Moreover, we must ensure that the folding scheme
used to randomize (U,W) satisfies the following property: Given one of the in-
put instance-witness pairs is randomly sampled, we must have that the output
folded instance-witness pair is indistinguishable from random. We refer to a
folding scheme that satisfies this property as a randomizing folding scheme (Def-
inition 28) and argue that the folding scheme for committed CCS is randomizing
(Lemma 8). Then, we can ensure that (U′,W′) reveals no information.

Second, the prover cannot directly reveal the instance-witness pair (ublind,wblind)
attesting to the correct execution of blind as wblind will implicitly contain pc
and several other sensitive terms. Seemingly, we can use a randomizing fold-
ing scheme again, where the prover samples (urb,wrb) folds it into (ublind,wblind)
and only reveals the randomized instance-witness pair (u′blind,w

′
blind) as well as

an (interactive) proof of correct folding πblind. However, this may not be suffi-
cient because πblind may itself reveal information about wblind even if (u′blind,w′blind)
does not. To account for this, we require a folding scheme with a slightly stronger
property, in which the transcript (and output) can be simulated so long as one
of the inputs is random. We refer to a folding scheme that satisfies this stronger
property as a hiding folding scheme. Unfortunately, the folding scheme for com-
mitted CCS, as presented, is not a hiding folding scheme as the interaction may
reveal information about the witness. To remedy this, we instead use the folding
scheme underlying Nova, which we demonstrate satisfies hiding. Then, we can
ensure that (u′blind,w

′
blind) and πblind reveal no information about wblind.

The use of Nova’s folding scheme rather than HyperNova’s in the zero-knowledge
layer does not pose efficiency problems: the zero-knowledge layer is applied only
once in the “end” before externalizing IVC proofs. Furthermore, the work per-
formed inside blind consists only of the folding scheme verifier (which is quite
efficient for R1CS).

Altogether, the prover’s final blinded proof consists of the blinded running instance-
witness pairs (U′,W′), an instance ublind attesting to the correct execution of blind,
a randomized instance-witness pair (u′blind,w′blind), and an (interactive) proof πblind

attesting that checking (u′blind,w
′
blind) implies checking ublind.

Achieving non-interactivity and succinctness. Appendix D demonstrates
that the above construction is honest-verifier zero-knowledge (i.e., zero-knowledge
only if the verifier behaves honestly in the interaction). One can heuristically

27

make it zero-knowledge and non-interactive by employing the Fiat-Shamir trans-
formation in a standard manner.

For some applications, further succinctness may be required. In such a situ-
ation, the prover can succinctly prove the knowledge of a randomized proof
((U′,W′), ublind, (u

′
blind,w

′
blind), πblind) by using a SNARK to prove each instance in

U′ and u′blind. This is sufficient as the remainder of the blinded proof is constant-
sized. This approach of randomizing first, then adding a succinctness layer af-
fords two benefits. First, there is no need to use a zero-knowledge SNARK as the
randomizing step ensures that the randomized proof reveals no sensitive infor-
mation. Second, this SNARK can be independently used on each of the instances
in the randomized proof, as opposed to a universal circuit. This avoids having
to simulate the SNARK verifier inside the circuit.

8 HyperNova over a two-cycle of curves with CycleFold
This section describes how to instantiate HyperNova over a cycle of elliptic
curves, which unlocks a concretely-efficient construction that can be implemented.
We motivate a cycle of elliptic curves below, but we refer to prior works [5,49] for
more details. We focus on HyperNova, but our approach is generic and applies to
other folding-scheme-based IVC schemes. It also improves upon prior approach
that was proposed in the context of SNARK-based IVC [5].

8.1 Prior approaches and downsides for using them for HyperNova
We first recall the 2-cycle approach to instantiate SNARK-based recursive ar-
guments in [5]. We then describe how an implementation of Nova [1,49] adapts
this approach to the context of folding-scheme-based recursive arguments.
The 2-cycle approach in [5]. The starting point for [5] is a pairing-based
SNARK (e.g., [51,6]) instantiated over a pairing-friendly elliptic curve E. The
proof system can prove constraint systems defined over E’s scalar field. Fur-
thermore, verifying a proof requires a handful of pairing operations, which are
naturally represented as operations over E’s base field.

Let (Π1,Π2) denote two SNARK schemes (such as [51,6]) defined respectively
over (E1, E2). In particular, Π1 can “natively” (i.e., without field emulation)
prove constraint systems (e.g., R1CS) defined over the scalar field of E1 and Π2

can prove constraint systems defined over the scalar field of E2.6 Naturally, proofs
produced by Π1 can be efficiently verified by a constraint system supported by
Π2 and vice versa. This is because the algorithm to verify proofs produced by
Π1 involves operations over E1’s base field, which, by design, equals the scalar
field of E2. (When the fields do not match, one would need to emulate arithmetic
of the desired field using another field, which entails significant costs in terms
of the number of gates necessary to perform basic operations such as additions
6 [5] uses cycles of elliptic curves where both curves are pairing-friendly as they use

pairing-based SNARKs to realize IVC. Unfortunately, such cycles of pairing-friendly
elliptic curves require field sizes to be much larger than ordinary elliptic curves to
achieve a “standard” 128 bits of security.

28

and multiplications over the desired field.) In other words, the constraint system
supported by Π2 can efficiently encode the SNARK verifier of Π1.

To realize IVC, at step i, in [5], the prover proceeds as follows (for ease of
exposition, we ignore the base case of i = 0).

1. Using Π1, the prover produces a SNARK π
(1)
i that proves that it has executed

the step i of the desired computation and has successfully verified a SNARK
π
(2)
i−1 from step i− 1.

2. Using Π2, the prover produces a SNARK π
(2)
i that it knows a SNARK π

(1)
i

and has successfully verified it.

Note that π
(2)
i is the IVC proof at the end of step i. At step i + 1, the prover

starts with π
(2)
i and repeats the above procedure for the (i + 1)th step of the

computation. A key take-away is that this approach requires representing the
SNARK verifier as a circuit on both curves in the cycle.

Nova’s instantiation over a 2-cycle of elliptic curves. The Nova library [1]
adapts [5]’s blueprint to the context of folding schemes, and obtains a concretely-
efficient implementation of Nova [41]. Its approach is to essentially replace “SNARK
verifier” with a “non-interactive folding scheme verifier”. Specifically, an NP in-
stance defined over the scalar field of the first curve can be efficiently folded
using a circuit defined over the scalar field of the second curve and vice versa.
Different from [5], Nova’s IVC proof is a set of instances and witnesses defined
over both curves in the cycle rather than a single SNARK. Nova additionally
uses the public IO of circuits to track folded NP instances. A recent work [49]
provides a rigorous and detailed description of Nova’s instantiation on a 2-cycle
of elliptic curves and proves its security. This work also exposes a vulnerability
in the original implementation (which is now fixed). Overall, Nova’s approach,
like in [5], still requires representing a verifier (which happens to be the non-
interactive folding scheme verifier) as a circuit on both curves in the cycle of
curves. For Nova [41], which provides the most efficient folding scheme verifier
in the literature, the circuit defined over the second curve in the cycle is ≈10, 000
multiplication gates.

Additional downsides in the context of HyperNova. If the approach in
Nova’s implementation [1,49] is applied to HyperNova to instantiate HyperNova
over a 2-cycle of elliptic curves, it requires significant non-native arithmetic. In
particular, HyperNova’s verifier circuit on the scalar field of E2 must verify a
sum-check proof produced on the scalar field of E1. This involves representing
operations over the scalar field of E1 in a circuit defined over the scalar field of E2.
Since the two scalar fields are different, this would require field emulation, which
is concretely expensive (e.g., thousands of constraints for each field multiplication
and verifying a sum-check proof requires O(d · logm) field operations).

29

Nova

Folding Verifier

HN Partial

Folding Verifier

𝗎i+2

𝖴i+2

𝖴𝖤𝖢,i+2

E1

E2

𝗎𝖤𝖢,i+1

C𝖤𝖢

Nova

Folding Verifier

HN Partial

Folding Verifier

𝗎i

𝖴i

𝖴𝖤𝖢,i

𝗎𝖤𝖢,i

C𝖤𝖢

𝗎i+1

𝖴i+1

𝖴𝖤𝖢,i+1

Fig. 1. Two incremental steps in HyperNova’s recursive argument instantiated with
CycleFold. ui attests to the computation at step i and Ui attests to all prior steps
of the computation. UEC,i attests to all prior steps of the outsourced elliptic curve
operations. CEC is a circuit which computes the outsourced elliptic curve operations on
E2. ui and Ui are parsed to retrieve inputs for circuit CEC (represented with a dotted
line). uEC,i represents the correct execution of CEC. The main computation on each step
additionally runs the HyperNova folding scheme verifier (which folds claims regarding
the main computation) by taking as auxiliary advice the result of the elliptic curve
operation (read from uEC,i). The main computation additionally runs the Nova folding
scheme verifier which folds claims about the outsourced elliptic curve operation. ui+1

represents the correctness of the latest step and (Ui,UEC,i) represents the correctness
of all prior steps and outsourced computations.

8.2 CycleFold’s approach

CycleFold’s starting point is the observation that folding-scheme-based recursive
arguments (e.g., Nova, HyperNova) can be efficiently instantiated without a cy-
cle of elliptic curves—except for a few elliptic scalar multiplication operations
(2 in Nova, 1 in HyperNova) in their verifier circuits that must be handled with
“wrong” field arithmetic (or non-native arithmetic). We further observe that this
scalar multiplication operation can be verifiably delegated to the second curve
with the following approach. We first represent the desired scalar multiplication
operation as a circuit over the scalar field of the second curve. Crucially, this
avoids non-native arithmetic for computing the scalar multiplication operation
(as there is no need for field emulation). Then, by employing Nova’s folding
scheme verifier on the first curve, we fold that scalar multiplication circuit satis-
fiability instance into a running instance. Figure 1 depicts CycleFold’s approach.

30

Note that CycleFold can be viewed as employing a cycle of elliptic curves at a
different level of abstraction than [5] or its adaptation in Nova [41,1,49]. Specifi-
cally, with CycleFold, the cycle of elliptic curves is used at the level of a folding
scheme. In particular, the specific way the cycle of elliptic curves is used ensures
that the folding scheme verifier can be efficiently represented as a circuit with a
single curve in the cycle. Accordingly, the resulting IVC scheme nor its proof of
security has to reason about the cycle of elliptic curves. Indeed, when we apply
CycleFold to HyperNova, we apply it at the level of a folding scheme.

A preliminary design. CycleFold employs a 2-cycle of curves (E1, E2), but it
instantiates a folding-scheme-based recursive argument as if there is only a single
elliptic curve E1. This means that the folding-scheme verifier is represented as a
circuit, say CV, on the scalar field of E1. For the case of HyperNova, CV performs
finite field and hash operations, and a single scalar multiplication (more precisely,
a scalar multiplication followed by a point addition). The finite field and hashing
operations in CV are over E1’s scalar field so they are represented efficiently in
E1’s scalar field. However, the scalar multiplication and point addition operations
require arithmetic over E1’s base field. Naively, one can perform those operations
with non-native arithmetic inside CV. Unfortunately, this strategy will result in
CV containing a million multiplication gates or more.

We now discuss how CycleFold avoids the non-native arithmetic to compute a
scalar multiplication and a point addition—without using the 2-cycle approach
of [5] or its adaptation in Nova [41,1,49].

A “co-processor” circuit over the scalar field of E2. CycleFold creates
a circuit CEC defined over the scalar field of the second curve in the cycle E2

(e.g., on Grumpkin). CEC performs the desired scalar multiplication and a point
addition operation. Furthermore, the public IO of CEC contains the inputs and
outputs of the scalar multiplication and point addition operation. Since CEC is
defined over the scalar field of E2, which is the base field of E1 since (E1, E2) is a
2-cycle of elliptic curves. As a result, CEC does not require non-native arithmetic
to compute the desired scalar multiplication and point addition. In particular,
the size CEC is concretely small (e.g., with ≈1,000–1,500 multiplication gates).

Closing the loop. Instead of performing a scalar multiplication and a point
addition with non-native arithmetic (which as noted above is untenable), the
verifier circuit CV takes as non-deterministic input, among other things, a circuit
satisfiability instance uEC (i.e., the public IO and a commitment to a purported
satisfying witness to an instance of CEC). In addition to performing the rest of
folding scheme verifier’s work, CV consumes the claimed output from the public
IO of uEC after checking that inputs to CEC match its desired inputs. CV then
folds uEC into a running instance, using Nova’s folding scheme.

Appendix E provides a formal construction of HyperNova over a cycle of elliptic
curves and proves its correctness. We summarize our result with the following
theorem. For simplicity, we formalize the case folding a single fresh instance into

31

a single running instance. However, our construction can be naturally generalized
for an arbitrary number of instances, as in Construction 1.

Theorem 4 (A multi-folding scheme for CCS over cycles). Construc-
tion 7 is a public-coin multi-folding scheme for (R1 = RLCCCS ×RCRR1CS,R2 =
RCCCS, compat, µ = 1, ν = 1) with perfect completeness and knowledge sound-
ness. For a CCS instance with m constraints of degree d and q monomials, n
witness variables, t CCS matrices, and N non-zero entries in CCS matrices, and
a linearized CCS instance with the same structure, the efficiency characteristics
are as follows: The prover time is O(N + t · m + q · m · d · log2 d) finite field
operations and O(1) group operations. The verifier time is O(d · logm) finite
field operations and O(1) group operations. The communication complexity is
O(d · logm) finite field elements.

Proof (Intuition). Completeness, knowledge-soundness, and efficiency hold by
similar reasoning as the proof of Theorem 1 and the properties of the folding
scheme for relaxed R1CS [41]. We provide a formal proof in Appendix H.4

By leveraging Construction 7 made non-interactive in the plain model via the
Fiat-Shamir transformation (Construction 3), we get Theorem 2, which follows
from [41, Lemma 4] and Theorem 4.

Acknowledgments
We thank Justin Drake, Ariel Gabizon, Tohru Kohrita, Bryan Parno, Carlos Pérez,
Drew Stone, Justin Thaler, Ioanna Tzialla, and the anonymous Crypto and Eurocrypt
reviewers for helpful conversations and comments on a prior version of this paper. While
at Carnegie Mellon University, Abhiram Kothapalli was supported by a fellowship from
Protocol Labs, NSF Grant No. 1801369 and 190099, and by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA.

32

References
1. Nova: Recursive SNARKs without trusted setup. https://github.com/

Microsoft/Nova
2. Alessandro Chiesa, E.T.: Proof-carrying data and hearsay arguments from signa-

ture cards. In: Innovations in Computer Science (ICS) (2010)
3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs to

delegatable succinct constraint satisfaction problems: Extended abstract. In: ITCS
(2013)

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: CRYPTO (Aug
2013)

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: CRYPTO (2014)

6. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security (2014)

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
ITCS (2012)

8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. In: STOC (2013)

9. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryp-
tology ePrint Archive, Report 2018/712 (2018)

10. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: Recursive zk-SNARKs
from any Additive Polynomial Commitment Scheme. In: CRYPTO (2021)

11. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: EUROCRYPT
(2016)

12. Bootle, J., Chiesa, A., Hu, Y., Orrú, M.: Gemini: Elastic snarks for diverse envi-
ronments. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 427–457 (2022)

13. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a
trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019)

14. Bowe, S., Grigg, J., Hopwood, D.: Halo2 (2020), https://github.com/zcash/
halo2

15. Braun, B.: Compiling computations to constraints for verified computation. Tech.
rep., UT Austin Honors thesis HR-12-10 (Dec 2012)

16. Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.: Verifying
computations with state. In: SOSP (2013)

17. Bünz, B., Chen, B.: Protostar: Generic efficient accumulation/folding for special
sound protocols. Cryptology ePrint Archive, Paper 2023/620 (2023)

18. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. In: CRYPTO (2021)

19. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumu-
lation schemes. In: TCC (2020)

20. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. In: EUROCRYPT (2023)

21. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In: EUROCRYPT (2020)

22. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: ITCS (2012)

33

https://github.com/Microsoft/Nova
https://github.com/Microsoft/Nova
https://github.com/zcash/halo2
https://github.com/zcash/halo2

23. Cramer, R., Damgård, I.: Zero-knowledge proofs for finite field arithmetic, or: Can
zero-knowledge be for free? In: CRYPTO. pp. 424–441 (1998)

24. Eagen, L., Fiore, D., Gabizon, A.: cq: Cached quotients for fast lookups. Cryptology
ePrint Archive (2022)

25. Eagen, L., Gabizon, A.: Protogalaxy: Efficient protostar-style folding of multiple
instances. Cryptology ePrint Archive, Paper 2023/1106 (2023)

26. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO. pp. 186–194 (1986)

27. Gabizon, A., Williamson, Z.J.: plookup: A simplified polynomial protocol for
lookup tables. Cryptology ePrint Archive (2020)

28. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. ePrint Re-
port 2019/953 (2019)

29. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: EUROCRYPT (2013)

30. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC. pp. 99–108 (2011)

31. Goldberg, L., Papini, S., Riabzev, M.: Cairo – a Turing-complete STARK-friendly
CPU architecture. Cryptology ePrint Archive (2021)

32. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT (2016)

33. Haböck, U.: Multivariate lookups based on logarithmic derivatives. Cryptology
ePrint Archive (2022)

34. Khovratovich, D., Maller, M., Tiwari, P.R.: MinRoot: candidate sequential function
for Ethereum VDF. Cryptology ePrint Archive, Paper 2022/1626 (2022)

35. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC (1992)

36. Kosba, A., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE: succinct
arguments for randomized algorithms with applications to universal zk-SNARKs.
In: USENIX Security (2020)

37. Kothapalli, A., Parno, B.: Algebraic reductions of knowledge. In: CRYPTO (2023)
38. Kothapalli, A., Setty, S.: SuperNova: Proving universal machine executions without

universal circuits. Cryptology ePrint Archive (2022)
39. Kothapalli, A., Setty, S.: CycleFold: CycleFold: Folding-scheme-based recursive ar-

guments over a cycle of elliptic curves. Cryptology ePrint Archive, Paper 2023/1192
(2023)

40. Kothapalli, A., Setty, S.: HyperNova: Recursive arguments for customizable con-
straint systems. In: CRYPTO (2024)

41. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes. In: CRYPTO (2022)

42. Labs, O.: Mina cryptocurrency (2020), https://minaprotocol.com
43. Lee, J., Nikitin, K., Setty, S.: Replicated state machines without replicated execu-

tion. In: S&P (2020)
44. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive

proof systems. In: FOCS (Oct 1990)
45. Lurk: https://github.com/lurk-lang
46. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge

SNARKs from linear-size universal and updateable structured reference strings.
In: CCS (2019)

47. Micali, S.: CS proofs. In: FOCS (1994)

34

https://minaprotocol.com
https://github.com/lurk-lang

48. Mohnblatt, N.: Sangria: a folding scheme for PLONK. https://geometry.xyz/
notebook/sangria-a-folding-scheme-for-plonk (2023)

49. Nguyen, W., Boneh, D., Setty, S.: Revisiting the Nova proof system on a cycle of
curves. Cryptology ePrint Archive, Paper 2023/969 (2023)

50. Ozdemir, A., Wahby, R.S., Boneh, D.: Scaling verifiable computation using efficient
set accumulators. In: USENIX Security (2020)

51. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: S&P (May 2013)

52. RISC ZERO: https://www.risczero.com/
53. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-

ties. J. ACM 27(4) (1980)
54. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.

In: CRYPTO (2020)
55. Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of concurrent

services in zero-knowledge. In: OSDI (Oct 2018)
56. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the

conflict between generality and plausibility in verified computation. In: EuroSys
(Apr 2013)

57. Setty, S., Thaler, J., Wahby, R.: Customizable constraint systems for succinct ar-
guments. Cryptology ePrint Archive (2023)

58. Setty, S., Thaler, J., Wahby, R.: Unlocking the lookup singularity with lasso. In:
EUROCRYPT (2024)

59. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking
proof-based verified computation a few steps closer to practicality. In: USENIX
Security (Aug 2012)

60. Solberg, T.: A brief history of lookup arguments. https://github.com/
ingonyama-zk/papers/blob/main/lookups.pdf (2023)

61. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: CRYPTO
(2013)

62. Thaler, J.: Proofs, arguments, and zero-knowledge. http://people.cs.
georgetown.edu/jthaler/ProofsArgsAndZK.html (2020)

63. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: TCC. pp. 552–576 (2008)

64. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for verifiable
computation. In: S&P (2013)

65. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. In: NDSS (2015)

66. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. In: S&P (2018)

67. Wesolowski, B.: Efficient verifiable delay functions. In: EUROCRYPT. pp. 379–407
(2019)

68. WhiteHat, B., Gluchowski, A., HarryR, Fu, Y., Castonguay, P.: Roll_up
/ roll_back snark side chain ~17000 tps. https://ethresear.ch/t/
roll-up-roll-back-snark-side-chain-17000-tps/3675 (Oct 2018)

69. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: S&P (2017)

70. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:
Faster verifiable RAM with program-independent preprocessing. In: S&P (2018)

71. Zhang, Z.: Origami: Fold a Plonk for Ethereum’s VDF. Cryptology ePrint Archive
(2023)

35

https://geometry.xyz/notebook/sangria-a-folding-scheme-for-plonk
https://geometry.xyz/notebook/sangria-a-folding-scheme-for-plonk
https://www.risczero.com/
https://github.com/ingonyama-zk/papers/blob/main/lookups.pdf
https://github.com/ingonyama-zk/papers/blob/main/lookups.pdf
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/3675
https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/3675

72. Zheng, T., Gao, S., Guo, Y., Xiao, B.: Kilonova: Non-uniform pcd with zero-
knowledge property from generic folding schemes. Cryptology ePrint Archive, Pa-
per 2023/1579 (2023)

73. Zhou, Z., Zhang, Z., Dong, J.: Proof-carrying data from multi-folding schemes.
Cryptology ePrint Archive, Paper 2023/1282 (2023)

36

A Additional Preliminaries
A.1 Polynomials and low-degree extensions
We adapt this subsection from prior work [54]. We start by recalling several facts
about polynomials.

Definition 14 (Multilinear polynomial). A multivariate polynomial is called
a multilinear polynomial if the degree of the polynomial in each variable is at
most one.

Definition 15 (Low-degree polynomial). A multivariate polynomial g over
a finite field F is called low-degree polynomial if the degree d of g in each variable
is exponentially smaller than |F| (i.e., d = O(log |F|)).

Low-degree extensions (LDEs). Suppose g : {0, 1}ℓ → F is a function that
maps ℓ-bit elements into an element of F. A polynomial extension of g is a low-
degree ℓ-variate polynomial, denoted g̃, such that g̃(x) = g(x) for all x ∈ {0, 1}ℓ.

A multilinear polynomial extension (or simply, a multilinear extension, or MLE)
is a low-degree polynomial extension where the extension is a multilinear poly-
nomial (i.e., the degree of each variable in g̃ is at most one). Given a function
Z : {0, 1}ℓ → F, the multilinear extension of Z is the unique multilinear polyno-
mial Z̃ : Fℓ → F. It can be computed as follows.

Z̃(x1, . . . , xℓ) =
∑

e∈{0,1}ℓ
Z(e) ·

ℓ∏
i=1

(xi · ei + (1− xi) · (1− ei))

=
∑

e∈{0,1}ℓ
Z(e) · ẽq(x, e)

= ⟨(Z(0), . . . , Z(2ℓ − 1)), (ẽq(x, 0), . . . , ẽq(x, 2ℓ − 1)⟩

Note that ẽq(x, e) =
∏ℓ

i=1(ei · xi + (1− ei) · (1− xi)), which is the MLE of the
following function:

eq(x, e) =

{
1 if x = e

0 otherwise

For any r ∈ Fℓ, Z̃(r) can be computed in O(2ℓ) operations in F [64,61].

Dense representation for multilinear polynomials. Since the MLE of a
function is unique, it offers the following method to represent any multilinear
polynomial. Given a multilinear polynomial g : Fℓ → F, it can be represented
uniquely by the list of tuples L such that for all i ∈ {0, 1}ℓ, (to-field(i), g(i)) ∈ L
if and only if g(i) ̸= 0, where to-field is the canonical injection from {0, 1}ℓ to F.
We denote such a representation of g as DenseRepr(g).

37

Definition 16. A multilinear polynomial g in ℓ variables is a sparse multilin-
ear polynomial if |DenseRepr(g)| is sub-linear in 2ℓ. Otherwise, it is a dense
multilinear polynomial.

As an example, suppose g : F2s → F. Suppose |DenseRepr(g)| = O(2s), then g is
a sparse multilinear polynomial because 2s is sublinear in 22s.

A.2 The sum-check protocol
Suppose there is an ℓ-variate low-degree polynomial, g, where the degree of each
variable in g is at most d. Suppose that a verifier V is interested in checking a
claim of the following form by an untrusted prover P:

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xℓ∈{0,1}

g(x1, x2, . . . , xℓ)

Of course, given g, V can deterministically evaluate the above sum and verify
whether the sum is T . But, this computation takes time exponential in ℓ. Lund et
al. [44] describe the sum-check protocol that requires far less computation on V’s
behalf, but provides a probabilistic guarantee. In the protocol, V takes as input
randomness r ∈ Fℓ and interacts with P over a sequence of ℓ rounds. At the end
of this interaction, V outputs a claim about the evaluation g(r). Let ⟨P ,V(r)⟩
denote the interaction between the prover and verifier with verifier randomness
r. We treat ⟨P ,V(r)⟩ as a function that takes prover and verifier input (g, ℓ, d, T)
and outputs the claimed evaluation to be checked.

Lemma 5 (The sum-check protocol [44]). Let g be an ℓ-variate polynomial
with degree at most d in each variable. Then, the sumcheck protocol satisfies the
following properties.

1. Completeness: If T =
∑

x∈{0,1}ℓ g(x), then for all r ∈ Fℓ,

Pr
[
⟨P ,V(r)⟩(g, ℓ, d, T) = g(r)

]
= 1.

2. Soundness: If T ̸=
∑

x∈{0,1}ℓ g(x), then for any P⋆

Pr
r

[
⟨P⋆,V(r)⟩(g, ℓ, d, T) = g(r)

]
≤ ℓ · d/|F|.

3. Succinctness: The communication cost is O(ℓ · d) elements of F.

Lemma 6 (Sums over evaluations). Consider size ℓ ∈ N. For multilinear
polynomial P ∈ F[X1, . . . , Xℓ] we have that

P (X) =
∑

x∈{0,1}ℓ
ẽq(X,x) · P (x).

where ẽq is a multilinear extension of eq, which takes as inputs two values in
{0, 1}ℓ returns 1 if its inputs are equal and 0 otherwise.

38

Proof. Let Q(X) =
∑

x∈{0,1}ℓ ẽq(X,x) · P (x) By the definition of ẽq, we have
that

P (x) = Q(x)

for all x ∈ {0, 1}ℓ. However, because P ∈ F[X1, . . . , Xℓ] is multilinear it is
completely determined by 2ℓ evaluation points. The same holds for Q. Because
P and Q agree on 2ℓ points, they must be the same polynomial.

Lemma 7 (Schwartz-Zippel [53]). let g : Fℓ → F be an ℓ-variate polynomial
of total degree at most d. Then, on any finite set S ⊆ F,

Pr
x←Sℓ

[g(x) = 0] ≤ d/|S|.

A.3 Commitment Schemes
Definition 17 (Commitment Scheme). A commitment scheme is defined
by polynomial-time algorithm Gen : N2 → P that produces public parameters
given the security parameter and size parameter, a deterministic polynomial-
time algorithm Commit : P ×M × R → C that produces a commitment in C
given a public parameters, message, and randomness tuple such that binding
holds. That is, for any PPT adversary A, given pp ← Gen(λ, n), and given
((m1, r1), (m2, r2))← A(pp) we have that

Pr[(m1, r1) ̸= (m2, r2) ∧ Commit(pp,m1, r1) = Commit(pp,m2, r2)] ≈ 0.

The commitment scheme is deterministic if Commit does not use its randomness.

Definition 18 (Hiding). The commitment scheme (Gen,Commit) is hiding if
for any PPT adversary A, given pp ← Gen(λ, n), ((m1, r1), (m2, r2)) ← A(pp),
and Ci ← Commit(pp,mi, ri) for i ∈ {1, 2} we have that

Pr[A(pp, C1) = 1] ≈ Pr[A(pp, C2) = 1].

Definition 19 (Homomorphic). The commitment scheme (Gen,Commit) is
homomorphic if the message space M , randomness space R, and commitment
space C are groups and for all n ∈ N, and pp← Gen(λ, n), we have that for any
m1,m2 ∈M and r1, r2 ∈ R

Commit(pp,m1, r1) + Commit(pp,m2, r2) = Commit(pp,m1 +m2, r1 + r2).

Definition 20 (Succinct Commitments). A commitment scheme (Gen,Commit),
over message space M and commitment space R, provides succinct commit-
ments if for all pp ← Gen(1λ), and any m ∈ M and r ∈ R, we have that
|Commit(pp,m, r)| = Oλ(polylog(|m|)).

Definition 21 (Multilinear Polynomial Commitment Scheme). A mul-
tilinear polynomial commitment scheme over polynomial ring F1[X1, . . . , Xn] is a

39

commitment scheme (Gen,Commit) over message space F1[X1, . . . , Xn], equipped
with an argument of knowledge (Definition 23) for relation Rpolyeval defined as
follows

Rpolyeval =

 (pp, (C, x, y), (P, r))

∣∣∣∣∣∣
P ∈ F1[X1, . . . , Xn],
P (x) = y,
C = Commit(pp, P, r)

 .

A.4 Rank-1 constraint satisfiability (R1CS)
R1CS is an NP-complete problem implicit in the work of GGPR [29]. Below, we
recall its definition.

Definition 22 (R1CS). Consider a finite field F. Let the public parameters
consist of size bounds m,n, ℓ ∈ N where m > ℓ. The R1CS structure consists
of sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries
in each matrix. An instance x ∈ Fℓ consists of public inputs and outputs and is
satisfied by a witness W ∈ Fm−ℓ−1 if (A ·Z)◦(B ·Z) = C ·Z, where Z = (W, x, 1).

A.5 Arguments of Knowledge
Definition 23 (Argument of Knowledge). Consider relation R over public
parameters, structure, instance, and witness tuples. A reduction of knowledge
for R is defined by PPT algorithms (G,P,V) and deterministic algorithm K,
denoting the generator, the prover, the verifier and the encoder respectively with
the following interface.

• G(λ,N) → pp: Takes as input security parameter λ and size parameters N .
Outputs public parameters pp.

• K(pp, s) → (pk, vk): Takes as input public parameters pp and structure s.
Outputs prover key pk and verifier key vk

• P(pk, u,w)→ ⊥: Takes as input public parameters pp, and statement-witness
pair (u,w). Interactively proves the statement (pp, s, u,w) ∈ R.

• V(pk, u) → {0, 1}: Takes as input public parameters pp, and statement u.
Interactively checks u.

Let ⟨P ,V⟩ denote the interaction between P and V. We treat ⟨P ,V⟩ as a func-
tion that takes as input ((pk, vk), u,w) and runs the interaction on prover input
(pk, u,w) and verifier input (pp, u). At the end of the interaction, ⟨P ,V⟩ out-
puts the verifier’s decision. An argument of knowledge (G,K,P,V) satisfies the
following conditions.

(i) Completeness: For any PPT adversary A, given pp← G(λ,N), (s, u,w)←
A(pp) such that (pp, s, u,w) ∈ R and (pk, vk)← K(pp, s) we have that

⟨P ,V⟩((pk, vk), u,w) = 1

40

(ii) Knowledge Soundness: For any expected polynomial-time adversaries A and
P∗, there exists an expected polynomial-time extractor E such that given
pp← G(λ,N), (s, u, st)← A(pp), and (pk, vk)← K(pp, s), we have that

Pr[(pp, s, u, E(pp, u, st)) ∈ R1] ≈ Pr[⟨P∗,V⟩((pk, vk), u, st) = 1].

Definition 24 (Succinctness). An argument of knowledge is succinct if the
communication complexity and the verifier time complexity is at most poly-
logarithmic in the size of the structure and witness.

Definition 25 (Non-Interactivity). An argument of knowledge is non-interactive
if the interaction consists of a single message from the prover to the verifier. In
this case, we denote this single message as the output of the prover, and as an
input to the verifier.

Definition 26 (Zero-knowledge). An argument of knowledge (G,K,P,V)
for relation R satisfies zero-knowledge if for any PPT adversary V∗ there exists
an EPT simulator S such that for any PPT adversary A for pp ← G(1λ, N),
(s, (u,w), st1)← A(pp) such that (pp, s, u, w) ∈ R, and (pk, vk)← K(pp, s){

st2
∣∣ st2 ← ⟨P ,V∗(st1)⟩((pk, vk), u, w)} ∼= {

st2
∣∣ st2 ← S(pp, s, u, st1)}

where st2 denotes the output of V∗ after interaction. An argument of knowledge
satisfies honest-verifier zero-knowledge (HVZK) if it satisifes zero-knowledge un-
der an honest (but curious) verifier that behaves according to the interactive
protocol but produces arbitrary output on the side.

A.6 Incrementally Verifiable Computation
Definition 27 (Incrementally verifiable computation (IVC)). An in-
crementally verifiable computation (IVC) scheme is defined by PPT algorithms
(G,P,V) and deterministic K denoting the generator, the prover, the verifier,
and the encoder respectively, with the following interface

• G(1λ, N) → pp: on input security parameter λ and size bounds N , samples
public parameters pp.

• K(pp, F) → (pk, vk): on input public parameters pp, and polynomial-time
function F , deterministically produces a prover key pk and a verifier key vk.

• P(pk, (i, z0, zi), ωi,Πi) → Πi+1: on input a prover key pk, a counter i, an
initial input z0, a claimed output after i iterations zi, a non-deterministic
advice ωi, and an IVC proof Πi attesting to zi, produces a new proof Πi+1

attesting to zi+1 = F (zi, ωi).

• V(vk, (i, z0, zi),Πi) → {0, 1}: on input a verifier key vk, a counter i, an
initial input z0, a claimed output after i iterations zi, and an IVC proof Πi

attesting to zi, outputs 1 if Πi is accepting, and 0 otherwise.

41

An IVC scheme (G,K,P,V) satisfies the following requirements.

1. Perfect Completeness: For any PPT adversary A

Pr

V(vk, (i+ 1, z0, zi+1),Πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
F, (i, z0, zi,Πi)← A(pp),
(pk, vk)← K(pp, F),
zi+1 ← F (zi, ωi),
V(vk, i, z0, zi,Πi) = 1,
Πi+1 ← P(pk, (i, z0, zi), ωi,Πi)

 = 1

where F is a polynomial-time computable function represented as an arith-
metic circuit.

2. Knowledge Soundness: Consider constant n ∈ N. For all expected polynomial-
time adversaries P∗ there exists an expected polynomial-time extractor E such
that

Pr
r


zn = z where
zi+1 ← F (zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ, N),
(F, (z0, zi),Π)← P∗(pp, r),
(pk, vk)← K(pp, F),
V(vk, (n, z0, z),Π) = 1,
(ω0, . . . , ωn−1)← E(pp, r)

 ≈ 1

where r denotes an arbitrarily long random tape. Moreover, F is a polynomial-
time computable function represented as an arithmetic circuit.

3. Succinctness: The size of an IVC proof Π is independent of the number of
iterations n.

B Achieving non-interactivity for multi-folding schemes
Construction 3 (Fiat-Shamir transformation for multi-folding schemes).
Consider a public-coin multi-folding scheme Π = (G,K,P,V) for (R1,R2, compat, µ, ν)
with ℓ rounds. Let ρ denote a random oracle. We construct a non-interactive
multi-folding scheme Π ′ = (G′,K′,P ′,V ′) for (R1,R2, compat, µ, ν) in the ran-
dom oracle model as follows.

• G′(1λ, N)→ pp: Compute and output pp← G(1λ, N).

• K′(pp, s)→ pp:

1. Compute (pk, vk)← K(pp, s).

2. Compute hs← ρ(pp, s).

3. Output (pk′, vk′)← ((pk, hs), (vk, hs)).

• P ′(pk′, (u⃗1, u⃗2), (w⃗1, w⃗2)):

1. Parse pk′ as (pk, hs)

2. Run P(pk, (u⃗1, u⃗2), (w⃗1, w⃗2)). On the ith message mi, respond with veri-
fier randomness ri+1 ← ρ(mi, ri) where r1 = hs. Let (u,w) be the output
of P and let π = (m1, . . . ,mℓ) consist of messages from P.

42

3. Send π to the verifier.

4. Output (u,w).

• V ′(vk′, (u⃗1, u⃗2)):

1. Parse vk′ as (vk, hs)

2. Receive π = (m1, . . . ,mℓ) from the prover. Compute ri+1 ← ρ(mi, ri)
for r1 = hs.

3. Run V(vk, (u⃗1, u⃗2)) with randomness (r1, . . . , rℓ+1). In round i, send the
prover message mi. Let u be the output of V.

4. Output u.

The Fiat-Shamir transformation affords Lemma 1.

C Additional related work
Halo [13] and its generalization in [19] propose a way to realize IVC (and proof-
carrying data [2,8]) using SNARKs whose verifiers support the so-called accu-
mulation schemes. Halo2 [14] switches the polynomial IOP in Halo [13] from
Sonic [46] to Plonk [28]. Unfortunately, it incurs substantial prover costs as the
prover must produce a SNARK using Plonk at each step of the program execu-
tion. Furthermore, the prover incurs O(n · d) cryptographic operations, where
n is the size of the circuit at each step and d is the maximum degree of con-
straints proven. Switching from Plonk to HyperPlonk [20] would reduce the
cryptographic operations to O(n), but it does not avoid the need to produce a
SNARK. Split accumulation [18] avoids succinct arguments (e.g., SNARKs) to
construct IVC or PCD. Unfortunately, their construction targets R1CS. It is
not clear how to extend it to handle Plonkish without making the prover incur
O(n · d) cryptographic operations, which, as noted above, is undesirable.

Buffet [65], building on Pantry [16] and Ben-Sasson et al. [6], avoids the high
cost of universal circuits yet supports a general class of programs. For exam-
ple, Buffet supports any program in the C programming language as long as it
neither invokes goto statements nor uses function pointers. Furthermore, Buffet
provides an “a la carte” cost profile where the prover’s proof generation costs
are proportional only to the sum of sizes of circuits of the operations invoked
by the program execution. However, Buffet adopts a “line-by-line compilation”
approach [59,15,51,16], where it unrolls programs into non-uniform circuits by
translating each program statement into a concise set of constraints. Unfortu-
nately, this approach requires static bounds on program execution lengths. More
importantly, it is unclear how to prove the satisfiability of unrolled non-uniform
circuits in an incremental fashion. Furthermore, although general, it is unclear
how to use Buffet’s approach to prove program executions on a stateful machine
without producing a non-uniform circuit for each program. Having a separate
circuit for each program is undesirable in practice as it is not clear how in that
model one program can invoke another program (a la “composability”).

43

A work that follows Buffet, called vRAM [70], achieves Buffet-like costs for pro-
gram executions on vnTinyRAM [5], a RAM machine with a minimal instruction
set. In particular, during program execution, at the granularity of a processor cy-
cle, vRAM uses a “trimmed” version of the vnTinyRAM universal circuit where
the trimmed version eliminates circuit elements corresponding to instructions
that were not invoked. Unfortunately, like Buffet, this approach is not incremen-
tal. Specifically, it requires proving that certain global invariants hold over the
entire trace of program execution (e.g., to prove that the trimmed version of the
circuit is correct), using randomized fingerprinting techniques. As with Buffet,
it is unclear how to prove these global invariants hold in an incremental fash-
ion. Furthermore, this approach reveals, for each program execution, the number
of invocations of each instruction supported by the machine to the verifier, so
vRAM’s approach does not ensure zero-knowledge.

MIRAGE [36] adapts vRAM’s techniques in the context of Groth’s SNARK [32]
(vRAM uses a CMT-based argument [22]). Like vRAM, MIRAGE still relies on
proving invariants over the entire execution trace via fingerprinting techniques,
making its techniques incompatible with incremental proof systems.

C.1 Subsequent works
There are several works following the initial preprint of this work. We now pro-
vide a detailed comparison.

(1) PCD. Zhou et al. [73] show that HyperNova naturally extends to provide a
generalization of IVC called PCD [8,19,18].

(2) Protostar and ProtoGalaxy.

• Like HyperNova, Protostar [17] provides a folding scheme for high-degree
constraints. Protostar achieves a similar prover efficiency as HyperNova. Al-
though Protostar does not explicitly invoke the sum-check protocol, its fold-
ing procedure performs the same amount of commitment work and finite
field operations, so it implicitly invokes a sum-check-like procedure.

• When folding two instances, Protostar’s verifier circuit performs three group
scalar multiplications whereas HyperNova does only one. On the other hand,
HyperNova performs O(d · logm) hashes where d is the degree of constraints
and m is the number of constraints folded, and Protostar performs O(d)
hashes. When using SNARK-friendly hash functions (e.g., Poseidon), the
hashing cost difference between HyperNova and Protostar is concretely small.

• HyperNova can fold k > 2 instances at once, which makes it easy to realize
PCD [73]. On the other hand, Protostar folds only two instances at once.
Extending it fold k > 2 instances at once blows up the degree of the polyno-
mial involved exponentially in k [25, §1.2]. ProtoGalaxy [25] provides details
of this, and avoids avoids this issue by essentially leveraging the sum-check
protocol in a different way than in HyperNova. However, like HyperNova, it
requires a logarithmic number of hashes in the verifier circuit [25, Table 1].

44

• Protostar does not describe how to instantiate it on a cycle of elliptic curves
nor provide a zero-knowledge layer, whereas HyperNova includes both.

• Protostar describes how to integrate the logUp lookup argument [33] into
IVC. One can easily integrate HyperNova with logUp as well as more recent
lookup arguments (e.g., Lasso [58]). Since Lasso encodes lookups as sum-
check instances, HyperNova can integrate with Lasso by including the lookup
sum-check instances alongside HyperNova’s sum-check instances for CCS.

• Protostar designs its folding scheme for special-sound protocols whereas Hy-
perNova targets CCS. Both are equivalent as one can represent the verifier
of the special-sound protocol as a CCS instance with standard transforma-
tions (e.g., after making the special-sound protocol non-interactive with Fiat-
Shamir transformation) [62, §6]. Once that is done, a folding scheme for CCS
can be applied. Note that Protostar too turns its special-sound protocols non-
interactive protocols.

(2) KiloNova. KiloNova [72] extends HyperNova to achieve non-uniform PCD
(a generalization of non-uniform IVC introduced in this paper). But, there are
fundamental problems. Its folding verifier’s runtime is linear in the size of the
NP instance (step-13 of Construction-1 folds CCS matrices), which makes it
unsuitable for IVC, let alone PCD. In IVC, the folding-scheme verifier’s runtime
is O(|F ′|), where F ′ is an augmented circuit. This causes a well-known sizing
issue because F ′ must include the folding verifier as a sub-circuit. KiloNova
does separately suggest an optimization that may (inadvertently) resolve this
issue. It is neither specified nor proven. Their scheme fundamentally relies on
the ability to efficiently fold commitments to sparse CCS matrices, which is
necessary for IVC/PCD. Unfortunately, the “natural” fix of committing to sparse
CCS matrices such that they can be folded is an open problem: existing sparse
polynomial commitments do not provide homomorphic commitments, or require
(impractical) quadratic-sized parameters.

D Details of HyperNova’s zero-knowledge and succinct-
ness layer

In this section, we formally construct and prove HyperNova’s zero-knowledge and
succinctness layer. Recall that our goal is to design a zero-knowledge argument
for the following relation.

RVNIVC =

{
(pp, (F1, . . . , Fℓ, φ), (i, z0, zi),Π)

∣∣∣∣ vk← NIVC.K(pp, (F1, . . . , Fℓ, φ)),
NIVC.V(vk, (i, z0, zi),Π) = 1

}
D.1 Building blocks: randomizing and hiding folding schemes
We begin by defining randomizing folding schemes, a central building block for
our zero-knowledge layer. We then demonstrate that the Nova folding scheme
for relaxed R1CS features a stronger hiding property, which we will additionally
leverage in our construction.

45

Definition 28 (Randomizing). A multi-folding scheme (G,K,P,V) for
(R1,R2, compat, µ, ν) is randomizing if there exists a sampling algorithm sampleR1

for instance-witness pairs in R1 such that for any expected polynomial-time ad-
versary A given pp ← G(λ,N) and ((s1, s2), (u⃗1, w⃗1), (u⃗2, w⃗2)) ← A(pp) such
that compat(s1, s2) = 1, (pp, s1, u⃗1, w⃗1) ∈ Rµ−1

1 , and (pp, s2, u⃗2, w⃗2) ∈ Rν
2 we

have that{
(pp, s1, u, w)

∣∣∣ (u,w) $← sampleR1
(pp, s1)

}
∼= (pp, s1, u, w)

∣∣∣∣∣∣
(ur, wr)

$← sampleR1
(pp, s1),

(pk, vk)← K(pp, (s1, s2)),
(u,w)← ⟨P ,V⟩((pk, vk), ((ur, u⃗1), u⃗2), ((wr, w⃗1), w⃗2))

 .

Lemma 8 (Folding CCS is randomizing). Construction 1 is randomizing.

Proof. We begin by describing a sampling algorithm for linearized committed
CCS.

sampleLCCCS(pp, s)→ (u,w):

(1) Parse size bounds t, ℓ, s′ ∈ N from s.

(2) Let matrices M̃1, . . . , M̃t be parsed from the LCCCS structure s.

(3) Randomly sample partial instance (u, x, r) ∈ (F,Fℓ,F) and witness w̃ ∈
F2s

′−1 .

(4) For i ∈ [t], compute

vi ←
∑

y∈{0,1}s′
M̃i(r, y) · z̃(y)

where z̃ is an s′-variate multilinear polynomial such that z(x) = ˜(w, u, x)(x)
for all x ∈ {0, 1}s′ .

(5) Sample rw̃ ← F and compute C ← Commit(pp, w̃, rw̃)

(6) Compute and output u← (C, (u, x, r, v1, . . . , vt)) and w← (w̃, rw̃).

Now, consider a linearized committed CCS instance-witness pair (C, (u, x, r, v1, . . . , vt))
and (w̃, rw̃) that is folded into arbitrary chosen instance-witness pairs.

By Step 7 of the folding scheme for CCS, we have that the folded linearized
committed CCS instance is computed by taking a random linear combination of
all incoming linearized CCS instances (and CCS instances reduced to linearized
CCS instanced by the sumcheck protocol). Thus, we have that the folded terms C,
u, and x are indistinguishable from random. Similarly we have that the folded
witness w̃ is indistinguishable from random. Moreover, by construction of the
sumcheck protocol we have the updated random value r′x is also indistinguishable

46

from random. Finally, we have that the terms vj for j ∈ [t] are completely
determined by the prior values. Therefore, we have that the folded instance-
witness pair is indistinguishable from one sampled randomly.

Construction 4 (A folding scheme for committed relaxed R1CS [41]).
Consider a finite field F and a succinct, hiding, and homomorphic commitment
scheme Commit over F. We define the generator and the encoder as follows.

• G(1λ, (m,n, ℓ ∈ N))→ pp: output commitment parameters ppW and ppE for
vectors of size m and m− ℓ− 1 respectively.

• K(pp, (A,B,C))→ (pk, vk): output pk← (pp, (A,B,C)) and vk← ⊥.

The verifier V takes two committed relaxed R1CS instances (E1, u1,W 1, x1)
and (E2, u2,W 2, x2). The prover P, in addition to the two instances, takes wit-
nesses to both instances, (E1, rE1

,W1, rW1
) and (E2, rE2

,W2, rW2
). Let Z1 =

(W1, x1, u1) and Z2 = (W2, x2, u2). The prover and the verifier proceed as fol-
lows.

1. P: Send T := Commit(ppE , T, rT), where rT
$← F and with cross term

T = AZ1 ◦BZ2 +AZ2 ◦BZ1 − u1 · CZ2 − u2 · CZ1.

2. V: Sample and send challenge r
$← F.

3. V,P: Output the folded instance (E, u,W, x) where

E ← E1 + r · T + r2 · E2

u ← u1 + r · u2

W ←W 1 + r ·W 2

x ← x1 + r · x2

4. P: Output the folded witness (E, rE ,W, rW), where

E ← E1 + r · T + r2 · E2

rE ← rE1
+ r · rT + r2 · rE2

W ←W1 + r ·W2

rW ← rW1
+ r · rW2

Construction 5 (Sampling randomized relaxed R1CS). We now provide
an algorithm to sample randomized relaxed R1CS instance-witness pairs.

sampleRR1CS(pp, s)→ (u,w):

1. Parse s as matrices (A,B,C).

47

2. Sample random (W, x, u, rE , rW);

3. Compute E ← AZ ·BZ − u · CZ, where Z = (W, x, u);

4. Compute (E,W)← (Commit(pp, E, rE),Commit(pp,W, rW)), where rE and
rW are sampled randomly; and

5. output instance (E, u,W, x) and witness (E, rE ,W, rW).

Lemma 9 (Folding R1CS is hiding). Consider the folding scheme (G,K,P,V)
for relaxed R1CS from Construction 4. Then for any honest-but-curious deter-
ministic V∗ there exists an EPT simulator S such that for all PPT adversary A
for pp ← G(1λ, N), (s, u1,w1) ← A(pp) such that (pp, s, u1,w1) ∈ RRR1CS, and
(pk, vk)← K(pp, s){

(st2,w2)

∣∣∣∣∣ (urb,wrb)
$← sampleRR1CS(pp, s)

(st2,w2)← ⟨P ,V∗⟩((pk, vk), (u1, urb), (w1,wrb))

}
∼={
(st2,w2)

∣∣ (st2,w2)← S(pp, s, u1)
}
.

where st2 represents the (arbitrary) output of V∗.

Proof. Consider an honest-but-curious PPT adversary V∗. To prove hiding, we
construct an EPT simulator S which simulates the joint distribution of the ver-
ifier’s output and the prover’s output witness as follows.

S(pp, (A,B,C), (E, u,W, x))→ ((E
′
, u′,W

′
, x′), (E′, rE′ ,W ′, rW ′), π):

1. Sample the input blinding statement-witness pair (Eblind, ublind,W blind, xblind).

2. Sample the folded statement-witness pair ((E′, u′,W ′, x′), (E′, rE′ ,W ′, rW ′)).

3. Sample the verifier’s challenge r
$← F

4. Solve for the prover’s first message T ← r−1 · (E′ − E − r2 · Eblind)

5. Run the verifier V∗ on input vk, instances (E, u,W, x) and (Eblind, ublind,W blind, xblind).
Let st′ be the output of V∗. Instantiate the verifier randomness to r and send
the first message T .

6. Output st′ and (E′, rE′ ,W ′, rW ′)

We now argue that the simulator (i.e. ideal setting) produces an output that
is indistinguishable from the prover and verifier output (i.e. the real setting).
Indeed, consider arbitrary adversary A. Suppose that

pp← G(1λ, N)

((A,B,C), (E, u,W, x), (E, rE ,W, rW))← A(pp)
(pk, vk)← K(pp, (A,B,C))

48

In both the real and ideal setting (Eblind, ublind,W blind, xblind) are randomly sam-
pled from the blinding distribution and therefore is indistinguishable.

In the honest setting, by construction, we have that

W ′ ←W + r ·Wblind

x′ ← x+ r · xblind
u′ ← u+ r · ublind

Because Wblind, xblind, and ublind are uniformly random, we have that W ′, x′, and
u′ are uniformly random. Moreover, r′E and r′W are computed as follows.

r′E ← rE + r · rT + r2 · rEblind

r′W ← rW + r · rWblind

By the same argument as above, we have that r′E and r′W are uniformly random.

Then, we have that E′, E
′, and W

′ are completely determined by the prior
values. Therefore, because W ′, x′, u′, r′E and r′W are also randomly sampled
in the idealized setting. we have that the folded instance ((E

′
, u′,W

′
, x′) and

corresponding witness (E′, rE′ ,W ′, rW ′)) are indistinguishable in both the real
and ideal setting.

Moreover, because the verifier V∗ interacts honestly with the prover, the chal-
lenge r sampled by V∗ in the real setting is indistinguishable from the challenge
r sampled by S in the ideal setting.

Then, because T is completely determined by prior values in both the real and
ideal setting, we have that T is indistinguishable in both the real and ideal
setting.

This implies that the view of the verifier V∗ is indistinguishable in both the real
and ideal setting. Therefore, the output st′ is indistinguishable in both the real
and ideal setting.

Putting everything together, we have that the simulator output is indistinguish-
able from that of the interaction between the honest prover and V∗.

D.2 Core construction
We now formally define a zero-knowledge argument for RVNIVC.

Construction 6 (A zero-knowledge argument for RVNIVC). We construct
a zero-knowledge argument of a valid HyperNova proof. Let NIFS be the non-
interactive multi-folding scheme underlying HyperNova for (R1,R2, compat, ν, µ)
that satisfies randomization and where R2 is a committed relation with respect
to a hiding commitment scheme. Let sampleR1

be the corresponding sampling
algorithm for NIFS guaranteed by the randomization property. Let sampleRR1CS
be the sampling algorithm corresponding to relaxed R1CS (Construction 5). Let

49

Nova be the zero-knowledge non-interactive multi-folding scheme for relaxed
R1CS.

We first construct a blinding circuit blind that takes as input the non-interactive
folding scheme’s verifier key vkNIFS , the NIVC statement (i, z0, zi), and as non-
deterministic input a list of running instances U, an instance u, index pc, a
folding proof π for u, random instances Ur, and corresponding folding proofs
(π1, . . . , πℓ). It outputs an updated list of running instances U′.

blind((vkNIFS, (i, z0, zi)); (U, u, pc, π),Ur, (π1, . . . , πℓ))→ U′:

1. Parse u as (C, u′), i.e., the part that commits to the witness and the remain-
der.

2. Check that u′ = encinst(hash(vkNIFS, i, z0, zi,U, pc)).

3. Check that 1 ≤ pc ≤ ℓ.

4. Fold in the fresh instance: U[pc]← NIFS.V(vkNIFS[pc],U[pc], u, π).

5. For j ∈ [ℓ], compute U′[j]← NIFS.V(vkNIFS[j],U[j],Ur[j], πj)

6. Output U′.

We define the zero-knowledge argument (G,K,P,V) as follows.

G(1λ, N)→ pp:

1. Output (ppNIVC, ppNova)← (NIFS.G(1λ, N),Nova.G(1λ, N)).

K(pp, (φ, (F1, . . . , Fℓ)))→ (pk, vk):

1. Compute (pkNIFS, vkNIFS)← NIFS.K(ppNIFS, (φ, (F1, . . . , Fℓ))).

2. Compute sblind ← encstr(blind).

3. Compute (pkNova, vkNova)← Nova.K(ppNova, sblind)

4. Compute and output

vk← (pp, (pkNIFS, vkNIFS), (pkNova, vkNova))

pk← vk

P(pk, (i, z0, zi),Π):

1. If i = 0: Output ⊥.

2. Parse Π as ((U,W), (u,w), pc).

3. Update (U[pc],W[pc], π)← NIFS.P(pkNIFS[pc], (U[pc],W[pc]), (u,w))

4. Sample ℓ randomized running instance-witness pairs (Ur,Wr) in R1 with
respect to the structures corresponding to F ′1, . . . , F

′
ℓ .

50

5. For j ∈ [ℓ], compute

(U′[j],W′[j]), πj ← NIFS.P(pkNIFS[j], (U[j],Ur[j]), (W[j],Wr[j]))

6. Compute a relaxed R1CS instance-witness pair corresponding to the execu-
tion of blind

(upartialblind ,wpartial
blind)← enc(blind, ((vkNIFS, (i, z0, zi)),U

′), (vkNIFS, (i, z0, zi), (U, u, pc, π),Ur, (π1, . . . , πℓ)))

7. Sample randomness r and let wblind ← (wpartial
blind , r) compute the committed

instance
ublind ← (Commit(pp,wblind), u

partial
blind).

8. Sample a randomized committed relaxed R1CS instance-witness pair (urb,wrb)
with respect to the structure corresponding to blind.

9. Send ublind and urb to the verifier.

10. Interactively randomize the instance-witness pair corresponding to the exe-
cution of blind

(u′blind,w
′
blind)← Nova.P(pkNova, (ublind,wblind), (urb,wrb)).

11. Send (w′blind,W
′) to the verifier.

V(vk, (i, z0, zi))→ {0, 1}:

1. If i = 0: Output 1 if z0 = zi and 0 otherwise.

2. Receive ublind and urb from the prover.

3. Check that enc−1inst(ublind) references vkNIFS and (i, z0, zi).

4. Parse U′ from enc−1inst(ublind).

5. Interactively randomize ublind:

u′blind ← Nova.V(vkNova, ublind, urb)

6. Receive (w′blind,W
′) from the prover.

7. Check the randomized instance attests to the correct execution of blind

(pp, sblind, u
′
blind,w

′
blind) ∈ RRR1CS

where sblind is the structure corresponding to blind.

8. For j ∈ ℓ, check that

(pp, sF ′
j
,U′[j],W′[j]) ∈ R1

where sF ′
j

is the structure corresponding to F ′j .

51

D.3 Proof of Properties
We now prove that Construction 6 is a zero-knowledge argument of knowledge.
In particular, the goal of this section is to prove the following theorem.

Theorem 5 (A zero-knowledge argument for RVNIVC). Construction 6 is
an honest-verifier zero-knowledge argument of knowledge for RVNIVC.

The proof of Theorem 5 can be decomposed into the following lemmas. We sketch
the proof for completeness and knowledge soundness, and give a full proof for
honest-verifier zero-knowledge.

Lemma 10. Construction 6 satisfies completeness and knowledge soundness.

Proof (Sketch). The completeness and knowledge soundness of Construction 6
follows from the completeness and knowledge soundness of the underlying folding
scheme. In particular, the proof proceeds similarly to that of Theorem 4 which
also has the prover demonstrate the correct execution of the folding verifier, by
demonstrating knowledge of a valid instance-witness pair for a circuit containing
the folding verifier (albeit recursively).

Lemma 11 (Zero-Knowledge). Construction 6 satisfies honest-verifier zero-
knowledge.

Proof. To prove honest-verifier zero-knowledge we must construct a simulator
(without access to the witness) that can produce a computationally equivalent
transcript to that of an honest prover and verifier. At a high-level, we observe
that all running instances are randomized by blind and thus can be simulated.
The instance ublind attesting execution of blind is itself randomized by Nova, and
thus the corresponding proof of valid randomization and randomized witness can
be simulated due to the hiding property of the Nova folding scheme.

Indeed, consider an honest-but-curious PPT adversary V∗. We begin by con-
structing an honest-but-curious PPT adversary V∗Nova for the underlying Nova
folding scheme.

V∗Nova(vkNova, ublind, urb)→ st2

1. Compute
u′blind ← Nova.V(vkNova, ublind, urb)

and record the transcript as πblind.

2. Output (vk, ublind, urb, u
′
blind, πblind).

Given V∗novafold let SNova be the corresponding hiding simulator for Nova guaran-
teed by Lemma 9. We construct the desired simulator as follows.

S(pp, (F1, . . . , Fℓ, φ), (i, z0, zi))→ π:

52

1. Compute the prover and verifier key

(pk, vk)← K(pp, (F1, . . . , Fℓ, φ))

2. Compute the structure corresponding to the blind circuit:

sblind ← encstr(blind).

3. Simulate the running instance-witness pairs (U′,W′) with respect to the
structures corresponding to F ′1, . . . , F

′
ℓ :

(U′[j],W′[j])← sampleR1
(pp, encstr(F

′
j)).

4. Simulate a relaxed R1CS instance corresponding to the blinding step that
outputs the randomized running instances U′:

upartialblind ← encinst(((vkNIFS, (i, z0, zi)),U
′)).

5. Sample commitment randomness r and simulate the full instance:

ublind ← (Commit(pp,⊥, r), upartialblind).

6. Simulate the randomized instance-witness pair attesting to the correct exe-
cution of blind and the corresponding proof of correct randomization:

((urb, u
′
blind, πblind),w

′
blind)← SNova(pp, sblind, ublind).

7. Run the V∗(vk, (i, z0, zi)) with randomness instantiated to the randomness
found in the verifier’s message in πblind:

(a) Send (ublind, urb) as the first message to V∗.

(b) Send prover’s message in πblind as the second message to V∗.

(c) Send w′blind and W′ as the third message to V∗.

(d) Let st2 be the output of V∗.

8. Output st2.

We now demonstrate that the simulated proof is computationally equivalent
to that of an honest interaction. Consider arbitrary PPT adversary A. Consider
public parameters pp← G(1λ, N) and consider the following adversarially chosen
structure, instance and witness pair:

((F1, . . . , Fℓ, φ), (i, z0, zi),Π)← A(pp)

Consider the prover key and verifier key (pk, vk) ← NIVC.K(pp, (F1, . . . , Fℓ, φ))
and suppose that

NIVC.V(vk, (i, z0, zi),Π) = 1.

53

Now, consider the following distribution, which represents the result of an honest
interaction.  st2

∣∣∣∣∣∣∣∣
(ublind, urb)← P(pk, (i, z0, zi),Π),
r ← V∗(vk, (i, z0, zi), (ublind, urb))
T , (w′blind,W

′)← P(r)
st2 ← V∗(T , (w′blind,W′))


By construction, we have that P first randomly samples (urb,wrb) and then folds
it into (ublind,wblind) to produce the randomized instance-witness pair (u′blind,w′blind)
and corresponding interactive proof πblind = (r, T). Moreover, by construction of
Nova, The terms urb, u′blind, πblind, and w′blind are uncorrelated with U′ and W′.
Then, by the hiding property of the Nova folding scheme (Lemma 9) and by the
construction of V∗Nova, we have that SNova can simulate ((urb, u

′
blind, πblind),w

′
blind)

with respect to the same verifier key vknovafold and instance ublind. Therefore, the
prior distribution is computationally equivalent to the following distribution.


st2

∣∣∣∣∣∣∣∣∣∣∣∣

ublind ← P(pk, (i, z0, zi),Π),
sblind ← encstr(blind),
(urb, (r, T),w

′
blind)← SNova(pp, sblind, ublind),

r ← V∗(vk, (i, z0, zi), (ublind, urb))
W′ ← P(r)
st2 ← V∗(T , (w′blind,W′))


.

Next, we have that upartialblind is completely determined by vkNIFS, (i, z0, zi), and U′.
Then, because ublind only additionally contains a hiding commitment we have
have that it can be simulated by randomly sampling a commitment. Crucially,
even though ublind is no longer guaranteed to be satisfying, we have that SNova
cannot distinguish this fact, and thus performs as if ublind is satisfying. In partic-
ular, letting U′ be the result of parsing the internal state of P, we have that the
following distribution is computationally equivalent to the former distribution.


st2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U′ ← P(pk, (i, z0, zi),Π),

upartialblind ← encinst(((vkNIFS, (i, z0, zi)),U
′)),

ublind ← (Commit(pp,⊥, r), upartialblind),
sblind ← encstr(blind),
(urb, (r, T),w

′
blind)← SNova(pp, sblind, ublind),

r ← V∗(vk, (i, z0, zi), (ublind, urb))
W′ ← P(r)
st2 ← V∗(T , (w′blind,W′))


.

Moreover, by the randomization property of the underlying multi-folding scheme,
we have that (U′,W′) produced by the prover is indistinguishable from one an
instance-witness pair sampled randomly. Therefore, we have that the prior dis-

54

tribution is equivalent to the following distribution.
st2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(U′,W′) sampled randomly,
upartialblind ← encinst(((vkNIFS, (i, z0, zi)),U

′)),

ublind ← (Commit(pp,⊥, r), upartialblind),
sblind ← encstr(blind),
(urb, (r, T),w

′
blind)← SNova(pp, sblind, ublind),

r ← V∗(vk, (i, z0, zi), (ublind, urb))
st2 ← V∗(T , (w′blind,W′))


.

However, the above distribution precisely follows the construction of the sim-
ulator. Therefore, we have that that the above distribution is computationally
equivalent to the following distribution.{

st2
∣∣ st2 ← S(pp, (F1, . . . , Fℓ, φ), (i, z0, zi))

}
.

Thus, we have demonstrated that the output of the simulator is computationally
equivalent to that of an honest (but curious) interaction.

E Details of HyperNova over a cycle of elliptic curves
Let (G1,G2) denote a 2-cycle of elliptic curves, where each curve in the cycle can
be used as cryptographic group (i.e. the discrete logarithm problem is hard). Let
Fp and Fq respectively denote the scalar field and the base field of G1. Naturally,
Fq and Fp respectively denote the scalar field and the base field of G2.

Suppose RLCCCS and RCCCS are both defined over Fp (i.e., the scalar field of
G1) and RCRR1CS is defined over Fq (i.e., the scalar field of G2). We provide a
multi-folding scheme for

(R1 = RLCCCS ×RCRR1CS,R2 = RCCCS, compat, µ = 1, ν = 1)

where the compat predicate is defined below.
Overview. Our goal is to modify the folding scheme for CCS (Construction 1)
such that it can be efficiently instantiated on a cycle of elliptic curves. For
simplicity, we describe and prove the case of µ = ν = 1. However, both the
construction and proofs naturally generalize to the case of arbitrary values of µ
and ν. In particular, the generalized version simply uses additional powers of a
random challenge when combining claims (as in Construction 1).

Suppose that the prover and the verifier are given as input a tuple consisting of
a linearized committed CCS instance and a committed relaxed R1CS instance
(ULCCCS,UCRR1CS), and a committed CCS instance uCCCS. The prover additionally
takes as input witnesses (WLCCCS,WCRR1CS) and wCCCS.

The original folding scheme verifier folds the committed CCS instance uCCCS into
the the linearized committed CCS instance ULCCCS to produce a new linearized
committed CCS instance U′LCCCS. Internally, this involves finite field and hash

55

operations. In addition, it involves one scalar multiplication and point addition.
In particular, provided commitment C1 in the linearized committed CCS in-
stance ULCCCS and commitment C2 in the committed CCS instance uCCCS, the
HyperNova verifier, picks a random challenge ρ, and computes in Step 7

C ′ ← C1 + ρ · C2.

Unfortunately, this computation makes it inefficient to represent the original
verifier over the same curve that represents the computations that it verifies. To
address this, we modify the original verifier to take the resulting value C ′ as
non-deterministic advice. Of course, this advice must be verified.

To do so, the prover generates a relaxed R1CS instance that represents the
random linear combination during the original folding protocol. In more detail,
let sEC = (A,B,C) denote a committed relaxed R1CS structure defined over Fq.
Its public IO consists of (ρ,C1, C2, C

′), where ρ ∈ Fp, C1 ∈ G1, C2 ∈ G1, C
′ ∈ G1.

This constraint system enforces that C ′ = C1 + ρ · C2, where + is the elliptic
curve point addition and · is the elliptic curve scalar multiplication operation in
G1. Since Fq is the base field of G1, sEC computes the required point addition
and scalar multiplication operations “natively” with a concise set of constraints
(i.e., without the “wrong field” arithmetic).

We modify the original verifier to read the inputs and outputs of this relaxed
R1CS instance (rather than computing the random linear combination itself).
Instead of directly checking this instance, it is folded into a running relaxed
R1CS instance using the folding scheme underlying Nova [41]. Note that this
auxiliary computation is represented on the second curve in the cycle. Thus, the
Nova verifier can be natively represented over the first curve alongside the rest
of the original verifier.

Putting everything together, we achieve a folding scheme that takes a committed
CCS instance and folds it into a linearized CCS instance and a relaxed R1CS
instance to produce a new linearized CCS instance and a relaxed R1CS instance.

Construction 7 (A multi-folding scheme for CCS over cycles). We con-
struct a multi-folding scheme for (R1 = RLCCCS×RCRR1CS,R2 = RCCCS, compat, µ =
1, ν = 1), where compat is defined as follows.

compat(s1, s2)→ {true, false}

1. Parse s1 as (sLCCCS, sRR1CS)

2. Check that sLCCCS = s2 and sRR1CS = sEC

Let PC = (Gen,Commit,Open,Eval) denote an additively-homomorphic poly-
nomial commitment scheme for multilinear polynomials over Fp. Let VC =
(Gen,Commit,Open) denote an additively-homomorphic commitment scheme with
succinct commitments for vectors over Fq.

56

We define the generator and the encoder as follows.

G(1λ, (m,N, ℓ, t, q, d ∈ N))→ pp:

1. Let n = 2 · (ℓ+ 1)

2. ppPC ← PC.Gen(1λ, log n− 1)

3. ppVC ← VC.Gen(1λ, |sEC|), where |sEC| is the maximum among the number
of constraints or the number of witness variables in sEC.

4. Output (m,n,N, ℓ, t, q, d, |sEC|, ppPC, ppVC)

K(pp, (([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq])), (A,B,C))→ (pk, vk):

1. pk← (pp, (([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq])), (A,B,C))

2. vk← ⊥

3. Output (pk, vk)

The verifier V takes a tuple consisting of a linearized committed CCS instance
and a committed relaxed R1CS instance (ULCCCS,UCRR1CS), where ULCCCS =
(C1, u, x1, rx, v1, . . . , vt) and UCRR1CS = (E1, u1,W 1, x1), and a committed CCS
instance uCCCS = (C2, x2). The prover P, in addition to these instances, takes
witnesses to all instances, WLCCCS = w̃1, WCRR1CS = (E1,W1), and wCCCS = w̃2.

Let s = logm and s′ = log n. Let z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2).

The prover and the verifier proceed as follows.

1. V → P : V samples γ
$← Fp, β

$← Fs
p, and sends them to P.

2. V: Sample r′x
$← Fs

p.

3. V ↔ P : Run the sum-check protocol c← ⟨P ,V(r′x)⟩(g, s, d+1,
∑

j∈[t] γ
j · vj),

where:

g(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

Lj(x) := ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)


Q(x) := ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)



57

4. P → V : ((σ1, . . . , σt), (θ1, . . . , θt)), where for all i ∈ [t]:

σi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y)

θi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃2(y)

5. V: Compute e1 ← ẽq(rx, r
′
x) and e2 ← ẽq(β, r′x), and check that

c =

∑
j∈[t]

γj · e1 · σj + γt+1 · e2 ·

 q∑
i=1

ci ·
∏
j∈Si

θj



6. V → P : V samples ρ
$← Fp and sends it to P.

7. P → V : P computes a committed relaxed R1CS instance uCRR1CS = (E2, u2,W 2, x2)
with structure sEC and witness wCRR1CS = (E2,W2) to compute the quantity
C1 + ρ · C2, such that the following hold: (1) u2 = 1, (2) E1 = 0, and (3)
x2 = (ρ,C1, C2, C

′) for some C ′ ∈ G1. P then sends uCRR1CS to V.

8. V: Check that E2 = 0, u2 = 1, and x2 = (ρ,C1, C2, C
′) for some C ′ ∈ G1.

9. P → V : Send T = VC.Commit(ppVC, T), where T = AZ1◦BZ2+AZ2◦BZ1−
u1 · CZ2 − u2 · CZ1, Z1 = (W1, x1, u1), and Z2 = (W2, x2, u2).

10. V → P : V samples ρ⋆
$← Fp and sends it to P.

11. V,P: Output the folded linearized committed CCS instance (C ′, u′, x′, r′x, v′1, . . . , v′t)
and the folded committed relaxed R1CS instance (E

⋆
, u⋆,W

⋆
, x⋆), where for

all i ∈ [t]:

u′ ← u + ρ · 1

x′ ← x1 + ρ · x2
v′i ← σi + ρ · θi
E

⋆ ← E1 + ρ⋆ · T

u⋆ ← u1 + ρ⋆ · 1

W
⋆ ←W 1 + ρ⋆ ·W 2

x⋆ ← x1 + ρ⋆ · x2

12. P: Output the folded witnesses WLCCCS = w̃′ ← w̃1 + ρ · w̃2 and WCRR1CS =
(E⋆,W ⋆), where E⋆ ← E1 + ρ⋆ · T and W ⋆ ←W1 + ρ⋆ ·W2.

We recall Theorem 4 below. We prove correctness in Appendix H.4.

58

Theorem 6 (A multi-folding scheme for CCS over cycles). Construc-
tion 7 is a public-coin multi-folding scheme for (R1 = RLCCCS ×RCRR1CS,R2 =
RCCCS, compat, µ = 1, ν = 1). with perfect completeness and knowledge sound-
ness.

Assumption 2 (Non-interactivity). There exists a non-interactive multi-
folding scheme for (RLCCCS ×RCRR1CS,RCCCS, 1, 1) in the plain model.

Justification. By applying the Fiat-Shamir transformation (Construction 3) to
the multi-folding scheme in Construction 7, we obtain a non-interactive multi-
folding scheme for (RLCCCS ×RCRR1CS,RCCCS, 1, 1) in the random oracle model.
By instantiating the random oracle with an appropriate cryptographic hash func-
tion, we heuristically obtain a non-interactive multi-folding scheme for (RLCCCS×
RCRR1CS,RCCCS, 1, 1) in the plain model.

Given the above multi-folding scheme, we prove that it is IVC-compatible.

Lemma 12 (IVC-compatibility). The non-interactive multi-folding scheme
for (RLCCCS × RCRR1CS,RCCCS, 1, 1) (Construction 7, Assumption 2) is IVC-
compatible.

Proof (Intuition). NP-completeness, partial functions, and monotonicity forRCCS,
the underlying relation of RCCCS, holds by Lemma 3. To show the default in-
stances property, we must show that RLCCCS and RCRR1CS both have default
instances. The former requirement holds by Lemma 3, and the latter require-
ment holds due to Kothapalli et al. [41].

We recall Theorem 2 below.

Theorem 7 (HyperNova over cycles). Given the multi-folding scheme in
Construction 7 instantiated with the Pedersen commitment scheme, Construc-
tion 2 produces an IVC scheme such that for step functions Fj for j ∈ [ℓ] that
can be expressed in CCS with mj constraints of degree d and qj monomials, nj

witness variables, tj CCS matrices, and Nj non-zero entries in CCS matrices,
and control function φ that can be expressed in CCS with m constraints of degree
d and qφ monomials, nφ witness variables, tφ CCS matrices, and Nφ non-zero
entries in the CCS matrices, the efficiency characteristics are as follows.

• The NIVC prover time for each step is a single MSM of size O(nφ+nj) and
O((Nφ +Nj)+ (tφ + tj) · (mφ +mj)+ (qφ + qj) · (mφ +mj) · d · log2 d) finite
field operations

• The size of the verifier circuit is o(|φ|+2 ·G+ (d · logmj) · F+ logmj ·Rd +
2 · Hℓ,tj + 2 ·M) on the first curve and G on the second curve in a cycle of
elliptic curves

59

where G is the number of constraints required to encode a group scalar multi-
plication natively (i.e., without field emulation), H is the number of constraints
required to encode a hash function, F is the number of constraints to encode
field operations, R is the number of constraints to encode a cryptographic hash
function used for randomness, and M is the number of constraints to encode to
memory read/write over a memory of size O(ℓ).

Proof (Intuition). This follows from [41, Lemma 4] and Theorem 3.

F nlookup: A lookup argument for HyperNova
This section describes a lookup argument, which we refer to as nlookup, that is
suitable for use in recursive arguments such as Nova, HyperNova, and others.

Suppose that there is a table T of size n. Now consider m variables v1, . . . , vm
in a CCS instance and we wish to enforce that those values are contained in T .

A classic approach is to store T as a Merkle tree for which the circuit gets as
public input a commitment. Then to prove that a certain value is in T , the
prover could supply as non-deterministic advice to the circuit a Merkle proof
of inclusion, and the circuit verifies the Merkle proof of inclusion. This unfor-
tunately requires O(m · log n) hash evaluations inside the circuit, which is pro-
hibitive. Plookup [27] provides an approach where the number of constraints is
O(max(m,n)), which is acceptable when m ≈ n. It is unsuitable in the context
of recursive SNARKs such as Nova where a particular recursive step may per-
form m << n lookup operations. A recent flurry of works (e.g., see cq [24] for
the latest in this line of work) consider the case where m << n, but it is unclear
how to adapt them to the setting of recursive SNARKs without incurring high
recursion overheads.

We provide a conceptually simple and yet efficient lookup argument, that we
refer to as nlookup. For m lookups on a table of size n entries, nlookup requires
O(m log n) multiplications and O(log n) hash operations inside a circuit (with
small constants) and the prover performs O(n) finite field operations. In partic-
ular, the prover does not commit to any additional polynomials. This lookup
argument is not suitable for accelerating bitwise operations in the circuit model
of computation, but it is a perfect tool for expressing finite state machines effi-
ciently with Nova and HyperNova (e.g., see [60, §2.4]).

nlookup in a nutshell. Without loss of generality, assume that n = 2ℓ. We
can view T as a function from {0, 1}ℓ → F. Furthermore, let T̃ denote the
unique multilinear extension of the function T . In other words, T̃ is a multilinear
polynomial in ℓ variables where the entries in the table are evaluations of T̃
over the Boolean hypercube {0, 1}ℓ. To prove m lookup operations, the prover
specifies m evaluation points q1, . . . , qm over the Boolean hypercube such that
T̃ (qi) = vi for all i ∈ [m]. This requires O(m log n) Booleanity checks in the
circuit to ensure that qi ∈ {0, 1}ℓ for all i ∈ [m].

60

We now devise a multi-folding scheme where the prover and the verifier fold the
task of checking the correctness of m lookup operations into task of checking
an evaluation of T̃ at a single point in its domain. Furthermore, in our context,
the circuit maintains a running claim about an evaluation of T̃ and the folding
scheme folds incoming lookup claims into this running claim.

Suppose that the running claim is T̃ (qr)
?
= vr for some qr ∈ Flog n and vr ∈ F.

At initialization, qr can be arbitrary and vr ← T̃ (qr). Now, the folding scheme
reduces the following claim to an evaluation of T̃ , where ρ ∈ F is picked by the
verifier at random.

vr +
∑

i={1,...,m}

ρi · vi
?
=

∑
j∈{0,1}log n

ẽq(qr, j) · T̃ (j) +
∑

i={1,...,m}

ρi ·
∑

j∈{0,1}log n

ẽq(qi, j) · T̃ (j)

The folding scheme applies the sum-check protocol and outputs a new claim
about T̃ (q′r)

?
= v′r. The prover’s work in the folding scheme is O(n) finite field

operations. The verifier’s work in the non-interactive folding scheme is O(log n)
hash and field operations. Furthermore, at the end of the sum-check protocol (i.e.,
inside the folding scheme), the verifier computes evaluations of m ẽq polynomials
at a random point, this takes O(m · log n) multiplications.

F.1 Details and security proofs

Definition 29 (Polynomial Evaluation Relation). We define the polyno-
mial evaluation relation Rpoly as follows. Let the public parameters consist of
size parameter ℓ ∈ N. An Rpoly structure consists of T̃ , a multilinear polynomial
in ℓ variables. An Rpoly instance is (r, v) ∈ (Fℓ,F) where r is an evaluation point
and v is a claimed evaluation. An Rpoly witness is ⊥. We define Rpoly as follows.

Rpoly =

{
((ℓ, T̃), (r, v),⊥)

∣∣∣∣∣ ℓ ∈ N, T̃ ∈ F1[X1, . . . , Xℓ], (r, v) ∈ (Fℓ,F)
T̃ (r) = v

}
.

Definition 30 (Lookup Relation). We define the lookup relation Rlookup as
follows. Let the public parameters consist of size parameter ℓ ∈ N. For vector
T ∈ Fn (where n = 2ℓ), an Rlookup structure consists of the corresponding
multilinear extension in ℓ variables, T̃ . An Rlookup instance consists of value
v ∈ F. An Rlookup witness consists of index q ∈ {0, 1}ℓ. We define Rlookup as
follows.

Rlookup =

{
((ℓ, T̃), v, q)

∣∣∣∣∣ ℓ ∈ N, T̃ ∈ F1[X1, . . . , Xℓ], v ∈ F, q ∈ {0, 1}ℓ
T̃ (q) = v

}
.

We now provide a multi-folding between two relations, a polynomial evaluation
instance and a collection of lookup instances.

61

Construction 8 (A multi-folding scheme for lookup instances). We con-
struct a multi-folding scheme for (Rpoly,Rlookup, compat, µ = 1, ν) for arbitrary
ν ∈ N.

compat(s1, s2)→ {true, false}

1. If s1 = s2, then return true, otherwise, return false.

We define the generator and the encoder as follows.

• G(1λ, N)→ pp:

1. Sample size bound ℓ ∈ N.

2. Output pp = ℓ.

• K(pp = ℓ, T̃ ∈ F1[X1, . . . , Xℓ])→ (pk, vk): Output (pk, vk) = ((pp, T̃), pp).

The prover takes as input pk = (pp = ℓ, T̃) and the verifier take as input vk =
pp = ℓ. The verifier V takes a polynomial evaluation instance (qr, vr) and a vector
of lookup instances (v1, . . . , vm) The prover P, in addition to the instances, takes
witnesses to the lookup instances (q1, . . . , qm).

The prover and the verifier proceed as follows.

1. P → V : (q1, . . . , qm).

2. V: Check that for all i ∈ [m], qi ∈ {0, 1}ℓ.

3. V → P : V samples ρ
$← F and send it to P.

4. V: Sample q′r
$← Fs.

5. V ↔ P : Run the sum-check protocol c← ⟨P ,V(q′r)⟩(g, ℓ, 2, vr+
∑

i∈[m] ρ
i · vi),

where:

g(x) := ẽq(qr, x) · T̃ (x) +
∑
i∈[m]

ρi · ẽq(qi, x) · T̃ (x)

6. P → V : v′r, where v′r = T̃ (q′r).

7. V: Compute e← ẽq(qr, q
′
r) and ei ← ẽq(qi, q

′
r) for all i ∈ [m]. Abort if

c ̸= e · v′r +
∑
i∈[m]

ρi · ei · v′r.

8. V,P: Output the folded polynomial evaluation instance (q′r, v
′
r).

Theorem 8 (nlookup). Construction 8 is a public-coin multi-folding scheme
for (Rpoly,Rlookup, compat, µ = 1, ν) for arbitrary ν ∈ N.

62

Proof (Intuition). Completeness and knowledge soundness holds by the com-
pleteness and soundness of the sumcheck protocol. We provide a formal proof in
Appendix H.5.

G Building HyperNova with a black-box use of Nova
We design a step circuit for Nova that runs the verifier’s logic in any IVC-
compatible non-interactive multi-folding scheme. The step circuit is encoded
with R1CS (a popular NP-complete constraint system [29]) and proven incremen-
tally with Nova, but the step circuit is only in charge of running the verifier of
the non-interactive multi-folding scheme, in addition to simple bookkeeping. As
a result, this provides an IVC scheme, where each step of the incremental compu-
tation is expressed with any NP-complete language that has an IVC-compatible
multi-folding scheme. Furthermore, we achieve this with a black box use of an
IVC scheme for R1CS.

In Nova, each step circuit takes as input the output of the previous step and
produces the output for the current step. In HyperNova, besides the application’s
IO, we augment them with the latest running instance. At each recursive step,
the step circuit gets as non-deterministic input a purported instance u in RCCCS

and π, where π is the prover’s output in the non-interactive multi-folding scheme.
The step circuit checks that the public input of u matches the application’s input
provided to the step circuit. If so, it runs the verifier of the non-interactive folding
scheme on (vk,U, u, π), where vk is the verifier’s key and U is the latest running
instance passed from the prior step. It then provides uses the public output of u
and the output of the folding scheme verifier to construct the step’s output.

Construction 9 (A step circuit for Nova). Let NIFS be an IVC-compatible
non-interactive multi-folding scheme for (R1,R2, 1, 1). Let IVC denote the Nova’s
IVC scheme for functions expressed as R1CS constraints.

We first define a non-deterministic polynomial-time function step, represented
as an R1CS structure, that iteratively folds instances expressed in RCCCS.

step(vk,Ui, zi; (u, π))→ (vk,Ui+1, zi+1)

1. Parse (in, out) ← enc−1inst(u
′), where u′ represents the portion of u that does

not contain commitments to the witness.

2. Check that in = zi

3. Compute Ui+1 ← NIFS.V(vk,Ui, u, π)

4. Output (vk,Ui+1, out)

Given F , we define the corresponding IVC scheme (G,K,P,V), which uses Nova
in a black-box manner.

G(1λ, N)→ pp: Output (NIFS.G(1λ, N), IVC.G(1λ, N))

63

K((ppNIFS, ppIVC), F)→ (pk, vk):

1. Compute (s1, s2)← encstr(F)

2. Compute (pkNIFS, vkNIFS)← NIFS.K(ppNIFS, s1, s2)

3. Compute (pkIVC, vkIVC)← IVC.K(ppIVC, step)

4. Output (pk, vk)← ((F, pkNIFS, vkNIFS, pkIVC), (step, ppNIFS, vkNIFS, vkIVC)).

P(pk, (i, z0, zi), ωi,Πi)→ Πi+1:

1. Parse Πi as (Π ′i,Ui,Wi)

2. Let zi+1 ← F (zi, ωi) and compute (ui,wi)← enc(F, (zi, zi+1), ωi).

3. Compute (Ui+1,Wi+1, πi+1)← NIFS.P(pkNIFS, (Ui,Wi), (ui,wi))

4. Compute Π ′i+1 ← IVC.P(pkIVC, i, (vkNIFS, u⊥, z0), (vkNIFS,Ui, zi), (ui, πi+1),Π
′
i)

5. Output Πi+1 = (Π ′i+1,Ui+1,Wi+1)

V(vk, (i, z0, zi),Πi)→ {0, 1}:

1. Parse Πi as (Π ′i,Ui,Wi).

2. Check that IVC.V(vkIVC, i, (vkNIFS, u⊥, z0), (vkNIFS,Ui, zi),Π
′
i) = 1

3. Check that (ppNIFS, step,Ui,Wi) ∈ RLCCCS

Theorem 9 (A simple construction for IVC). Construction 9 is an IVC
scheme.

H Deferred Proofs
H.1 Proof of Theorem 1 (A multi-folding scheme for CCS)
Lemma 13 (Perfect Completeness). Construction 1 satisfies perfect com-
pleteness.

Proof. Consider the public parameters pp = (m,n,N, ℓ, t, q, d, ppPC)← G(1λ, N)
and let s = logm and s′ = log n.

Consider arbitrary structures (s1, s2), where compat(s1, s2) = true

s1 = s2 = (M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)← A(pp).

Consider the prover and verifier keys (pk, vk) ← K(pp, (s1, s2)). Suppose that
the prover and the verifier are provided µ linearized committed CCS instances
u⃗1 and ν committed CCS instances u⃗2. Suppose that the prover additionally is
provided with the corresponding satisfying witnesses w⃗1 and w⃗2.

64

As in the construction, let s = logm and s′ = log n. Let z̃1,k = ˜(w, u, x), where
w = Lk.w, u = Lk.ϕ.u, and x = Lk.ϕ.x. Similarly, let z̃2,k = ˜(w, 1, x), where
w = Ck.w and x = Ck.ϕ.x.

Because the input linearized committed CCS instance-witness pairs are satisfy-
ing, we have for all j ∈ [t] and k ∈ [µ]

vj,k =
∑

y∈{0,1}s′
M̃j(rx, y) · z̃1,k(y) By precondition.

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1,k(y)

 By Lemma 6.

=
∑

x∈{0,1}s
Lj,k(x) By construction.

Moreover, because the input committed CCS instance-witness pairs are satisfy-
ing, for all k ∈ [ν], we have, for all x ∈ {0, 1}s that

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


Therefore, for all k ∈ [ν], we have that the polynomial in X

∑
x∈{0,1}s

ẽq(X,x) ·
q∑

i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(X, y) · z̃2,k(y)


must be the zero polynomial. Therefore, for β sampled by the verifier, we have
that for all k ∈ [ν]

0 =
∑

x∈{0,1}s
ẽq(β, x) ·

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


=

∑
x∈{0,1}s

Qk(x) By construction.

Therefore, for γ sampled by the verifier, by linearity, we have that

∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lk.ϕ.vj =
∑

x∈{0,1}s

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(x)

+

∑
k∈[ν]

γµ·t+k ·Qk(x)


=

∑
x∈{0,1}s

g(x)

65

Therefore, by the perfect completeness of the sum-check protocol, we have for
e1 = ẽq(rx, r

′
x), e2 = ẽq(β, r′x),

σj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y),

for j ∈ [t] and k ∈ [µ], and

θj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y)

j ∈ [t] and k ∈ [ν] that

c = g(r′x)

=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(r
′
x)

+

∑
k∈[ν]

γµ·t+k ·Qk(r
′
x)


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · e1 · σj,k

+

∑
k∈[ν]

γµ·t+k · e2
∑
i∈[q]

ci ·
∏
j∈Si

θj,k

 .

This implies that the verifier will not abort.

Now, consider the following linearized committed CCS instances obtained by
reducing input committed CCS instances (for all k ∈ [ν]):

(Ck.ϕ.C, 1, Ck.ϕ.x, r′x, θ1,k, . . . , θt,k).

By the precondition that committed CCS instance-witness pairs are satisfying
and by the definition of (θ1,k, . . . , θt,k) for all k ∈ [ν], we have that kth linearized
committed CCS instance is satisfied by the witness of the kth committed CCS
instances i.e., Ck.w.

Therefore, for a random ρ sampled by the verifier, and for

C ←
∑

k∈[µ] ρ
k · Lk.ϕ.C +

∑
k∈[ν] ρ

µ+k · Ck.ϕ.C

u ←
∑

k∈[µ] ρ
k · Lk.ϕ.u +

∑
k∈[ν] ρ

µ+k · 1

x ←
∑

k∈[µ] ρ
k · Lk.ϕ.x +

∑
k∈[ν] ρ

µ+k · Ck.ϕ.x

vj ←
∑

k∈[µ] ρ
k · σj,k +

∑
k∈[ν] ρ

µ+k · θj,k

we have that the output linearized CCS instance

(C, u, x, r′x, v1, . . . , vt)

is satisfied by the witness w̃ ←
∑

k∈[µ] ρ
k · Lk.w+

∑
k∈[ν] ρ

µ+k · Ck.w by linearity
and the additive homomorphism property of the polynomial commitment scheme.

66

Some of our probabilistic analysis below is adapted from the proof of forking
lemma for folding schemes [41], which itself builds on the proof of the forking
lemma for interactive arguments [11].

Lemma 14 (Knowledge Soundness). Construction 1 satisfies knowledge
soundness.

Proof. Consider an adversary A that adaptively picks the structure and in-
stances, and a malicious prover P∗ that succeeds with probability ϵ. Let pp ←
G(1λ, N). Suppose on input pp and random tape r, the adversary A picks struc-
tures satisfying compat

s = s1 = s2 = ([M1, . . . ,Mt], [S1, . . . , Sq], [c1, · · · , cq]),

µ linearized committed CCS instances, ν committed CCS instances, and some
auxiliary state st. We now construct an expected-polynomial time extractor E
that succeeds with probability ϵ − negl(λ) in obtaining satisfying witnesses for
the original instances.

E(pp, r):

1. Obtain the output tuple from A:

((s1, s2), (⃗u1, u⃗2), st)← A(pp, r).

2. Compute (pk, vk)← K(pp, (s1, s2)).

3. Run the interaction

(u(1),w(1))← ⟨P∗,V⟩((pk, vk), u⃗1, u⃗2, st)

once with the final verifier challenge ρ(1)
$← F.

4. Abort if (pp, s, u(1),w(1)) ̸∈ RLCCCS.

5. For i ∈ {2, . . . , µ+ ν}, rewind the interaction

(u(i),w(i))← ⟨P∗,V⟩((pk, vk), u⃗1, u⃗2, st)

with a different verifier’s final challenge ρ(i)
$← F while maintaining the same

prior randomness. Keep doing so until (pp, s, u(i),w(i)) ∈ RLCCCS.

6. Interpolating points (ρ(i),w(i)) for all i ∈ [µ + ν] retrieve µ witnesses w⃗1 =
(w1,1, . . . ,w1,µ) and ν witnesses w⃗2 = (w2,1, . . . ,w2,ν) such that for i ∈ [µ+ν]

w(i) =
∑
k∈[µ]

ρk · w1,k +
∑
k∈[ν]

ρµ+k · w2,k. (12)

7. Output (w⃗1, w⃗2).

67

We first demonstrate that the extractor E runs in expected polynomial time. Ob-
serve that E runs the interaction once, and if it does not abort, keeps rerunning
the interaction until P∗ succeeds. Thus, the expected number of times E runs
the interaction is

1 + Pr[First call to ⟨P∗,V⟩ succeeds] · µ+ ν − 1

Pr[⟨P∗,V⟩ succeeds] = 1 + ϵ · µ+ ν − 1

ϵ
= µ+ ν.

Therefore, we have that the extractor runs in expected polynomial-time.

We now analyze E ’s success probability. We must demonstrate that E succeeds
in producing w⃗1 and w⃗2 such that

(pp, s, u⃗1, w⃗1) ∈ RLCCCS and (pp, s, u⃗2, w⃗2) ∈ RCCCS

with probability ϵ− negl(λ).

To do so, we first show that the extractor successfully produces some output (i.e.,
does not abort) in under |F| rewinding steps with probability ϵ − negl(λ). Note
that |F| is a worst case bound and we have already established that the extractor
runs in expected polynomial time. By the malicious prover’s success probability,
we have that the extractor does not abort in step (4) with probability ϵ. Given
that the extractor does not abort in step (4), by Markov’s inequality, we have
that the extractor rewinds more than |F| times with probability (µ+ν)/|F|. Thus,
the probability that the extractor does not abort in step (4) and requires less
than |F| rewinds is (1− (µ+ ν)/|F|) · ϵ = ϵ− negl(λ).

Next, if the extractor does not abort, we show that the extractor succeeds in pro-
ducing satisfying witnesses with probability 1− negl(λ). This brings the overall
extractor success probability to ϵ− negl(λ).

Indeed, for i ∈ {1, . . . , µ + ν}, let u(i) = (C(i), u(i), x(i), r
(i)
x , v

(i)
1 , . . . , v

(i)
t). We

first show that the retrieved polynomials are valid openings to the corresponding
commitments in the instance. For i ∈ {1, . . . , µ+ ν}, because w(i) is a satisfying
witness, by construction,∑
k∈[µ]

ρ(i)
k
· Commit(pp,w1,k) +

∑
k∈[ν]

ρ(i)
µ+k
· Commit(pp,w2,k)

= Commit(pp, (
∑
k∈[µ]

ρ(i)
k
· w1,k) + (

∑
k∈[ν]

ρ(i)
µ+k
· w2,k)) By additive homomorphism.

= Commit(pp,w(i)) By Equation (12).
= C(i) Witness w(i) is a satisfying opening.

=
∑
k∈[µ]

ρ(i)
k
· u1,k.C +

∑
k∈[ν]

ρ(i)
µ+k
· u2,k.C

68

Interpolating, we have that for all i ∈ [µ] and j ∈ [ν]

Commit(pp,w1,i) = u1,i.C (13)
Commit(pp,w2,j) = u2,j .C. (14)

Next, we must argue that w⃗1 and w⃗2 satisfy the remainder of the instances u⃗1
and u⃗2 respectively under the structure s.

Indeed, consider {σj,k} (for all j ∈ [t] and k ∈ [µ]), and {θj,k} (for all j ∈ [t] and
k ∈ [ν]) sent by the prover which by the extractor’s construction are identical
across all executions of the interaction. By the verifier’s computation we have
that for i ∈ {1, . . . , µ+ ν} and all j ∈ [t]∑

k∈[µ]

(ρ(i))k · σj,k +
∑
k∈[ν]

(ρ(i))µ+k · θj,k = v
(i)
j (15)

Now, because w(i) is a satisfying witness, for i ∈ {1, . . . , µ + ν} we have for all
j ∈ [t] that

v
(i)
j =

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃(i)(y),

where z̃(i) = ˜(w(i), u(i), x(i)) where w(i) is the result of interpreting w(i) as a
multilinear polynomial.

However, by Equations (12) and (15), for i ∈ {1, . . . , µ + ν} and j ∈ [t], this
implies that∑

k∈[µ]

(ρ(i))k · σj,k +
∑
k∈[ν]

(ρ(i))µ+k · θj,k

=
∑
k∈[µ]

(ρ(i))k ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y)

+
∑
k∈[ν]

(ρ(i))µ+k ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y),

where z̃1,k = ˜(w1,k, u, u1,k.x) for k ∈ [µ] where w1,k denotes the multilinear
polynomial interpretation of w1,k and z̃2,k = ˜(w2,k, 1, u2,k.x) for k ∈ [ν] where
w2,k represents the multilinear polynomial interpretation of w2,k. Interpolating,
we have that, for all j ∈ [t]

∀k ∈ [µ], σj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y)

∀k ∈ [ν], θj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y)

69

Thus, because that the verifier does not abort, we have that

c =

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · e1 · σj,k

+

∑
k∈[ν]

γµ·t+k · e2 ·
∑
i∈[q]

ci ·
∏
j∈Si

θj


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · ẽq(rx, r′x) · σj,k

+

∑
k∈[ν]

γµ·t+k · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

θj,k


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · ẽq(rx, r′x) ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y)

+

∑
k∈[ν]

γµ·t+k · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2,k(y)


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(r
′
x)

+

∑
k∈[ν]

γµ·t+k ·Qk(r
′
x)


= g(r′x)

By the soundness of the sum-check protocol, this implies that with probability
1−O(d · s)/|F| = 1− negl(λ) over the choice of r′x,

T =
∑

j∈[t],k∈[µ]

γ(k−1)·t+j · vj,k +
∑
k∈[ν]

γµ·t+k · 0

=
∑

x∈{0,1}s
g(x)

=
∑

x∈{0,1}s

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(x)

+

∑
k∈[ν]

γµ·t+k ·Qk(x)


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j ·

 ∑
x∈{0,1}s

Lj,k(x)

+

∑
k∈[ν]

γµ·t+k ·

 ∑
x∈{0,1}s

Qk(x)



By the Schwartz-Zippel lemma [53], this implies that with probability 1−O(t ·
µ+ ν)/|F| = 1− negl(λ) over the choice of γ, we have for all j ∈ [t] and k ∈ [µ]

vj,k =
∑

x∈{0,1}s
Lj,k(x),

and for all k ∈ [ν]

0 =
∑

x∈{0,1}s
Qk(x).

70

Now, for all j ∈ [t] and k ∈ [µ], we have

vj,k =
∑

x∈{0,1}s
Lj,k(x)

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

Mj(x, y) · z̃1,k(y)


=

∑
y∈{0,1}s′

Mj(rx, y) · z̃1,k(y)

This implies that w⃗1 is a satisfying witness to u⃗1.

Finally, we have that for all k ∈ [ν]

0 =
∑

x∈{0,1}s
Qk(x)

=
∑

x∈{0,1}s
ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


=

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(β, y) · z̃2,k(y)


By the Schwartz-Zippel lemma, this implies that with probability 1 − s/|F| =
1− negl(λ) over the choice of β, we have that for all x ∈ {0, 1}s

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


This implies that w⃗2 is a satisfying witness to u⃗2.

Thus, if the extractor does not abort, it succeeds in producing satisfying witness
(w⃗1, w⃗2) with probability 1− negl(λ).

H.2 Proof of Lemma 3 (Folding CCS NIVC-compatibility)
Lemma 15 (NIVC-compatibility). Construction 1 is NIVC-compatible.

Proof. NP-completeness of RCCS follows from [57, Lemma 1], which reduces
R1CS to RCCS. Furthermore, Gennaro et al. [29, Section 7.4] and Parno et al. [51,
Section 2.2.1] implicitly reduce circuit satisfiability to R1CS (Thaler [62, Sec-
tion 8.4] provides explicit details). These two reductions induce the functions
enc, encstr and encinst.

71

In particular, let the circuit satisfiability relation be characterized by circuits
over n total gates, m multiplication gates, and without loss of generality input
size ℓ/2 and output size ℓ/2. We demonstrate how to reduce circuit satisfiability
to RCCS characterized by size bounds m,n,N = Ω(m), ℓ, t = 3, q = 2, d = 2.

First, we explicitly describe the function encstr, which takes as input an arith-
metic circuit F and produces RCCS and RLCCS structures s1 and s2

encstr(F)→ (s1, s2):

1. Initalize matrices A,B,C ∈ Fm×(n+1) with zeros.

2. For each multiplication gate index i ∈ [m] in F , do the following:

(a) let L be the indices of all the upstream left input addition gates such that
gate i is the first downstream multiplication gate. Similarly let R be all
the upstream right input gates such that gate i is the first downstream
multiplication gate.

(b) Let Ai,j = 1 for j ∈ L, Bi,j = 1 for j ∈ R, and Ci,i = 1. This encodes
the constraint that the result of multiplying the sum of all the upstream
left addition gates and the sum of all the upstream right addition gates
results in the wire value assigned at gate i.

3. Let S1 ← {1, 2} and S2 ← {3}. Output CCS and LCCS structure

s1 = s2 =
(
(Ã, B̃, C̃), (S1, S2), (1,−1)

)
where Ã, B̃, and C̃ denote the multilinear extensions of A, B, and C.

By observation, we have that encstr is invertible. In particular, given matrices A,
B, and C, we can parse out the inputs to each gate in the circuit F .

Next, we explicitly describe the function encinst, which takes as input an arith-
metic circuit public input x and output y and produces an RCCS instance x

encinst((x, y))→ x:

1. Output (x, y).

By observation, we have that encinst is invertible. In particular, provided an
RCCS instance x ∈ Fℓ we can recover an arithmetic circuit public input and
output tuple (x, y) ∈ (Fℓ/2,Fℓ/2) by splitting x into its first and second half.

Given encstr and encinst, we can explicitly describe enc, which takes as input an
arithmetic circuit F , a circuit input x, a non-deterministic input w, and an out-
put y, and outputs a corresponding RCCS structure-instance-witness tuple.

enc(F, (x, y), w)→ x:

1. Let (s1, s2)← encstr(F).

72

2. Let x← encinst((x, y)).

3. Let w be the gate wire values that results from executing F on inputs x and
w excluding the public input x and output y wire values.

4. Output CCS structure-instance-witness tuple (s2, x,w).

By Setty et al. [57, Lemma 1] and Parno et al. [51], for any arithmetic circuit F ,
input x, non-deterministic input w, and output y, for (s2, u,w)← enc(F, (x, y), w)
we have that (s2, u,w) ∈ R′2 if and only if F (x,w) = y.

Moreover, we have that enc is invertible. In particular, Given a CCS structure-
instance-witness pair (s2, u,w), we can compute F and (x, y) by the invertibility
of encstr and encinst, and compute w by parsing the appropriate gates in w. By
observation, we have that (s2, u,w) = enc(F, (x, y), w). Combining all prior as-
sertions we have that the NP-completeness property holds.

Next, by construction, for any arithmetic circuit F , an input x, a non-deterministic
input w, and an output y, for R′1 and R′2 structures (s1, s2)← encstr(F) and R′2
instance u ← encinst((x, y)) we have that (s2, u,w) = enc(F, (x, y), w) for some
R′2 witness w and that compat(s1, s2) = 1. Combining all the prior assertions we
have that the partial functions property holds.

Moreover, we have monotonicity holds by the construction of encstr. In particular,
each gate in the input arithmetic circuit F corresponds to exactly one constraint
in the output CCS structure.

Finally, we have that RLCCCS has default instances because for any public param-
eters and structure, we have that u⊥ = (u = 0, x = 0⃗, r = 0, v1 = 0, . . . , vt = 0)
and w⊥ = 0 is a satisfying instance-witness pair in R1.

H.3 Proof of Theorem 4 (HyperNova)
Lemma 16 (Completeness). Construction 2 is an NIVC scheme that satisfies
completeness.

Proof. Consider arbitrary PPT adversary A. Suppose pp← G(1λ, N). Suppose,
on input pp, A produces polynomial-time functions (φ, (F1, . . . ,Fℓ)), instance
(i, z0, zi), private input ωi, and NIVC proof Πi. Suppose that for

(pk, vk)← K(pp, (φ, (F1, . . . , Fℓ)))

we have that

V(vk, i, z0, zi,Πi) = 1.

Then, for pci+1 ∈ [ℓ]← φ(zi, ωi), given

zi+1 ← Fpci+1
(zi, ωi)

73

and
Πi+1 ← P(pk, (i, z0, zi), ωi,Πi)

we must show that
V(vk, i+ 1, z0, zi+1,Πi+1) = 1

with probability 1. We show this by considering the case when i = 0 and when
i ≥ 1.

Indeed, suppose i = 0. By the base case of P and F ′pc1 , we have

Π1 = (((u⊥, . . . , u⊥), (w⊥, . . . ,w⊥)), (u1,w1), pc1)

for some (u1,w1). By definition, the instance-witness pair (u⊥,w⊥) is satisfying.
Moreover, by construction, (u1,w1) must also be satisfying. Additionally, by the
construction of F ′pc1 , we have

u′1 = encinst(hash(vk, 1, z0, Fpc1(z0, w0), u⊥, pc1)).

where u′1 is the portion of u1 that excludes the commitment to the w1. Therefore,
we have

V(pp, 1, z0, z1,Π1) = 1.

Suppose instead that i ≥ 1. Let Πi be parsed as ((Ui,Wi), (ui,wi), πi) and let
Πi+1 be parsed as ((Ui+1,Wi+1), (ui+1,wi+1), πi+1). By the construction of P,
we have that

(Ui+1[pci],Wi+1[pci], π) = NIFS.P(pk[pci], (Ui[pci],Wi[pci]), (ui,wi)).

Thus, because Πi is satisfying, we have that (ui,wi) and (Ui[pci],Wi[pci]) are sat-
isfying instance-witness pairs (with respect to compatible structures). Then, by
the completeness of the underlying folding scheme, we have that (Ui+1[pci],Wi+1[pci])
is a satisfying instance-witness pair. Therefore, because (Ui+1,Wi+1) copies the
remaining elements from (Ui,Wi), we have that (Ui+1,Wi+1) contains satisfy-
ing instance-witness pairs. Additionally, by the premise, we have that u′i =
encinst(hash(vk, i, z0, zi,Ui, pci)) where u′i represents the portion of ui that ex-
cludes the commitment to the witness. Therefore, P can construct a satisfying
instance-witness pair (ui+1,wi+1) that represents the correct execution of F ′pci+1

on input (vkfs,U, u, pci, (i, z0, zi), ωi, π). By construction, this particular input
implies that

u′i+1 = encinst(hash(vk, i+ 1, z0, zi+1,Ui+1, pci+1)) (16)
by the correctness of the underlying folding scheme (again u′i+1 represents the
portion of ui+1 that excludes the commitment to the witness). Moreover, be-
cause pci+1 = φ(zi, ωi), by construction, we have that 1 ≤ pci+1 ≤ ℓ. Thus, by
Equation (16) we have

V(vk, i+ 1, z0, zi+1,Πi+1) = 1.

74

Lemma 17 (Knowledge Soundness). Construction 2 is an IVC scheme that
satisfies knowledge soundness.

Proof. Our approach is inspired by a recursive extraction technique described
by Bünz et al [18]. Let n be a global constant. Consider deterministic expected
polynomial-time adversary P∗. Let pp← G(1λ, N). Suppose on input pp and ran-
domness r, P∗ outputs deterministic polynomial-time function φ, ℓ polynomial-
time functions (F1, . . . , Fℓ), instance (z0, z), and NIVC proof Π. Let (pk, vk)←
K(pp, (φ, (F1, . . . , Fℓ))). Suppose that

V(vk, (n, z0, z),Π) = 1

with probability ϵ. We must construct an expected polynomial-time extractor E
that, with input (pp, r), outputs (ω0, . . . , ωn−1) such that by computing

zi+1 ← Fφ(zi,ωi)(zi, ωi)

we have that zn = z with probability ϵ− negl(λ).

We show inductively that E can construct an expected polynomial-time extractor
Ei(pp) that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1),Πi) such that for all j ∈ {i+
1, . . . , n},

zj = Fφ(zj−1,ωj−1)(zj−1, ωj−1)

and

V(vk, i, z0, zi,Πi) = 1 (17)

for zn = z with probability ϵ − negl(λ). Then, because in the base case when
i = 0, V checks that z0 = zi, the values (ω0, . . . , ωn−1) retrieved by E0(pp) are
such that computing zi+1 = F (zi, ωi) for all i ≥ 1 gives zn = z.

At a high level, to construct an extractor Ei−1, we first assume the existence of
Ei that satisfies the inductive hypothesis. We then use Ei(pp) to construct an
adversary for the non-interactive folding scheme (which we denote as P̃i−1). This
in turn guarantees an extractor for the non-interactive folding scheme, which we
denote as Ẽi−1. We then use Ẽi−1 to construct Ei−1 that satisfies the inductive
hypothesis.

In the base case, for i = n, let En(pp, r) output (⊥,⊥,Πn) where Πn is the
output of P∗(pp, r). By the premise, En succeeds with probability ϵ in expected
polynomial-time.

For i ≥ 1, suppose E can construct an expected polynomial-time extractor Ei
that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1)), and Πi that satisfies the inductive
hypothesis. To construct an extractor Ei−1, E first constructs an adversary P̃i−1
for the non-interactive folding scheme as follows:

P̃i−1(pp, r):

75

1. Let ((zi, . . . , zn−1), (ωi, . . . , ωn−1),Πi)← Ei(pp, r).

2. Parse Πi as ((Ui,Wi), (ui,wi), pci).

3. Compute compatible structures (s1,pci , s2,pci)← encstr(F
′
pci

).

4. Parse non-deterministic inputs (Ui−1, ui−1, πi−1, pci−1) to F ′pci from enc−1(s2,pci , ui,wi).

5. Output structures (s1,pci−1
, s2,pci−1

), unfolded instances (Ui−1[pci−1], ui−1),
folded instance-witness pair (Ui[pci−1],Wi[pci−1]), and folding proof πi−1.

We now analyze the success probability of P̃i−1. By the inductive hypothesis, we
have that V(vk, i, z0, zi,Πi) = 1, where Πi ← Ei(pp, r) with probability ϵ−negl(λ).
Therefore, by the the verifier’s checks we have that (ui,wi) is satisfying, (Ui,Wi)
consists of satisfying instance-witness pairs, and that

u′i = encinst(hash(vk, i, z0, zi,Ui, pci))

where u′i represents the portion of ui that excludes the commitment to the wit-
ness. Then, by the construction of F ′pci and the binding property of the hash
function, we have that 1 ≤ pci−1 ≤ ℓ and

Ui[pci−1] = NIFS.V(vk,Ui−1[pci−1], ui−1, πi−1)

with probability ϵ − negl(λ). Thus, P̃i−1 succeeds in producing an accepting
folded instance-witness pair (Ui[pci−1],Wi[pci−1]), for instances Ui−1[pci−1] and
ui−1, with probability ϵ− negl(λ) in expected polynomial-time.

Then, by the knowledge soundness of the underlying non-interactive multi-folding
scheme (Assumption 1) there exists an extractor Ẽi−1 that outputs (Wi−1[pci−1],wi−1)
such that (Ui−1[pci−1],Wi−1[pci−1]) and (ui−1,wi−1) are satisfying with respect
to structures s1,pci−1

and s2,pci−1
respectively with probability ϵ − negl(λ) in

expected polynomial-time.

Given an expected polynomial-time P̃i−1 and an expected polynomial-time Ẽi−1,
E constructs an expected polynomial time Ei−1 as follows

Ei−1(pp, r):

1. Run P̃i−1(pp, r) to retrieve unfolded instances (u′i−1, ui−1) and parse

((zi, . . . , zn−1), (ωi, . . . , ωn−1),Πi)

from its internal state.

2. Parse Πi as ((Ui,Wi), (ui,wi), pci).

3. Compute (s1,pci , s2,pci)← encstr(F
′
pci

)

4. Parse private inputs zi−1, ωi−1, and pci−1 to F ′pci from enc−1(s2, ui,wi).

5. Let (w′i−1,wi−1)← Ẽi−1(pp).

76

6. Set (Ui−1,Wi−1)← (Ui,Wi) and update

(Ui−1[pci−1],Wi−1[pci−1])← (u′i−1,w
′
i−1)

7. Let Πi−1 ← ((Ui−1,Wi−1), (ui−1,wi−1), pci−1).

8. Output ((zi−1, . . . , zn−1), (ωi−1, . . . , ωn−1),Πi−1).

We first reason that the output (zi−1, . . . , zn−1), and (ωi−1, . . . , ωn−1) are valid.
By the inductive hypothesis, we already have that for all j ∈ {i+ 1, . . . , n},

zj = Fpcj (zj−1, ωj−1),

and that V(vk, i, z0, zi,Πi) = 1 with probability ϵ− negl(λ). Because V addition-
ally checks that

u′i = encinst(hash(vk, i, z0, zi,Ui, pci)), (18)

where u′i represents the portion of ui that excludes the commitment to the wit-
ness, by the construction of F ′pci and the binding property of the hash function,
we have

Fpci(zi−1, ωi−1) = zi

with probability ϵ− negl(λ). Next, we argue that Πi−1 is valid. Because (ui,wi)
satisfies F ′, and (Ui−1, ui−1) were retrieved from wi, by the binding property of
the hash function, and by Equation (18), we have that

u′i−1 = encinst(hash(vk, i− 1, z0, zi−1,Ui−1, pci−1))

where u′i−1 represents the portion of ui−1 that excludes the commitment the wit-
ness. Additionally, in the case where i = 1, by the base case check of F ′φ(z0,ω0)

,
we have that zi−1 = z0. Because Ẽi−1 succeeds with probability ϵ− negl(λ), and
the remainder of the elements of (Ui−1,Wi−1) are directly copied from (Ui,Wi)
we have that all the elements of (Ui−1,Wi−1) are satisfying. Moreover, by con-
struction of F ′pci we have that 1 ≤ pci−1 ≤ ℓ. Thus, we have that

V(vk, i− 1, z0, zi−1,Πi−1) = 1

with probability ϵ− negl(λ).

H.4 Proof of Theorem 4 (CycleFold)
Lemma 18 (Perfect Completeness). Construction 7 satisfies perfect com-
pleteness.

Proof. Consider public parameters pp = (m,n,N, ℓ, t, q, d, |sEC|, ppPC, ppVC) ←
G(1λ, N) and let s = logm and s′ = log n. Let sEC = (A,B,C) denote a com-
mitted relaxed R1CS structure defined over Fq, with public IO (ρ,C1, C2, C

′),

77

where ρ ∈ Fp, C1 ∈ G1, C2 ∈ G1, C
′ ∈ G1. This constraint system enforces that

C ′ = C1 + ρ ·C2, where + is the elliptic curve point addition and · is the elliptic
curve scalar multiplication operation in G1.

Consider arbitrary structures (s1, s2) ← A(pp) such that compat(s1, s2) = true.
Let s1 = ((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)), and let s2 = (A,B,C). Con-
sider prover and verifier keys (pk, vk)← K(pp, (s1, s2)). Suppose that the prover
and the verifier are provided with a linearized committed CCS instance and a
committed relaxed R1CS instance

((C1, u, x1, rx, v1, . . . , vt), (E1, u1,W 1, x1)),

and a committed CCS instance

(C2, x2).

Suppose that the prover additionally is provided with the corresponding satisfy-
ing witnesses (w̃1, (E1,W1)) and w̃2.

Because the input linearized committed CCS instance-witness pair is satisfying,
we have, for z̃1 = ˜(w1, u, x1), that

vj =
∑

y∈{0,1}s′
M̃j(rx, y) · z̃1(y) By precondition.

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)

 By Lemma 6

=
∑

x∈{0,1}s
Lj(x) By construction.

Furthermore, because the input committed relaxed R1CS instance-witness pair
is also satisfying, we have for Z1 = (W1, u1, x1), AZ1 ◦BZ1 = u · CZ1 + E1.

Moreover, because the input committed CCS instance-witness pair is satisfying,
we have, for all x ∈ {0, 1}s and for z̃2(x) = ˜(w2, 1, x2)(x), that

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


Because the RHS vanishes on all x ∈ {0, 1}s, for β sampled by the verifier, we
have that

0 =
∑

x∈{0,1}s
ẽq(β, x) ·

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


=

∑
x∈{0,1}s

Q(x) By construction.

78

Therefore, for γ sampled by the verifier, by linearity, we have that

∑
j∈[t]

γj · vj =
∑

x∈{0,1}s

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)


=

∑
x∈{0,1}s

g(x) By construction.

Therefore, by the perfect completeness of the sum-check protocol, we have for
e1 = ẽq(rx, r

′
x), e2 = ẽq(β, r′x) and

σi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y) and θi =

∑
y∈{0,1}s′

M̃i(r
′
x, y) · z̃2(y)

that

c = g(r′x)

=

∑
j∈[t]

γj · Lj(r
′
x)

+ γt+1 ·Q(r′x)


=

∑
j∈[t]

γj · e1 · σj

+ γt+1 · e2
∑
i∈[q]

ci ·
∏
j∈Si

θj

 .

This implies that the verifier will not abort on step 5.

By construction, the prover can construct uCRR1CS such that the verifier does not
abort on step 8. Furthermore, the prover can construct uCRR1CS such that wCRR1CS

is a satisfying witness under structure sEC. This implies that C ′ = C1 + ρ · C2,
where C ′ is parsed from x2, which is the public IO of uCRR1CS.

Now, consider the linearized CCS instance

(C2, 1, x2, r
′
x, θ1, . . . , θt).

By the precondition that the committed CCS instance (C2, x2) is satisfied by w̃2

and by the definition of θ1, . . . , θt we have that this linearized CCS instance is
satisfied by the witness w̃2.

Therefore, for random ρ sampled by the verifier, and for C ′ = C1 + ρ · C2,
u′ = u+ ρ · 1, x′ = x1 + ρ · x2, v′i = σi + ρ · θi, we have that the output linearized
CCS instance

(C ′, u′, x′, r′x, v
′
1, . . . , v

′
t)

is satisfied by the witness w̃′ = w̃1 + ρ · w̃2 by the linearity and the additive
homomorphism property of the commitment scheme.

79

Now, we argue that the the output committed relaxed R1CS instance (E⋆
, u⋆,W

⋆
, x⋆)

is satisfying under the witness (E⋆,W ⋆), for relaxed R1CS structure sEC =
(A,B,C). We need to establish the following. Let Z⋆ = (W ⋆, u⋆, x⋆).

AZ⋆ ◦BZ⋆ = u⋆ · CZ⋆ + E⋆ (19)
W

⋆
= VC.Commit(ppVC,W

⋆) (20)
E

⋆
= VC.Commit(ppVC, E

⋆) (21)

The latter two requirements hold from the additive homomorphism of the com-
mitment scheme. We now focus on proving the first requirement. We are given
that the input committed relaxed R1CS instance (E1, u1,W 1, x1) is satisfying
under the witness (E1,W1) and structure sEC. This implies that

AZ1 ◦BZ2 = u1 · CZ1 + E1,

where Z1 = (W1, u1, x1). As noted above, the committed relaxed R1CS instance
sent by the prover (E2, u2,W 2, x2) is satisfying under the witness (E2,W2) and
structure sEC. This implies that

AZ2 ◦BZ2 = CZ2,

where Z2 = (W2, 1, x2). (This is because by construction u2 = 1 and E2 = 0.)

Now, consider the LHS of the desired equality.

AZ⋆ ◦BZ⋆ = A(Z1 + ρ⋆ · Z2) ◦B(Z1 + ρ⋆ · Z2)

= AZ1 ◦BZ1 + ρ⋆ · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + (ρ⋆)2 · (AZ2 ◦BZ2)

= u1 · CZ1 + E1 + ρ⋆ · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + (ρ⋆)2 · CZ2

Consider the RHS of the desired equality.

u⋆ · CZ⋆ + E⋆ = (u1 + ρ⋆) · C(Z1 + ρ⋆ · Z2) + E1 + ρ⋆ · T
= (u1 + ρ⋆) · (CZ1 + ρ⋆ · CZ2) + E1 + ρ⋆ · (AZ1 ◦BZ2 +AZ2 ◦BZ1 − u1 · CZ2 − CZ1)

= u1 · CZ1 + ρ⋆ · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + (ρ⋆)2 · CZ2

This establishes the desired requirements.

Lemma 19 (Knowledge Soundness). Construction 7 satisfies knowledge
soundness.

Proof. Consider an adversary A that adaptively picks the structure and in-
stances, and a malicious prover P∗ that succeeds with probability ϵ. Let pp ←
G(1λ, N). Suppose on input pp and random tape r, the adversary A picks a struc-
ture (s1, s2) = (((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)), (A,B,C)) such that compat(s1, s2) =
true, a pair of linearized committed CCS instance and a committed relaxed R1CS
instance

φ1 = ((C1, u, x1, rx, v1, . . . , vt), (E1, u1,W 1, x1))

80

and a committed CCS instance

φ2 = (C2, x2),

and some auxiliary state st.

We construct an expected-polynomial time extractor E that succeeds with prob-
ability ϵ− negl(λ) in obtaining satisfying witnesses for the original instances as
follows. Below, let R1 = RLCCCS ×RCRR1CS and R2 = RCCCS.

E(pp, r):

1. Obtain the output tuple from A:

(s, φ1, φ2, st)← A(pp, r).

2. Compute (pk, vk)← K(pp, s).

3. Run the interaction

(φ(1,1), (w̃, (E,W))(1,1))← ⟨P∗,V⟩((pk, vk), φ1, φ2, st)

once with the verifier’s final challenges ρ(1)
$← F and ρ⋆(1,1)

$← F.

4. Abort if (pp, s, φ(1,1), (w̃, (E,W))(1,1)) ̸∈ R1.

5. Rewind the interaction

(φ(1,2), (w̃, (E,W))(1,2))← ⟨P∗,V⟩((pk, vk), φ1, φ2, st)

with a different verifier’s challenge ρ⋆(2,1)
$← F while maintaining the same

prior randomness. Repeat until (pp, s, φ(1,2), (w̃, (E,W))(1,2)) ∈ R1.

6. Rewind the interaction

(φ(2,1), (w̃, (E,W))(2,1))← ⟨P∗,V⟩((pk, vk), φ1, φ2, st)

with different verifier’s challenges ρ(2)
$← F and ρ⋆(2,1)

$← F while maintain-
ing the same prior randomness. Repeat until (pp, s, φ(2,1), (w̃, (E,W))(2,1)) ∈
R1.

7. Rewind the interaction

(φ(2,2), (w̃, (E,W))(2,2))← ⟨P∗,V⟩((pk, vk), φ1, φ2, st)

with a different verifier’s challenge ρ⋆(2,2)
$← F while maintaining the same

prior randomness. Repeat until (pp, s, φ(2,1), (w̃, (E,W))(2,2)) ∈ R1.

8. Abort if ρ⋆(1,1) = ρ⋆(1,2), ρ(1) = ρ(2), or ρ⋆(2,1) = ρ⋆(2,2).

81

9. Interpolating points (ρ(1), w̃(1,1)) and (ρ(2), w̃(2,1)), retrieve the witness poly-
nomials w̃1 and w̃2 such that for i ∈ {1, 2}

w̃1 + ρ(i) · w̃2 = w̃(i,1). (22)

10. Interpolating points (ρ⋆(1,1), (E,W)(1,1)) and (ρ⋆(1,2), (E,W)(1,2)), retrieve
(E1,W1) and (T,W2) such that for j ∈ {1, 2}

E1 + ρ⋆(1,j) · T = E(1,j) (23)

W1 + ρ⋆(1,j) ·W2 = W (1,j) (24)

11. Output ((w̃1, (E1,W1)), w̃2).

We first demonstrate that the extractor E runs in expected polynomial time.
Observe that E runs the interaction once, and if it does not abort, keeps rerun-
ning the interaction until P∗ succeeds three additional times. Thus, the expected
number of times E runs the interaction is

1 + Pr[First call to ⟨P∗,V⟩ succeeds] · 3

Pr[⟨P∗,V⟩ succeeds] = 1 + ϵ · 3
ϵ
= 4.

Therefore, we have that the extractor runs in expected polynomial-time.

We now analyze E ’s success probability. We must demonstrate that E succeeds
in producing (w̃1, (E1,W1)) and w̃2 such that

(pp, s, φ1, (w̃1, (E1,W1))) ∈ R1 and (pp, s1, φ2, w̃2) ∈ R2

with probability ϵ− negl(λ).

To do so, we first show that the extractor successfully produces some output (i.e.,
does not abort) in under |F| rewinding steps with probability ϵ − negl(λ). Note
that |F| is a worst case bound and we have already established that the extractor
runs in expected polynomial time. By the malicious prover’s success probability,
we have that the extractor does not abort in step (4) with probability ϵ. Given
that the extractor does not abort in step (4), by Markov’s inequality, we have
that the extractor rewinds more than |F| times with probability 4/|F|. Thus, the
probability that the extractor does not abort in step (4) and requires less than
|F| rewinds is ϵ · (1− 4/|F|).

Now, suppose that the extractor does not abort in step (4). Then, because the
extractor randomly samples ρ⋆(1,2), we have that ρ⋆(1,1) ̸= ρ⋆(1,2) with prob-
ability 1/|F|. Similarly, we have that, ρ(1) ̸= ρ(2) with probability 1/|F| and
ρ⋆(2,1) = ρ⋆(2,2) with probability 1/|F|. Thus, we have that the probability the
extractor successfully produces some output in under |F| rewinding steps is

ϵ ·
(
1− 4

|F|

)
·
(
1− 3

|F|

)
= ϵ− negl(λ).

82

Next, if the extractor does not abort, we show that the extractor succeeds in pro-
ducing satisfying witnesses with probability 1− negl(λ). This brings the overall
extractor success probability to ϵ− negl(λ).

We first show that the in the transcripts retrieved, the output witnesses for
linearized committed CCS instances do not depend on the choice of ρ⋆. More
precisely, we show that, for i ∈ {1, 2}, w̃(i,1) = w̃(i,2).

For i ∈ {1, 2} and j ∈ {1, 2}, let

φ(i,j) = ((C(i,j), u(i,j), x(i,j), r(i,j)x , v
(i,j)
1 , . . . , v

(i,j)
t), (E

(i,j)
, u⋆(i,j),W

(i,j)
, x⋆(i,j))).

By the verifier’s construction and because the transcripts share the same prefix
prior to the choice of ρ⋆, we have for i ∈ {1, 2} that

(C(i,1), u(i,1), x(i,1), r(i,1)x , v
(i,1)
1 , . . . , v

(i,1)
t) = (C(i,2), u(i,2), x(i,2), r(i,2)x , v

(i,2)
1 , . . . , v

(i,2)
t).

(25)

We are given that for i ∈ {1, 2} and j ∈ {1, 2}, w̃(i,j) is a satisfying witness and
hence a valid opening of the commitment C(i,j). By Equation 25, we have that for
i ∈ {1, 2}, C(i,1) = C(i,2). Therefore, by the binding property of the polynomial
commitment scheme, with probability 1− negl(λ), we have for i ∈ {1, 2} that

w̃(i,1) = w̃(i,2). (26)

Given this equality of commitments and the associated witnesses for the output
linearized committed CCS instances, we drop the second index when appropriate.

We now show that the retrieved polynomials and vectors ((w̃1, (E1,W1)), w̃2) are
valid openings to the corresponding commitments in the instance.

For j ∈ {1, 2}, because (E,W)(1,j) is a satisfying witness to the folded committed
relaxed R1CS instance, by construction,

Commit(ppVC,W1) + ρ⋆(1,j) · Commit(ppVC,W2)

= Commit(ppVC,W1 + ρ⋆(1,j) ·W2) By additive homomorphism.
= Commit(ppVC,W (1,j)) By Equation (24).

= W
(1,j) Witness W̃ (1,j) is a satisfying opening.

= W 1 + ρ⋆(1,j) ·W 2 By the verifier’s computation.

Interpolating, we have that

Commit(ppVC,W1) = W 1 (27)
Commit(ppVC,W2) = W 2 (28)

83

Similarly,

Commit(ppVC, E1) + ρ⋆(1,j) · Commit(ppVC, T)
= Commit(ppVC, E1 + ρ⋆(1,j) · T) By additive homomorphism.
= Commit(ppVC, E(1,j)) By Equation (23).

= E
(1,j) Witness Ẽ(1,j) is a satisfying opening.

= E1 + ρ⋆(1,j) · T By the verifier’s computation.

Interpolating, we have that

Commit(ppVC, E1) = E1 (29)

For j ∈ {1, 2}, because (E,W)(1,j) is a satisfying witness to the committed re-
laxed R1CS instance (E

(1,j)
, u⋆(1,j),W

(1,j)
, x⋆(1,j)), we have the following, where

Z(1,j) = (W (1,j), u⋆(1,j), x⋆(1,j)).

AZ(1,j) ◦BZ(1,j) = u⋆(1,j) · CZ(1,j) + E(1,j)

By Equation (24), this implies that for j ∈ {1, 2}

A · (Z1 + ρ⋆(1,j) · Z2) ◦B · (Z1 + ρ⋆(1,j) · Z2)

= (u1 + ρ⋆(1,j)) · C · (Z1 + ρ⋆(1,j) · Z2) + (E1 + ρ⋆(1,j) · T),

where Z1 = (W1, u1, x1), Z2 = (W2, 1, x2), and x2 is parsed from the transcripts
and is identical across the two executions with the same ρ.

Because the prover commits to W1, W2, and T before the verifier sends the
challenge ρ⋆(1,j), we have with probability 1− negl(λ) that

AZ1 ◦BZ1 = u1 · CZ1 + E1 (30)
AZ2 ◦BZ2 = CZ2. (31)

This implies that (E1,W1) and (⃗0,W2) meet the requirements of a satisfying wit-
ness for committed relaxed R1CS instances with structure (A,B,C). In particu-
lar, we have established that (E1,W1) is a satisfying witness to the committed
relaxed R1CS instance in φ1.

Furthermore, since the verifier checks that x2 = (ρ(1), C1, C2, C
′) for some C ′ ∈

G1, given that the we have have a witness satisfying Equation 31, this implies
that for j ∈ {1, 2}

C(1,j) = C1 + ρ(1) · C2 (32)

With a similar reasoning via the accepting transcripts with ρ(2) as the verifier’s
randomness, we can establish that for j ∈ {1, 2}:

C(2,j) = C1 + ρ(2) · C2 (33)

84

For i ∈ {1, 2} and j ∈ {1, 2}, because w̃(i,j) is a satisfying witness to the folded
linearized CCS instance, by construction,

Commit(ppPC, w̃1) + ρ(i) · Commit(ppPC, w̃2)

= Commit(ppPC, w̃1 + ρ(i) · w̃2) By additive homomorphism.
= Commit(ppPC, w̃(i,j)) By Equations (22) and (26).
= C(i,j) Witness w̃(i,j) is a satisfying opening.
= C1 + ρ(i) · C2 By Equations 32 and 33

Interpolating, we have that

Commit(ppPC, w̃1) = C1 (34)
Commit(ppPC, w̃2) = C2. (35)

Next, we must argue that w̃1 and w̃2 satisfy the remainder of the instances φ1

and φ2 respectively under the structure s.

Indeed, consider (σ1, . . . , σt) and (θ1, . . . , θt) sent by the prover which by the
extractor’s construction are identical across all executions of the interaction. By
the verifier’s computation we have that for i ∈ {1, 2} and all j ∈ [t]

σj + ρ(i) · θj = v
(i)
j (36)

Now, because w̃(i) is a satisfying witness, for i ∈ {1, 2} we have for all j ∈ [t]
that

v
(i)
j =

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃(i)(y),

where z̃(i) = ˜(w(i), u(i), x(i)).

However, by Equations (22) and (36), for i ∈ {1, 2} and j ∈ [t], this implies that

σj + ρ(i) · θj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y) + ρ(i) ·

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y),

where z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2). Interpolating, we have that, for all
j ∈ [t]

σj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y)

θj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2(y)

85

Thus, because that the verifier does not abort, we have that

c =

∑
j∈t

γj · e1 · σj

+

γt+1 · e2 ·
∑
i∈[q]

ci ·
∏
j∈Si

θj


=

∑
j∈t

γj · ẽq(rx, r′x) · σj

+

γt+1 · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

θj


=

∑
j∈t

γj · ẽq(rx, r′x) ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y)

+

γt+1 · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y)


=

∑
j∈[t]

γj · Lj(r
′
x) + γt+1 ·Q(r′x)

= g(r′x)

by the soundness of the sum-check protocol, this implies that with probability
1−O(d · s)/|F| = 1− negl(λ) over the choice of r′x,∑

j∈[t]

γj · vj + γt+1 · 0 =
∑

x∈{0,1}s
g(x)

=
∑

x∈{0,1}s

∑
j∈[t]

γj · Lj(x) + γt+1 ·Q(x)


=

∑
j∈[t]

γj ·

 ∑
x∈{0,1}s

Lj(x)

+ γt+1 ·
∑

x∈{0,1}s
Q(x)

By the Schwartz-Zippel lemma [53], this implies that with probability 1−O(t)/|F| =
1− negl(λ) over the choice of γ, we have

vj =
∑

x∈{0,1}s
Lj(x)

for all j ∈ [t] and

0 =
∑

x∈{0,1}s
Q(x).

86

Now, for all j ∈ [t], we have

vj =
∑

x∈{0,1}s
Lj(x)

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

Mj(x, y) · z̃1(y)


=

∑
y∈{0,1}s′

Mj(rx, y) · z̃1(y)

This implies that w̃1 is a satisfying witness to the linearized committed CCS
instance in φ1.

Finally, we have that

0 =
∑

x∈{0,1}s
Q(x)

=
∑

x∈{0,1}s
ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


=

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(β, y) · z̃2(y)


By the Schwartz-Zippel lemma, this implies that with probability 1 − s/|F| =
1− negl(λ) over the choice of β, we have that for all x ∈ {0, 1}s

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


This implies that w̃2 is a satisfying witness to φ2.

Thus, if the extractor does not abort, it succeeds in producing satisfying witness
(w̃1, w̃2) with probability 1− negl(λ).

H.5 Proof of Theorem 8 (nlookup)
Lemma 20 (Perfect Completeness). Construction 8 satisfies perfect com-
pleteness.

Proof. Consider public parameters pp = ℓ ← G(1λ, N). Consider a common
structure s1 = s2 = T̃ ∈ F[X1, . . . , Xℓ]. Consider the prover and verifier keys

87

(pk, vk) = (T̃ ,⊥) ← K(pp, T̃). Suppose that the prover and the verifier are
provided an instance in Rpoly

(qr, vr)

and a vector of Rlookup instances

(v1, . . . , vm).

Suppose that the prover is additionally provided with the corresponding satisfy-
ing witnesses for the Rlookup instances

(q1, . . . , qm).

By the satisfiability of the input instances we have that vr = T̃ (qr) and vi = T̃ (qi)
for all i ∈ [m].

Therefore, for ρ ∈ F, we have that

vr +
∑
i∈[m]

ρi · vi = T̃ (qr) +
∑
i∈[m]

ρi · T̃ (qi) By precondition.

=
∑

x∈{0,1}ℓ

ẽq(qr, x) · T̃ (x) +
∑
i∈[m]

ρi · ẽq(qi, x) · T̃ (x)

 By Lemma 6.

= g(x) By definition.

Therefore, by the perfect completeness of the sum-check protocol, we have that
c = g(q′r) Thus, for v′r = T̃ (q′r), e = ẽq(qr, q

′
r), and ei = ẽq(qi, q

′
r) for all i ∈ [m],

we have that

c = g(q′r)

= ẽq(qr, q
′
r) · T̃ (q′r) +

∑
i∈[m]

ρi · ẽq(qi, q′r) · T̃ (q′r)

= e · v′r +
∑
i∈[m]

ρi · ei · v′r

Therefore, we have that the verifier does not abort.

By construction, we have that v′r = T̃ (q′r). Therefore, the folded polynomial
evaluation instance is satisfying.

Lemma 21 (Knowledge Soundness). Construction 8 satisfies knowledge sound-
ness assuming that |F| = Θ(2λ).

Proof. Consider an adversary A that adaptively picks the structure and in-
stances, and a malicious prover P∗ that succeeds with probability ϵ. Let pp =

88

ℓ ← G(1λ, N). Suppose on input pp and random tape r, the adversary A picks
a structure s1 = s2 = T̃ ∈ F[X1, . . . , Xℓ], an Rpoly instance (qr, vr), a vector of
Rlookup instances (v1, . . . , vm), and some auxiliary state st.

We construct an extractor E that succeeds with probability ϵ−negl(λ) in obtain-
ing satisfying witnesses for the original instances. It works as follows.

On input pp and r, E first obtains the following tuple from A:
(T̃ , (qr, vr), (v1, . . . , vm), st)← A(pp, r).

E then computes (pk, vk)← K(pp, T̃). Next, E runs
((q′r, v

′
r),⊥)← ⟨P∗,V⟩((pk, vk), (qr, vr), (v1, . . . , vm), st)

and obtains the first message (q1, . . . , qm) from P∗ by parsing the corresponding
transcript. The extractor E outputs (⊥, (q1, . . . , qm)) as the witness. Because the
extractor only runs P∗ once, it runs in expected polynomial-time.

We must argue that⊥ is a satisfyingRpoly witness for (qr, vr), and that (q1, . . . , qm)
are satisfying Rlookup witnesses for the input instances (v1, . . . , vm) with proba-
bility ϵ− negl(λ).

Suppose that we have that the witness ⊥ output by P∗ is satisfying for the
corresponding verifier’s output (q′r, v

′
r) with probability ϵ. By definition, this

means that
v′r = T̃ (q′r) (37)

with probability ϵ. Moreover, this means that the verifier does not abort with
probability at least ϵ, and thus we have the following:

c = e · v′r +
∑
i∈[m]

ρi · ei · v′r

= ẽq(qr, q
′
r) · v′r +

∑
i∈[m]

ρi · ẽq(qi, q′r) · v′r By the verifier’s computation.

= ẽq(qr, q
′
r) · T̃ (q′r) +

∑
i∈[m]

ρi · ẽq(qi, q′r) · T̃ (q′r) By Equation 37.

= g(q′r) By definition.
with probability ϵ.

Then, by the soundness of the sum-check protocol, we must have that

vr +
∑
i∈[m]

ρi · vi =
∑

x∈{0,1}ℓ
g(x)

=
∑

x∈{0,1}ℓ

ẽq(qr, x) · T̃ (x) +
∑
i∈[m]

ρi · ẽq(qi, x) · T̃ (x)

 By definition.

= T̃ (qr) +
∑
i∈[m]

ρi · T̃ (qi) By Lemma 6.

89

with probability ϵ− negl(λ). By the Schwartz-Zippel lemma over ρ, this implies
that vr = T̃ (qr) and vi = T̃ (qi) for all i ∈ [m] with probability ϵ− negl(λ).

Moreover, by the verifier’s initial check, we have that qi ∈ {0, 1}ℓ for all i ∈ [m].
Therefore, we have that

(pp, T̃ , (qr, vr),⊥) ∈ Rpoly

and
(pp, T̃ , (v1, . . . , vm), (q1, . . . , qm)) ∈ R(m)

lookup.

with probability ϵ−negl(λ). Because the extractor E outputs the initial message
from the prover, we have that the extractor succeeds with probability ϵ−negl(λ).

90

	HyperNova: Recursive arguments for customizable constraint systems

