
Improved YOSO Randomness Generation with
Worst-Case Corruptions

Chen-Da Liu-Zhang1[0000−0002−0349−3838], Elisaweta
Masserova2[0009−0002−8970−9624], João Ribeiro3⋆[0000−0002−9870−0501], Pratik

Soni4[0000−0002−3225−3323], and Sri AravindaKrishnan
Thyagarajan5[0000−0003−0114−7672]

1 Lucerne University of Applied Sciences and Arts & Web3 Foundation, Zug,
Switzerland

chen-da.liuzhang@hslu.ch
2 Carnegie Mellon University, Pittsburgh, PA, USA

elisawem@andrew.cmu.edu
3 IST - University of Lisbon, Lisboa, Portugal

jribeiro@tecnico.ulisboa.pt
4 University of Utah, Salt Lake City, UT, USA

psoni@cs.utah.edu
5 NTT Research, Sunnyvale, CA, USA

t.srikrishnan@gmail.com

Abstract. We study the problem of generating public unbiased ran-
domness in a distributed manner within the recent You Only Speak Once
(YOSO) framework for stateless multiparty computation, introduced by
Gentry et al. in CRYPTO 2021. Such protocols are resilient to adaptive
denial-of-service attacks and are, by their stateless nature, especially at-
tractive in permissionless environments. While most works in the YOSO
setting focus on independent random corruptions, we consider YOSO
protocols with worst-case corruptions, a model introduced by Nielsen et
al. in CRYPTO 2022.
Prior work on YOSO public randomness generation with worst-case cor-
ruptions designed information-theoretic protocols for t corruptions with
either n = 6t+ 1 or n = 5t roles, depending on the adversarial network
model. However, a major drawback of these protocols is that their com-
munication and computational complexities scale exponentially with t.
In this work, we complement prior inefficient results by presenting and
analyzing simple and efficient protocols for YOSO public randomness
generation secure against worst-case corruptions in the computational
setting. Our first protocol is based on publicly verifiable secret sharing
and uses n = 3t+2 roles. Since this first protocol requires setup and some-
what heavy cryptographic machinery, we also provide a second lighter
protocol based on ElGamal commitments and verifiable secret sharing
which uses n = 5t + 4 or n = 4t + 4 roles depending on the underlying
network model. We demonstrate the practicality of our second proto-
col by showing experimental evaluations, significantly improving over

⋆ Work done while with NOVA LINCS and NOVA School of Science and Technology,
Caparica, Portugal.

2 C.-D. Liu-Zhang, E. Masserova, J. Ribeiro, P. Soni, S.A.K. Thyagarajan

prior proposed solutions for worst-case corruptions, especially in terms
of transmitted data size.

1 Introduction

Public randomness is a fundamental component of numerous financial and secu-
rity protocols [18, 14]. Randomness usage is ubiquitous: From establishing fair-
ness in the green card lottery, to assessing risk via Monte Carlo simulations, to
generating the public parameters for the cryptographic protocols [1, 15]. In the
past, public randomness was typically obtained via trusted third parties. How-
ever, with the emergence of blockchains and web3, there has been an increased
effort to decentralize economic activities, and as a consequence, to decentralize
public randomness generation as well [5, 21, 6, 13, 4].

A protocol for such distributed public randomness allows multiple mutually
distrusting parties, each with their own source of randomness, to generate and
agree on a public random value. However, designing a secure protocol which
provides such a functionality is a notoriously hard task. Indeed, the crypto-
graphic community put significant effort into designing distributed randomness
generation protocols [5, 6, 21, 13, 4], as well as improving functionalities such as
verifiable delay functions [3] and time-lock puzzles [22], which oftentimes serve
as building blocks in such protocols.

Traditionally, those protocols consider static adversaries, where security is
guaranteed as long as the adversary decides which parties to corrupt prior to
the start of the execution. However, such an assumption seems unjustified, espe-
cially for protocols that run over long periods of time. A far more realistic setting
would allow the adversary to corrupt parties dynamically during the course of
the execution. Unfortunately, protocols in this adaptive setting tend to be costly.
In the context of general multi-party computation, a novel approach to achieving
adaptive security (in an arguably more efficient manner) has been recently pro-
posed in the You-Only-Speak-Once (YOSO) line of work, introduced by Gentry,
Halevi, Krawczyk, Magri, Nielsen, Rabin, and Yakoubov [10] and the Fluid MPC
model introduced by Choudhuri, Goel, Green, Jain, and Kaptchuk [7]. Intu-
itively, protocols in the YOSO setting consider the notion of stateless ephemeral
roles, where at a single point in time a small committee of such roles is required
to perform certain actions, and produce a public output, along with messages
to be sent to future roles. Roles are assigned to physical machines via a “role-
assignment” functionality in the beginning of each round, in a way that makes it
hard for the adversary to predict which physical machines will be participating
as roles in a given committee. As roles are allowed to send only a single mes-
sage (i.e., speak only once), and are torn down after the execution, adaptively
corrupting a machine which executed a certain role in the past does not help
the adversary. Due to these observations, assuming that the adversary can only
corrupt a fraction of (a large total number of) physical machines, the protocols
designed in the YOSO setting typically rely on the fact that the adversary’s best
option is to corrupt machines at random.

Improved YOSO Randomness Generation with Worst-Case Corruptions 3

However, this assumption is viable only if role-assignment (which is typically
separated from the multi-party protocol computing the function of interest) is
truly secure. This makes role-assignment protocols hard to design, and the cur-
rently known constructions compromise either in terms of efficiency [11] or in
terms of the supported corruption threshold [2].

The line of work designing Fluid MPC protocols [7–9] considers a worst-
case corruption-per-committee model, where up to a certain minority fraction
of parties are corrupted in each committee. In order to reduce trust in role-
assignment even more, Nielsen, Ribeiro, and Obremski (NRO in the following)
recently introduced a model for YOSO with worst-case corruptions [16], which
we dub YOSOWCC. In this model, prior to the start of the protocol, the adversary
can choose any up to t roles to corrupt overall across all participating parties.
The YOSOWCC model is tailored to the randomness generation setting, and the
authors introduce two information-theoretic protocols which are secure given
worst-case corruption of roles. Unfortunately, these protocols incur exponential
communication- and computation complexities, which motivates us to ask the
following question:

Can we design efficient distributed randomness generation protocols in the
model of YOSO with worst-case corruptions?

As it is trivially possible to adapt known stateful randomness generation
protocols to the YOSOWCC setting at the cost of having a very low adversarial
threshold (see Section 1.3 for details), we further refine the question as follows:

Can we design efficient distributed randomness generation protocols in the
model of YOSO with worst-case corruptions while optimizing the required

number of roles?

1.1 Our Contributions

In this work, we answer the question above positively. As in NRO, we distin-
guish between two different adversarial models, the sending-leaks and execution-
leaks models. Intuitively, in the execution-leaks model the adversary only obtains
messages addressed to corrupted parties upon their execution. In the stronger
sending-leaks model, the adversary obtains the messages addressed to corrupted
parties immediately upon the sender sending the message. We design two ran-
domness generation protocols in the sending-leaks model, along with an opti-
mized version for the execution-leaks model, and prove these protocols secure.
Our protocols are in the computational setting, meaning that the adversary we
consider is computationally bounded.

In our first construction, we build upon a non-interactive publicly verifiable
secret sharing (PVSS) protocol [20], which allows a dealer to share a secret in
a single round among a set of parties (a subset of which can be corrupt) in a
way that lets anyone verify that the dealer behaved correctly. Our PVSS-based
randomness generation protocol requires 3t + 2 roles, and has communication

4 C.-D. Liu-Zhang, E. Masserova, J. Ribeiro, P. Soni, S.A.K. Thyagarajan

complexity that grows quadratically in the number of parties. While this con-
struction requires setup and somewhat heavy cryptographic machinery in the
form of simulation-extractable non-interactive zero-knowledge proofs, in our sec-
ond construction we do not require setup and rely only on the usage of ElGamal
commitments. In this construction, we build upon verifiable secret sharing (VSS)
protocols [17], a notion that is similar to PVSS but requires more rounds. The
communication complexity of this protocol is quadratic in the number of roles.
The protocol requires 5t + 4 roles in the sending-leaks model or 4t + 4 roles in
the execution-leaks model.

We implement our VSS-based construction and compare it to our implemen-
tation of the NRO scheme. Our evaluation shows that our protocol is not only
asymptotically but also concretely efficient, and we outperform NRO for values
as small as t = 6 (for running time) and t = 3 (for size of the transmitted data).

In the following, we first briefly outline our model, and then provide an
overview of the main techniques and ideas used in our work.

1.2 Our Model and Security Goal

We now briefly outline the YOSOWCC model we work in, following the communi-
cation model description of NRO [16]. We distinguish between stateless “roles”
and physical machines which may run for a long time and retain state. Note
that in the following we use the terms “role” and “party” interchangeably. We
consider n parties P1, . . . , Pn, which are executed one after the other. We as-
sume that each party has its own internal source of randomness. We consider a
computationally bounded adversary which is allowed to corrupt any t out of n
parties before the protocol starts. Upon its execution, Pi can publicly broadcast
a value xi and send secret values si,j to each “future” party Pj , i.e., any Pj such
that j > i. We consider the following two adversarial network settings:

– In the sending-leaks model an adversary obtains a message si,j sent by an
honest Pi to a corrupt Pj as soon as Pi sent it. We call the corresponding
adversary the sending-leaks adversary.

– In the execution-leaks model an adversary obtains a message si,j sent by an
honest Pi to a corrupt Pj only once Pj is activated. We call the corresponding
adversary the execution-leaks adversary.

Our goal is the following: After the execution of all parties is complete, anyone
(not just physical machines which acted as roles P1, . . . , Pn) can obtain unbiased
public randomness by applying a publicly known and deterministic extraction
function to the values (x1, . . . , xn). See Figure 1 for a visual representation of
this process.

More formally, let λ denote a security parameter. Consider an interaction of
an adversary A with the honest parties in the randomness generation protocol
and let OUT(A) denote the coin output of this protocol with adversary A. Let
L(λ) denote the length of this output. Let D be a distinguisher. Consider the
following experiment (for protocols which assume trusted setup, this setup is
generated by the challenger):

Improved YOSO Randomness Generation with Worst-Case Corruptions 5

P1 P2 P3 Pn

x1 x2 x3 xn

︷ ︸︸ ︷

Ext

r

public communication

private communication

Fig. 1: Communication model from [16, Figure 1]. Parties Pi speak one after the
other, send secrets to future parties Pj for j > i, and publish public values,
which are available to all parties.

1. b
$← {0, 1}.

2. r
$← {0, 1}L(λ).

3. If b = 0, set coin← OUT(A). Otherwise, set coin← r.
4. b′ ← D(coin).

Then, we have the following formal security definition.

Definition 1 (Computationally secure YOSOWCC randomness genera-
tion). A YOSOWCC randomness generation protocol with n parties is (t, n)-
computationally secure in the sending-leaks (resp. execution-leaks) model if for
all PPT sending-leaks (resp. execution-leaks) adversaries A that corrupt t out of
n parties and all PPT distinguishers D in the above security game it holds that∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ ≤ negl(λ).

1.3 Our Techniques

First, note that, as pointed out by NRO, any stateful r-round multiparty com-
putation protocol which is secure against t out of n corruptions can be ported
to the YOSOWCC setting as follows: Use r roles Pi,r to implement the behavior
of each participant Pi of the stateful protocol over r rounds. Role Pi,k mimics
the behavior of Pi in round k of the stateful protocol, with the caveat that it ad-
ditionally sends its state to the future role Pi,k+1. Unfortunately, this approach
is costly in terms of the required number of roles: It requires n · r roles, while
tolerating only t corrupted parties.

To address this issue, we design randomness generation protocols which are
tailored to the YOSOWCC setting. For simplicity, say we wish to generate only a
single random bit r ∈ {0, 1}.

First idea. Our first idea is the following: As each party has its own source of
randomness, we could set n = t + 1 and simply XOR all values ri, where ri is

6 C.-D. Liu-Zhang, E. Masserova, J. Ribeiro, P. Soni, S.A.K. Thyagarajan

the random bit generated by Pi, i.e., set r =
⊕

i∈[t+1] ri. As at least one party
out of t + 1 is honest, the XOR should result in an unbiased bit. However, we
need to be careful – we must not let a corrupt party see the values of the honest
parties before supplying its own ri. Thus, intuitively, we have to make each party
commit to the randomness it wishes to contribute prior to revealing the values
of other parties. This approach requires a party to speak two times: Once when
committing to a value, and once when opening it. This can be naively achieved
by using two roles to implement Pi, and having the first role privately send its
state to its counterpart.

Perhaps surprisingly, this approach still does not achieve what we want: As
corrupt parties can refuse to open the committed values, in our protocol we must
specify how to proceed in such a case. We can either choose to ignore each such
party Pi, thereby making their contribution equal to ri = 0 (first case in the
following), or set ri = 1 (second case). In both cases, a corrupt Pt+1 can bias
the outcome of the final XOR by committing to rt+1 = 1 in the first case and
rt+1 = 0 in the second case, and then adaptively deciding whether to open the
value or not during the execution of its second role, thereby setting the result r
to the value of its choice. As the second role of Pt+1 is the last party speaking,
all values supplied by the honest parties are known upon its execution.

Utilizing PVSS. We address the issue above by ensuring that the coin out-
put is fixed prior to the reveal phase. We begin by considering a setting with
trusted setup. In this case, we can rely on a (t, n)-publicly verifiable secret shar-
ing (PVSS) protocol. Using such a protocol, a dealer can secret share its secret
among n parties in a way that any t+1 parties can reconstruct the secret, but any
t (potentially corrupted) parties have no information about the secret. Moreover,
public verifiability ensures that anyone (even non-recipients) can verify that the
dealer sharing has been performed correctly, i.e., there exists a unique secret
which can be later reconstructed by any set of t+ 1 recipient parties.

Intuitively, this fixes the secret at the end of the commit/sharing phase, and
if the adversary corrupts at most t parties, it does not learn any information
about the secret. If we ensure that the secret reconstruction starts only after
the sharing phase of all secrets is complete, the adversary can no longer bias
the outcome. However, there is one caveat: As anyone must be able to verify
that the sharing was done correctly, the dealer cannot send the shares to the
parties via private communication. Instead, the dealer publishes encryptions of
the shares of the parties with respect to their corresponding public keys. In a
scenario such as ours, where we run not only one, but multiple PVSS proto-
cols, publicly revealing encryptions of the shares makes PVSS susceptible to
malleability attacks. To prevent such attacks from adversarial dealers, we make
use of a PVSS protocol with appropriate non-malleability properties. Such prop-
erties can be achieved, for example, via simulation-extractable non-interactive
zero-knowledge proofs [12].

Improved YOSO Randomness Generation with Worst-Case Corruptions 7

If we use a (t, 2t+1)-PVSS protocol, the above protocol requires only 3t+2
roles in total: t+1 dealers and 2t+1 parties who obtain the secret shares. This
protocol allows us to achieve the following result:

Theorem 1 (informal). Assuming public key encryption and simulation-extr-
actable NIZKs, there exists a computationally secure randomness generation pro-
tocol with 3t+ 2 roles in the sending-leaks model, where t is the number of cor-
ruptions.

We give a formal description of our PVSS-based construction in Section 2.

Removing Trusted Setup. While the protocol above enjoys good efficiency
properties and requires only a small number of parties, it relies on somewhat
heavy cryptographic assumptions and a trusted setup. In our second and main
construction we address these limitations.

Our idea is to utilize verifiable secret sharing (VSS), which is similar to
PVSS, except that it does not provide public verifiability. Instead, we only have
the so-called “strong commitment” property, which states that the shares of the
honest parties define a secret (which could be ⊥).

At a high level, as a first step we will design a YOSOWCC-friendly VSS scheme.
Then, as in the PVSS-based construction, we will let t+1 dealers each share their
secret randomness using this VSS. However, as mentioned above, this time we
cannot rely on the public verifiability property of the secret sharing scheme. We
used this property in the previous construction to determine whether a dealer
behaved honestly during the commit/secret sharing phase. This, in turn, allowed
us to circumvent the issue where a malicious party commits to some randomness,
and after seeing honest values decides whether to open this randomness or not. In
VSS, the dealer is allowed to send shares to the parties privately, and thus when
a dealer and a share recipient are in dispute, from the perspective of an external
party it may not be immediately possible to tell whether the dealer or the share
recipients behaved maliciously. Handling this requires further interaction and
results in more roles in our YOSOWCC VSS-based protocol, which we outline in
the following.

We build our protocol around the well-known Pedersen VSS [17]. The stan-
dard stateful version of this VSS proceeds in the following four rounds, where s
is the secret that is being shared, and g and h are generators of a group where
computing discrete logarithms is hard:

1. The dealer D chooses two degree-t polynomials

f1(x) = a0 + a1x+ · · ·+ atx
t,

f2(x) = b0 + b1x+ · · ·+ btx
t

such that b0 = s. Then, D broadcasts commitments

(c0, c1, · · · , ct) = (ga0hb0 , ga1hb1 · · · , gathbt),

and sends ri = f1(i) and si = f2(i) to each Pi, i ∈ [n].

8 C.-D. Liu-Zhang, E. Masserova, J. Ribeiro, P. Soni, S.A.K. Thyagarajan

2. Each partyRi checks whether g
rihsi =

t∏
k=0

ci
k

k . If not,Ri broadcasts Complain.

3. D broadcasts all shares from parties who complained. If any share that D
broadcasts does not satisfy the above relation, D is deemed corrupt and the
execution halts. Otherwise, each Pi who complained replaces its old share
with the new (ri, si).

4. Each Ri outputs ri, si. The value s = f2(0) is the reconstructed secret.

Note that in the construction above, the dealer as well as each share recipient
Ri may need to speak twice – the dealer is required to come back in the third
round to resolve the complaints, and each Ri might complain in the second
round, and is then required to output its share in the fourth round. We adapt
this scheme to the YOSOWCC setting in two steps: First, we use two roles D
and D′ for the dealer, and let D not only execute the first round of the protocol
above, but also send it state privately to D′. Second, we use two roles Ri and
R′

i for each share recipient, and also let Ri not only execute the second round
of the protocol above, but send its state to its counterpart R′

i.
A final issue remains: Currently, we assume that g, h are publicly known val-

ues, and the construction above is secure assuming that logg h is not known to
any party. We would now like to remove this setup. The strawman idea is to
simply have each dealer supply its own pair of g and h. However, if a malicious
dealer colludes with a party Ri, then Ri can cheat by providing an invalid open-
ing (which still verifies correctly), thus changing the reconstructed secret value.
To fix this, we substitute computationally Pedersen commitments by uncondi-
tionally binding ElGamal commitments. In more detail, we now compute the
commitment (c0, c1, · · · , ct) as follows:

(c0, c1, · · · , ct) =
(
(ga0 , ha0 · gb0), (ga1 , ha1 · gb1), · · · , (gat , hat · gbt)

)
.

Pipelining. When implemented naively, the construction outlined above re-
quires 6t + 4 roles, and the construction is secure in the sending-leaks model.
To further decrease the number of roles, we carefully parallelize the execution of
both dealer roles with the receiver roles. More concretely, instead of letting the
t + 1 dealers share secrets towards a fixed set of 2t + 1 receivers, the recipient
set for the i-th dealer is set to be the 2t + 1 roles that immediately succeed
that particular dealer. Moreover, we observe that the conflicts regarding the i-th
dealer can also be immediately resolved after the corresponding set of 2t + 1
receiver roles have been executed.

This means that the total number of roles (after resolving complaints from
all dealers) is now 3t + 3, i.e., this linearization of roles allows us to decrease
the total number of roles by roughly t in the sharing phase of the dealers. For
further details, see Section 3.

Additional optimization in the execution-leaks model. We make the
observation that in the execution-leaks model we can further reduce the final

Improved YOSO Randomness Generation with Worst-Case Corruptions 9

set of receivers R′
i by t roles. The idea is that each original receiver Ri (from

the sharing phase) follows the procedure of round two, but in addition sends its
shares to all roles R′

j (instead of only R′
i as before) if its shares verify correctly.

This step does not reveal information on the shares, since the channels to the
future roles do not reveal any information until the corresponding recipient role
is executed. In the reconstruction step, we can let each R′

j publish the received
shares from all parties that it got the shares from. See the full version for details.

We arrive at the final theorem.

Theorem 2 (informal). Assuming ElGamal commitments, there exists a com-
putationally secure randomness generation protocol with 5t+4 roles (resp. 4t+4
roles) in the sending-leaks (resp. execution-leaks model), where t is the number
of corruptions.

2 PVSS-based YOSOWCC Randomness Generation

We introduce a randomness generation scheme which relies on publicly verifiable
secret sharing (PVSS). Before going into our protocol, we briefly explain what
a PVSS is.

2.1 Publicly Verifiable Secret Sharing

Recall the definition of Publicly Verifiable Secret Sharing (PVSS) from [4]. In
PVSS, a dealer D shares a secret to a set of n parties P = {P1, · · · , Pn}. A
(t, n)-PVSS protocol ensures that a secret is split in a way that allows t + 1
parties to reconstruct a secret, but at the same time, knowing t shares does
not reveal any information about the secret. Any external verifier V is able
to check that D acts honestly. More formally, a PVSS protocol consists of
the algorithms (Setup,Dist,Verif,Reconstr-Dec,Reconstr-Pool), where Setup =
(Setupπ,SetupPKI), and which denote the following:

– Setup: Consists of (Setupπ,SetupPKI), which take security parameter λ as
input. In Setupπ, the parameters of the proof system are generated in a trusted
fashion. Using SetupPKI, every party generates a public key pki and withholds
the corresponding secret key ski.

– Distribution: The dealer creates shares s1, · · · , sn for the secret s, encrypts
share si with the key pki for i = {1, · · · , n} and publishes these encryptions
ŝi, together with a proof proofD that these are indeed encryptions of a valid
sharing of some secret.

– Verification: In this phase, any external V (not necessarily being a partic-
ipant in the protocol) can verify non-interactively, given all the public infor-
mation until this point, that the values ŝi are encryptions of a valid sharing
of some secret.

– Reconstruction: This phase is divided in two.
Decryption of the shares: This phase can be carried out by any set Q of t+1 or
more parties. Every party Pi in Q decrypts the share si from the ciphertext ŝi

10 C.-D. Liu-Zhang, E. Masserova, J. Ribeiro, P. Soni, S.A.K. Thyagarajan

by using its secret key ski, and publishes si together with a (non-interactive)
zero-knowledge proof proofi that this value is indeed a correct decryption
of ŝi.
Share pooling: Any external verifier V (not necessarily being a participant in
the protocol) can now execute this phase. V first checks whether the proofs
proofi are correct. If the check passes for less than t+1 parties in Q then V
aborts; otherwise V applies a reconstruction procedure to the set si of shares
corresponding to parties Pi that passed the checks.

A PVSS protocol (Setup,Dist,Verif,Reconstr-Dec,Reconstr-Pool) must pro-
vide three security guarantees: Correctness, Verifiability and IND1-Secrecy. These
properties are defined below:

– Correctness: If the dealer and all players in Q are honest, then all checks
in the verification and reconstruction phases pass, and the secret can be re-
constructed from the information published by the players in Q during recon-
struction.

– Verifiability: If the check in the Verification phase passes, then with high
probability the values ŝi are encryptions of a valid sharing of some secret.
Furthermore, if the check in the Reconstruction phase passes, then the values
si are indeed the shares of the secret distributed by D.

– IND1-Secrecy: Prior to the reconstruction phase, the public information
together with the secret keys ski of any set of at most t players gives no
information about the secret.

2.2 Our PVSS-Based Randomness Generation Protocol

Our protocol is in the sending-leaks model (thus also secure in the execution-
leaks model). We describe the scheme and outline the security proof. For the
complete proof, see the full version.

The high-level idea of the scheme is the following: given n = 3t + 2 parties,
split them into two groups P and P ′ of size t + 1 and 2t + 1, respectively.
We dub the parties from the first group dealers, denoted by P1, P2, · · · , Pt+1,
and the parties from the second group decryptors, denoted by P ′

1, P
′
2, · · · , P ′

2t+1.
Let (Setup := (Setupπ,SetupPKI),Dist,Verif,RDec, RPool) denote a (t, 2t + 1)-
PVSS protocol. The protocol starts with a “sharing” phase, where every Pi is
executed one after another and acts as a PVSS dealer distributing its secret to the
decryptors in P ′. Then, decryptors P ′

i ∈ P ′ are executed one after another, and
each decryptor P ′

i executes the share decryption part of the PVSS reconstruction
phase for each dealer Pi. Finally, any party C can execute the share pooling phase
of the PVSS reconstruction phase in order to obtain the secret shared by each
dealer. We give the full scheme in Protocol 1.

For security, we need our PVSS to be non-malleable, which can be naively
achieved by using simulation-extractable NIZKs [12] as PVSS proofs. Intuitively,
a strawman PVSS scheme which provides the required non-malleability works as
follows: Share the secret using a (t, n) secret sharing scheme (e.g, Shamir’s secret

Improved YOSO Randomness Generation with Worst-Case Corruptions 11

Protocol 1 Randomness Beacon from PVSS in the Sending-Leaks Model.

Setup: PVSS Setupπ algorithm is executed in a trusted fashion to obtain the
common reference string crs. Public key of every party in the protocol is generated
according to SetupPKI.
Sharing phase: Each party Pi, i ∈ [t+ 1] does the following:

1. Pi samples xi from {0, 1} uniformly at random.
2. Pi uses PVSS algorithm Dist as the dealer to distribute shares of xi to the parties

P ′
1, · · · , P ′

2t+1:

({ŝ(i)j }j∈[2t+1], proof
(i)
D)← Dist(xi, {pkP ′

j
}j∈[2t+1], crs).

3. Pi publishes ({ŝ(i)j }j∈[2t+1], proof
(i)
D).

Reconstruction phase: Each party P ′
j , j ∈ [2t+ 1] does the following:

1. For each Pi, P
′
j uses Verif({ŝ(i)j }j∈[2t+1], proof

(i)
D , crs) to verify that Pi dealt a

valid secret. For each Pi who passed the check, P ′
j verifies that the proof

proof
(i)
D and every encryption ŝ

(i)
m distributed by Pi is not the same as one

distributed by any dealer Pk, where k < i. Denote Pi as valid if so.
2. For each valid Pi, P

′
j uses the PVSS algorithm RDec(ŝ

(i)
j , sk′

P ′
j
, crs) to obtain

(s
(i)
j , proof

(i)
j), and publishes this pair.

Any party C can use the PVSS algorithm RPool on information published by the
parties P ′

1, · · · , P ′
2t+1 to obtain xi. Output

⊕
i∈I xi, where I denotes an index set of

dealers for which C obtained the secret using RPool.

sharing [19]), encrypt each share using a public key of the corresponding share
receiver, and append a simulation-extractable NIZK proof confirming that the
dealer knows the shares underlying the ciphertexts, and these shares correspond
to the (t, n) secret sharing. The reconstruction works by having each receiver
decrypt its share, and publish a proof confirming that it knows a secret key such
that the decryption of the corresponding ciphertext results in the stated value.
See the full version for details. The communication complexity is O(n2|c|+n|p|),
where |c| is the length of a single ciphertext, and |p| of a proof.

Theorem 3. Assuming public key encryption and simulation-extractable NIZKs,
there exists a YOSOWCC (t, 3t + 2)-computationally secure randomness genera-
tion protocol in the sending-leaks model.

3 Randomness Generation from ElGamal Commitments

We now describe our randomness generation protocol that is secure against com-
putational adversaries, and does not require any setup assumptions. We provide
two variations of this protocol: One for the sending-leaks model and another for
the execution-leaks model. To reduce the number of roles, we use pipelining in
both versions. For simplicity, we first describe the protocol without pipelining.

12 C.-D. Liu-Zhang, E. Masserova, J. Ribeiro, P. Soni, S.A.K. Thyagarajan

Construction for the sending-leaks model. As mentioned in Section 1.3,
the high-level idea of the construction is the following: as a first step, we “lin-
earize” a custom version of Pedersen’s VSS protocol [17] where a single party
shares a random value in our stateless model. Recall that in each linearization
we have the roles:

– Party D, who acts as the dealer distributing the secrets (publishing commit-
ments to the coefficients of t-degree polynomial and bilaterally sending to
each receiver a share evaluation), and sends its state to its counterpart D′.

– 2t+1 receivers Ri, who receive and verify the secret shares, complain about
the shares if applicable, and otherwise send these to the counterpart R′

i.

– Party D′ who obtains a state from D and uses it to publish the shares of
the receivers that complained.

– 2t + 1 receivers R′
i who receive the shares from their counterparts Ri, as

well as set their shares to the ones broadcast by D′ (if the counterpart Ri

complained), and publicly reveal these shares.

We use t + 1 such linearized VSS to share t + 1 random values, and output
the final coin as the xor the results. In more detail, we let n = 6t+4, and divide
the n parties into a group D of size t + 1, group R of size 2t + 1, group D′ of
size t+1, and group R′ of size 2t+1. These parties execute the following roles:

– Each Di ∈ D acts as the dealer D in the i-th linearization.

– Each Ri ∈ R executes the role the i-th receiver Ri in each of the t + 1
linearizations.

– Each D′
i ∈ D′ acts as the dealer D′ in the i-th linearization.

– Each R′
i ∈ R′ executes the role of the i-th receiver R′

i in each of the t + 1
linearizations.

We denote a client who wishes to obtain the result of the protocol by C (C can
be external, but can also be one of Di, Ri, D

′
i, R

′
i).

The protocol starts with a “sharing” phase, where each Di is executed one
after another and shares its secret via Shamir’s secret sharing to the receivers
in R, while committing to it using ElGamal’s commitments. Additionally, each
Di sends its state to its counterpart D′

i. Then, parties in R are executed one
after another, verify the shares they receive, and complain about the dealers who
sent inconsistent shares. Finally, each dealer D′

i uses the state it received from
its counterpart Di to publicly respond to the complains. After this, the sharing
phase is completed and the “reconstruction phase” begins. Here, each R′

i ∈ R′

simply outputs the shares it received. Every party C who is interested in the
output verifies the published shares, uses the ones that passed the verification
to reconstruct the secret dealt by a particular dealer, and computes the xor of
all secrets dealt by the dealers who were not deemed corrupt (i.e., publicly sent
inconsistent information as a respond to a complain during the sharing phase).
See Protocol 2 for details.

Improved YOSO Randomness Generation with Worst-Case Corruptions 13

Execution-leaks variant. For the execution-leaks model, we similarly imple-
ment the behavior of each dealer using two roles – one responsible for the sharing
of a secret, and one responsible for addressing the complaints. However, instead
of implementing each Ri using two roles, we have 2t + 1 parties Ri and t + 1
parties R′

j (where R′
i can not be thought of as a counterpart of Ri). Each Ri

follows the procedure of round two, and if its shares verify, it additionally sends
its shares to each R′

j . Finally, each R′
j publishes all shares (from all parties got

the shares from) which verified correctly. See the full version for details.

Pipelining optimization. Implemented naively, in the sending-leaks model
the protocol described above requires 6t + 4 parties, and its execution-leaks
variant requires 5t+ 4 parties. To reduce this number, we propose the following
modification to both the sending-leaks and the execution-leaks protocols: Instead
of combining multiple linearized VSS by having t+1 dealers, each of whom shares
secrets among the same set R of 2t+ 1 parties, we let each dealer share secrets
among the next 2t+1 parties. In the sending-leaks model, we now have n = 5t+4
parties Pi, where depending on the index i, party Pi executes the following roles:

– For 1 ≤ i ≤ t + 1, party Pi executes the role of the dealer D in i-th VSS
linarization. If additionally i > 1, Pi also executes the role Ri−j in j-th VSS
linearization, where j < i.

– For t+2 ≤ i ≤ 3t+2, party Pi executes the role Ri−j in j-th VSS lineariza-
tion, where j < i. If additionally i > 2t+ 2, Pi also executes the role of the
dealer D′ in the i− 2t− 2-th VSS linearization.

– For i = 3t+3, party Pi executes the role D
′ in the t+1-st VSS linearization.

– For 3t+ 4 ≤ i ≤ 5t+ 4, Pi executes the role R′
i−3t−3 for each linearization.

Proofs of the following theorems can be found in the full version.

Theorem 4. Assuming ElGamal commitments, there is a YOSOWCC (t, 5t+4)-
secure computational randomness generation protocol in the sending-leaks model.

Theorem 5. Assuming ElGamal commitments, there is a YOSOWCC (t, 4t +
4)-secure computational randomness generation protocol in the execution-leaks
model.

4 Implementation and Evaluation

We now evaluate our randomness generation scheme in the sending-leaks model
from Section 3. In the following, we first compare it to our implementation of
the randomness extraction protocol from [16]. We evaluate the work required to
be performed by each role in the full version. Our implementation is available
at https://github.com/yosorand/yoso-rand-elgamal and required ≈ 300 lines of
code in Rust. We ran all our experiments single-threaded on a MacBook Pro
with 32GB of RAM, and an Apple M1 Pro SoC.

14 C.-D. Liu-Zhang, E. Masserova, J. Ribeiro, P. Soni, S.A.K. Thyagarajan

Protocol 2 SL Randomness Generation from ElGamal Commitments
Sharing phase:
Each Di, i ∈ [t+ 1] does the following:

1. Di chooses random degree-t polynomials f1 and f2:

f1 = a0 + a1x+ · · ·+ atx
t and f2 = b0 + b1x+ · · ·+ btx

t.

2. Di chooses a pair of generators (g, h).
3. Di commits to f1 and f2 via broadcasting (g, h) along with

(c0, c1, · · · , ct) =
(
(ga0 , ha0 · gb0), (ga1 , ha1 · gb1), · · · , (gat , hat · gbt)

)
.

4. Di sends rj = f1(j) and sj = f2(j) to each Pj , j ∈ [2t+ 1]; and sends
polynomials f1 and f2 to D′

i.

Each Ri, i ∈ [2t+ 1] does the following:

1. For each dealer Dj , Ri checks whether the share (ri, si) it obtained from Dj , and
the commitments to f1 and f2 distributed by Dj satisfy

gri =

t∏
k=0

(gak)i
k

and hri · gsi =
t∏

k=0

(
hak · gbk

)ik

If not, Ri broadcasts Complain− Dj.
2. Ri sends all shares (ri, si) that passed verification to R′

i.

Each D′
i, i ∈ [t+ 1] does the following:

1. D′
i broadcasts shares of parties who complained about Di. If any share broadcast

by D′
i does not pass the check above, D′

i is deemed corrupt.

Reconstruction phase:
Each R′

i, i ∈ [2t+ 1] does the following:

1. If Ri complained about Dj , and D′
j was not deemed corrupt, R′

i sets its
corresponding share to si and ri broadcast by D′

j .
2. R′

i outputs all shares (si, ri) it obtained for non-corrupt dealers.

Client C does the following:

1. For each D′
i who was not deemed corrupt, C uses any t+ 1 shares sj and rj that

pass the verification check against the corresponding commitment to reconstruct
the value si = fi(0), where fi is the polynomial f2 dealt by Di/D

′
i.

2. Let H denote the index set of dealers D′
i which were not deemed corrupt. C

outputs
⊕

i∈H si.

In our proof-of-concept implementation, we simulate the communication layer
(i.e., the broadcast and point-to-point channels), and assume that the channels
are authenticated. In our implementation all parties behave honestly, which cor-

Improved YOSO Randomness Generation with Worst-Case Corruptions 15

responds to the worst case in terms of communication and computation com-
plexity (same for NRO).

In terms of the running times (see Table 1), as expected, for very small
values of t the NRO protocol is faster than our protocol. However, due to the
exponential computational complexity of the NRO protocol, we outperform NRO
already for t = 6, and the NRO scheme becomes impractical for values as small
as t = 8. This gap will only increase as t grows.

t Our scheme NRO

1 314 0.64
2 821 2
3 1589 24
4 2793 236
5 4285 2463
6 6312 24387
7 8886 233328
8 11966 -

Table 1: Running time comparison,
all times in milliseconds.

t Our scheme NRO

1 0.0031 0.0003
2 0.0067 0.004
3 0.0115 0.039
4 0.0176 0.378
5 0.0249 3.399
6 0.0336 29.182
7 0.0436 242.327
8 0.0548 -

Table 2: Overall communication sizes
in MB.

Note that while in our evaluation we assume that all parties are single-
threaded, our scheme is easily parallelizable: As a party often executes multiple
roles for independent protocol executions of the linearized VSS, those roles can
be executed by different cores. This slashes the cost roughly by a factor which
corresponds to the number of cores available.

Finally, we report the overall data sizes that parties need to transmit both in
our protocol and the NRO protocol (see Table 2). Again, while the NRO protocol
is very efficient on very small values of t, our scheme outperforms it already for
t = 3 (and stays remarkably low for larger values of t). This gap will only grow,
as the NRO protocol has exponential communication complexity. As before in
our running time experiment, we did not obtain the final values for the NRO
scheme due to the timeout.

Acknowledgements

This work was supported by a Protocol Labs Cryptonet Network Grant RFP-
013 “Stateless Distributed Randomness Generation”. C. Liu-Zhang’s research
was also supported by the Hasler Foundation Project no 23090 and ETH Zurich
Leading House Research Partnership Grant RPG-072023-19. J. Ribeiro’s re-
search was also supported by NOVA LINCS (ref. UIDB/04516/2020) with the
financial support of FCT - Fundação para a Ciência e a Tecnologia. Elisaweta
Masserova was supported by a gift from Bosch and NSF Grants No. 1801369
and 2224279. We thank Jay Bosamiya for helping us with the implementation
of this work.

16 C.-D. Liu-Zhang, E. Masserova, J. Ribeiro, P. Soni, S.A.K. Thyagarajan

References

1. Baignères, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain, M.:
Trap me if you can – million dollar curve. IACR Cryptol. ePrint Arch. (2015),
http://eprint.iacr.org/2015/1249

2. Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C.,
Rabin, T., Reyzin, L.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak,
K. (eds.) Theory of Cryptography. pp. 260–290. Springer International Publishing,
Cham (2020)

3. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Advances in Cryptology – CRYPTO 2018. pp. 757–788. Springer (2018).
https://doi.org/10.1007/978-3-319-96884-1 25

4. Cascudo, I., David, B.: SCRAPE: Scalable Randomness Attested by Public Enti-
ties. In: International Conference on Applied Cryptography and Network Security.
pp. 537–556 (2017)

5. Cascudo, I., David, B.: ALBATROSS: Publicly AttestabLe BATched Randomness
based On Secret Sharing. In: Advances in Cryptology – ASIACRYPT 2020. pp.
311–341. Springer International Publishing, Cham (2020)

6. Choi, K., Manoj, A., Bonneau, J.: SoK: Distributed randomness bea-
cons. In: 44th IEEE Symposium on Security and Privacy, SP 2023,
San Francisco, CA, USA, May 21-25, 2023. pp. 75–92. IEEE (2023).
https://doi.org/10.1109/SP46215.2023.10179419

7. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid mpc: Secure
multiparty computation with dynamic participants. In: Malkin, T., Peikert, C.
(eds.) Advances in Cryptology – CRYPTO 2021. pp. 94–123. Springer International
Publishing, Cham (2021)

8. David, B., Deligios, G., Goel, A., Ishai, Y., Konring, A., Kushilevitz, E., Liu-Zhang,
C.D., Narayanan, V.: Perfect mpc over layered graphs. In: Annual International
Cryptology Conference. pp. 360–392. Springer (2023)

9. Deligios, G., Goel, A., Liu-Zhang, C.D.: Maximally-fluid mpc with guar-
anteed output delivery. Cryptology ePrint Archive, Paper 2023/415 (2023),
https://eprint.iacr.org/2023/415, https://eprint.iacr.org/2023/415

10. Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T., Yakoubov,
S.: YOSO: You Only Speak Once. In: Annual International Cryptology Conference.
pp. 64–93 (2021)

11. Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index PIR
and applications. In: Theory of Cryptography - 19th International Conference,
TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part III. Lecture
Notes in Computer Science, vol. 13044, pp. 32–61. Springer (2021)

12. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) Advances in Cryptology – ASI-
ACRYPT 2006. pp. 444–459. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

13. Groth, J.: Non-interactive distributed key generation and key resharing. IACR
Cryptol. ePrint Arch. (2021), https://eprint.iacr.org/2021/339

14. Kelsey, J., Brandão, L.T.A.N., Peralta, R., Booth, H.: A reference for randomness
beacons: Format and protocol version 2. Tech. rep., National Institute of Standards
and Technology (2019), https://csrc.nist.gov/pubs/ir/8213/ipd

15. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. IACR Cryp-
tol. ePrint Arch. (2015), http://eprint.iacr.org/2015/366

Improved YOSO Randomness Generation with Worst-Case Corruptions 17

16. Nielsen, J.B., Ribeiro, J., Obremski, M.: Public randomness extraction with
ephemeral roles and worst-case corruptions. In: Dodis, Y., Shrimpton, T. (eds.)
Advances in Cryptology – CRYPTO 2022. pp. 127–147. Springer Nature Switzer-
land, Cham (2022)

17. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91. pp.
129–140. Springer Berlin Heidelberg, Berlin, Heidelberg (1992)

18. Rabin, M.O.: Transaction protection by beacons. Journal of Computer and System
Sciences 27(2), 256–267 (1983)

19. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

20. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) Advances
in Cryptology - EUROCRYPT ’96, International Conference on the Theory and
Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Pro-
ceeding. Lecture Notes in Computer Science, vol. 1070, pp. 190–199. Springer
(1996)

21. Syta, E., Jovanovic, P., Kogias, E.K., Gailly, N., Gasser, L., Khoffi, I.,
Fischer, M.J., Ford, B.: Scalable bias-resistant distributed randomness. In:
2017 IEEE Symposium on Security and Privacy (SP). pp. 444–460 (2017).
https://doi.org/10.1109/SP.2017.45

22. Thyagarajan, S.A.K., Castagnos, G., Laguillaumie, F., Malavolta, G.: Efficient
CCA timed commitments in class groups. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. p. 2663–2684.
CCS ’21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3460120.3484773

