Lattice anisotropy determination
in 3-dimensional SU(2) gauge theory

Corresponding to Run C


Fit results: L=4, W=32L=4, W=12L=5
Z_xi 0.9410(54) 0.9436(14) 0.9421(33)
1/Z_xi 1.0627(61) 1.0597(16) 1.0615(38)
E_0 0.7171(49) 0.22869(54) 0.2959(13)
chi-square/dof 0.77 0.78 0.87
goodness Q 0.88 0.84 0.67

Improved anisotropic action
beta 1.6
input anisotropy a_s / a_t 8.0
input u_t 1.0000
input u_s 0.8550



METHOD OF DETERMINATION




RUN PARAMETERS

torelon length (in a_s) 4 4 5
transverse extent of lattice 12 32 12
temporal extent of lattice 60 112 60

Configuration updating parameters: L=4, W=12L=4, W=32L=5
number of bins 660 3223 450
number of measurements per bin 50 20 50
number of updates between measurements 30 30 30
number of Cabibbo-Marinari sweeps per update 1 1 1
number of over-relaxation sweeps per update 9 6 9

Link smearing parameters:
number of fuzzings 6
alpha (staple weight) 0.15
initial fuzzing levels 2
increment in fuzzing levels 2
Correlator information:
Maximum time separation measured 15
Optimized on time slices 1/ 0





Momenta included in fit:
n_x t_min t_max
0 3 10
1 3 10
2 3 10
3 3 10
4 3 10
5 2 9



EFFECTIVE MASS PLOTS (L=4, W=12)



















OTHER L=4, W=12 FITS

Continuum dispersion
n_x values Z_xi Q
0, 1, 2, 3 0.9448(30) 0.95
0, 1, 2, 3, 4 0.9432(21) 0.97
0, 1, 2, 3, 4, 5 0.9436(14) 0.84







Momenta included in fit:
n_x t_min t_max
0 3 12
1 3 12
2 3 12
3 3 12
4 3 12
5 3 12



EFFECTIVE MASS PLOTS (L=4, W=32)



















OTHER L=4, W=32 FITS

Continuum dispersion Lattice dispersion
n_x values Z_xi Q Z_xiQ
0, 1, 2, 3 0.950(15) 0.85 0.946(14) 0.85
0, 1, 2, 3, 4 0.9414(75) 0.86 0.9364(72) 0.86
0, 1, 2, 3, 4, 5 0.9483(48) 0.87 0.9410(54) 0.88







Momenta included in fit:
n_x t_min t_max
0 3 10
1 3 10
2 4 10
3 3 10
4 4 10



EFFECTIVE MASS PLOTS (L=5)
















OTHER L=5 FITS

Continuum dispersion
n_x values Z_xi Q
0, 1, 2, 3 0.9450(37) 0.66
0, 1, 2, 3, 4 0.9421(33) 0.67