Lattice anisotropy determination
in 4-dimensional SU(3) gauge theory

Corresponding to Run A


Fit results:
Z_xi 0.943(10)
1/Z_xi 1.061(11)
E_0 0.0999(18)
chi-square/dof 1.04
goodness Q 0.40
Improved anisotropic action
beta 3.0
input anisotropy a_s / a_t 3.0
input u_t 1.0000
input u_s 0.8409



METHOD OF DETERMINATION




RUN PARAMETERS

torelon length (in a_s) 10
transverse extent of lattice 15 x 15
temporal extent of lattice 45

Configuration updating parameters:
number of bins 883
number of measurements per bin 5
number of updates between measurements 7
number of Cabibbo-Marinari sweeps per update 1
number of over-relaxation sweeps per update 7
Link smearing parameters:
number of fuzzings 3
alpha (staple weight) 0.5
initial fuzzing levels 5
increment in fuzzing levels 7
Correlator information:
Maximum time separation measured 16
Optimized on time slices 1/ 0




Momenta included in fit:
(n_x,n_y) t_min t_max
(0,0) 0 11
(0,1) 0 11
(0,2) 0 11
(1,1) 0 11
(1,2) 0 11
(2,2) 0 11
Energies from fit:
(n_x,n_y) a_t E(P)
(0,0) 0.2220(21)
(0,1) 0.2669(14)
(0,2) 0.3702(21)
(1,1) 0.3052(14)
(1,2) 0.3987(25)
(2,2) 0.4741(35)



EFFECTIVE MASS PLOTS



















OTHER FITS

Continuum dispersion Lattice dispersion
(n_x, n_y) values Z_xi Q Z_xiQ
(0,0) (0,1) (0,2) 0.936(17) 0.25 0.941(16) 0.25
(0,0) (0,1) (0,2) (1,1) 0.939(12) 0.40 0.944(15) 0.40
(0,0) (0,1) (0,2) (1,1) (2,2) 0.934(11) 0.36 0.940(11) 0.36
(0,0) (0,1) (0,2) (1,1) (1,2) 0.951(13) 0.46 0.956(14) 0.45
(0,0) (0,1) (0,2) (1,1) (1,2) (2,2) 0.943(10) 0.40 0.9492(95) 0.40