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Abstract

My doctoral research addresses two fundamental obstacles to beneficial
outcomes from strategic interactions between multiple parties: strategic
incentives against cooperation (as in the Prisoner’s Dilemma) and the
multiplicity of solutions (sometimes called the equilibrium selection prob-
lem). As AI systems are increasingly involved in consequential decision
making processes on behalf of human principals, understanding how to
achieve desirable outcomes in multi-agent AI settings becomes critical.
My research leverages unique features of AI systems – including their
transparency, reproducibility, and malleability – to develop novel game-
theoretic approaches that enable better, more cooperative outcomes.

Three primary research directions form the core of this dissertation.
First, the concept of “safe Pareto improvements” provides a rigorous
framework for improving outcomes without resolving equilibrium selection
problems. Unlike traditional solution concepts, safe Pareto improvements
make qualitative assumptions about pairs of games rather than individual
games. This sometimes allows us to prefer playing one game over another,
without any judgment about how each of the individual games is played.
Second, the concept of program equilibrium explores how the use of mu-
tually transparent decision-making algorithms can allow for cooperation.
Third, my research on so-called Newcomb-like decision problems takes
inspiration from philosophical branches of decision theory. I investigate
how cooperation can be achieved when different parties deploy similar AI
systems.

Current and planned work extends these directions through several
projects, including: connecting program equilibrium with mediated equi-
librium; exploring sequential program/mediated equilibrium-type settings;
investigating the relationship between self-locating beliefs and decision
theory; developing theoretical foundations for safe Pareto improvements,
as well as analyzing safe Pareto improvements in a new setting. I’ve also
started to implement some of these theoretical ideas in language models
to test their practical applicability.
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Figure 1: The figure gives an overview of the two central problems and the
main approaches to these problems that I have pursued in my doctoral work.
Connections between the areas are highlighted by edges between them.

1 Introduction

In this document, I outline the main directions of my doctoral research. I start
in Section 2 by describing the problems that my research aims to address. I
then continue to briefly describe the three most central directions themselves in
Section 3, generally with a focus on completed work. Most of my dissertation
will center on these directions. Finally, in Section 4, I described current and
future work that I plan to feature centrally in the dissertation.

In Appendix A, I discuss some further directions and lines of work and how
they connect to the main problems and directions – I expect these to take up
less space.

Last and least, since the CMU CSD PhD student handbook instructs me
to “[d]emonstrate [my] personal qualifications for doing the proposed work” [2,
p. 35], I include some biographical information in support in Appendix B.

Related work This document outlines a research agenda toward improving
outcomes from interactions between multiple AI systems. Other such agendas
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have been put forward. Most closely related is one I have co-written:

Vincent Conitzer and Caspar Oesterheld. Foundations of cooperative AI.
Proceedings of the AAAI Conference on Artificial Intelligence, 37(13):
15359–15367, Sep. 2023. doi: 10.1609/aaai.v37i13.26791. URL https:

//ojs.aaai.org/index.php/AAAI/article/view/26791

In particular, the introduction and the section “Equilibrium Selection” describe
essentially the same problems as Section 2. The sections “Cooperation by Read-
ing Each Other’s Code” and “Cooperation between Copies” describe the same
approaches as Section 3.2 and Section 3.3, respectively. I also address the is-
sues discussed in “Self-Locating Beliefs” in some of my current/future work, see
Section 4. Others have promoted agendas toward similar problems (improving
outcomes of multi-agent issues in general) with varying levels of overlap with
the present agenda [20, 13, 22, 28]. Finally, a few authors have advocated some
similar research directions with somewhat different AI-related motivations. For
instance, Soares and Fallenstein [64] have advocated for investigating the re-
search direction I discuss in Section 3.3. (Cf. Conitzer [15].)

2 The problems I’m aiming to address

2.1 Two (known) obstacles to cooperation

Strategic incentives against cooperation When two or more agents in-
teract, an individual’s preferences over her possible courses of actions may often
be irreconcilably misaligned with other agents’ or social preferences (i.e., with
preferences aggregated across the agents). The textbook example for this phe-
nomenon is the famous Prisoner’s Dilemma, wherein each individual participant
prefers Defect over Cooperate, but social preferences favor mutual cooperation
over mutual defection. Essentially the same phenomenon is also known as the
Tragedy of the Commons. Besides these most basic examples, various more
complicated dynamics can arise, as illustrated by some of the classic exam-
ples in game theory, like the Traveler’s Dilemma, the Trust Game, the Security
Dilemma.

In all of these interactions, some form of cooperation is desirable (to the
participants in the interaction), but not achieved by default if the players act
rationally. Like many others, I’m interested in how to add further twists to
these stories in order to allow for cooperation.

Equilibrium selection A strategic interaction can have multiple solutions,
e.g., Nash equilibria. A paradigmatic example of equilibrium selection is the
Game of Chicken. A more realistic example is the negotiation of any beneficial
deal between a group of parties.

The multiplicity of strategic solutions poses two problems: First, some equi-
libria might be more desirable than others. (The Stag Hunt is the canonical
example of such a game.) Second, we might worry that agents might play the
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actions from different Nash equilibria. For example, in the Game of Chicken,
we might worry that both players will go Straight for their favorite equilibrium
and thus crash, obtaining the worst possible utility for both players.

Compared to the problem of the Prisoner’s Dilemma, the generic equilibrium
selection problem (given an arbitrary normal-form game, what equilibrium (if
any) should be played?) has received much less attention.

2.2 The AI angle

In my PhD I’ve specifically been motivated by multi-agent interactions involving
AI, such as interactions between AI agents acting on behalf of human princi-
pals. As technology advances, multi-agent interactions will become increasingly
common and consequential. All the same failure modes afflicting interactions
between humans and human organizations apply just as much to interactions
involving AI systems. Yet, they have received relatively little study. Of course,
many of the traditional ideas in game theory apply just as well to interactions
involving AI as they apply to their original (or traditional) subject. For in-
stance, tit-for-tat-style cooperation in repeated games works just as well (or
better) when AI or software agents are involved as they are in interactions be-
tween unassisted humans. In my work, I therefore focus specifically on features
of AI that could cause interactions involving AI systems to systematically differ
from humans.

The most important for my work are the following:

• The AI design perspective forces us to give definite, complete, practical
answers. For example, the typical game theory textbook will mostly not
try to address the equilibrium selection problem. If we build a software
agent, we are forced to decide somehow (e.g., by choice of some learning
algorithm) how the agent is to resolve the equilibrium selection problem.
Similarly, it may be legitimate in many contexts to simply assume it as a
given that an agent has some kinds of beliefs.

• Software reasoning is potentially transparent and reproducible. If a de-
cision is made by a particular piece of computer code, then others can
read it, test its behavior for various inputs and perhaps understand how
it works. In contrast, as a human I usually cannot fully reveal how I’m
going to make decisions (unless I myself do little more than implement a
simple algorithm).

• It may be common for AI decision making algorithms to interact with
copies of themselves. For instance, right now GPT-4 makes (generally
small, unimportant) decisions in a world in which other (generally small,
unimportant) decisions are also made by GPT-4 (prompted to serve a
different user’s objectives).

• Software decision makers are much more malleable than human agents. It
is widely recognized that it can sometimes be strategically beneficial to
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Dare Chicken
Dare −8 + b,−8 + b 4 + b, 1 + b

Chicken 1 + b, 4 + b 2 + b, 2 + b

Table 1: A Game of Chicken with a parameter b

be a mad man. For example, it might be easier to motivate an irreplace-
able employees (say, the only employee who understands some essential
COBOL code) if the manager is (believed to be) willing to risk the com-
pany’s survival by firing the employee. I can’t become a mad man at will
and so the irreplaceable employee will know that I wouldn’t ever let them
go. But I can easily make, say, a GPT-4-based decision maker that acts
madly.

Note that there are lots of other unique features of strategic interactions in-
volving AI that are at least equally, if not more, important. For instance, even
today computers can perform many kinds of calculations much faster and much
cheaper than a human. Thus, we can set up, for example, market makers that
no human could implement by hand. On the other hand, computers’ speed at
performing arbitrary calculations also makes oversight and human verification
much harder. In many cases, it is (and increasingly) will be impossible to under-
stand why a particular decision was made, and whether it was made correctly,
erroneously or maliciously. While highly important, neither the optimistic nor
pessimistic side of computers’ speed is a central feature of my doctoral work.

3 The main directions of my past work

3.1 Safe (Pareto) improvements

The concept of safe Pareto improvements is a new game-theoretic ideas for im-
proving outcomes in games with a multiplicity of solutions. I introduced this
idea in the paper “Safe Pareto Improvements for Delegated Game Playing”,
published in Autonomous Agents and Multi-Agent Systems (with a shorter ver-
sion published and presented at AAMAS 2021) [49]. For a more detailed, general
introduction to safe Pareto improvement, I refer the reader to my blog post for
the CMU CSD PhD program’s writing requirement.1 If you prefer an intro-
duction to the concept written by someone else, see Clifton’s [13, Sect. 4.2] or
Baumann’s [4] introductions to the idea of surrogate goals, a special case of safe
Pareto improvements.

For brevity, I here give a maximally simple (almost trivial) example to il-
lustrate the concept. Imagine a two-stage game. In the first stage, you choose
between 0 and 1. Call that choice b. In the second stage you play the Game of
Chicken as per Table 1.

1See https://hackmd.io/PIbBmbx_QWK52cCQsyax0w.
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Should you play b = 0 or b = 1? Ordinary game-theoretic solution concepts
(e.g., the concept of subgame-perfect equilibrium) will typically permit both
b = 0 and b = 1. This is because (regardless of the value of b) the Chicken game
has both the (Dare, Chicken) and the (Chicken, Dare) equilibrium. Perhaps the
equilibrium changes (in our disfavor) depending on b?

But intuitively it seems clear that we should choose b = 1. After all, the
Chicken game in Table 1 is strategically equivalent between the b = 0 and b = 1
case.

The concept of safe (Pareto) improvements formalizes this type of intuition.
Roughly, the core idea is that we make (qualitative) assumptions about the
outcomes of pairs of games. (In contrast, traditional solution concepts focus on
making assumptions about a single game.) From these assumptions, one can
then sometimes infer that one game should be played rather than another. For
instance, to argue for favoring b = 1, it suffices to make the assumption that
isomorphic games are played isomorphically (or perhaps that our beliefs about
them should be isomorphic).

Compared to reliance on classic game-theoretic solution concepts (where all
we know is that any Nash/correlated equilibrium or rationalizable strategy pro-
file or whatever can happen), safe Pareto improvements can sometimes overcome
indecision (while remaining very well justified). (See above.) Compared to con-
cepts like “best/worst Nash” (which also rationalize the choice of b = 1 in the
above example), safe Pareto improvements are more indecisive. (For most pairs
of strategic interactions, neither is a safe Pareto improvement on the other.)
But when safe Pareto improvements are decisive they are much more convinc-
ing (assuming the assumptions made are convincing). If playing Γ′ is a safe
Pareto improvement on Γ that should make us much more comfortable about
favoring Γ′ over Γ. If all we know is that the worst Nash is higher in Γ′ than in
Γ′, then arguably we don’t have a particularly strong reason to favor Γ′ over Γ.

The most important (sub)directions for research on safe Pareto improve-
ments are the following (see also Section 4):

• Clarifying the conceptual foundations

• Figuring out situations in which safe Pareto improvements be useful, i.e.,
in what cases can we intervene on games in a way that frequently allows
for safe Pareto improvements? My published paper on safe Pareto im-
provements gives an answer: safe Pareto improvements are useful when
you can instruct an agent with a utility function [49].

• Developing algorithms and complexity results for identifying safe Pareto
improvements in various settings. (Again, my published paper offers some
such results.)

• Addressing various practical obstacles to applying safe Pareto improve-
ments in complex, real-world environments.
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Published paper on safe Pareto improvements

• Caspar Oesterheld and Vincent Conitzer. Safe Pareto improvements for
delegated game playing. Autonomous Agents and Multi-Agent Systems,
36(2), 2022. Article number 46

3.2 Program equilibrium

Prior work [41, 33, 58, 65, 3, 19]2 has studied the following setting: Consider
any normal-form game Γ to be played by, say, two players Alice and Bob. Now
imagine that instead of playing this game directly, Alice and Bob each choose
a set of instructions in the form of a computer program from a set PROGi.
The players’ strategies are then chosen on the players’ behalf according to the
instructions by interpreting the computer program. Importantly, the program
chosen by Player 1 can read Player 2’s source code, and vice versa. I will call this
setting a program game. See Figure 2 for a visualization. I’ll refer to equilibria
of the program game as program equilibria [66].

Program games often allow for cooperation when the underlying game does
not. For instance, in the Prisoner’s Dilemma, the following program forms a
cooperative equilibrium with itself: “If the opponent’s program is equal to this
program: Cooperate. Else: Defect”.

Program games have been proposed as models of various different real-world
strategic settings, especially interactions between software-driven decision mak-
ers. Blockchain technology allows for a close-to-literal implementation of pro-
gram game via so-called smart contracts. But more generally program games
model any interaction between software agents whose procedure is in substan-
tial part (credibly) revealed to other agents. Beyond software agents, I would
argue that program games can also model various other real-world interactions
between somewhat transparent agents. For instance, Critch et al. [21] use pro-
gram games as a model of interactions between transparent institutions.

Prior approaches to achieving program equilibrium are often impractical for
complex settings. In particular, the original program equilibrium papers [41, 33,
58, 65] are all based on the idea of comparing one’s own source code with the
opponent’s. But in complex, asymmetric settings, it seems impossible to submit
the same source code (without revealing parts of one’s source code beforehand,
which may not be in the players’ interest). Some of my work therefore aims to
achieve program equilibrium in more robust ways.

Secondly, program games generally allow formany equilibria. In fact, Rubin-
stein [58] and Tennenholtz [65] both give folk theorems for program equilibrium,
which roughly matches the folk theorem for repeated games. (Every strategy
profile whose utilities exceeds everyone’s maximin payoff can be achieved in
equilibrium.) Thus, while program games bring the potential for cooperation,
they also come with the risk of unfair, socially suboptimal equilibria, or even

2I give an annotated bibliography on program equilibrium at https://www.andrew.cmu.

edu/user/coesterh/AnnotatedProgEqBibliography.html.
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Player 1 Player 2

Program 1 Program 2

Strategy for Player 1 Strategy for Player 2

Figure 2: A graphical representation of a two-player program game. Player i’s
strategy in the underlying game is obtained by running Player i’s program with
Player −i’s program as input.

failure to coordinate on an equilibrium. Some of my work therefore investigates
what equilibria can be achieved under various restrictions on the programs.

Key published papers

• Caspar Oesterheld. Robust program equilibrium. Theory and Decision,
86:143–159, 2019. DOI 10.1007/s11238-018-9679-3

• Caspar Oesterheld, Johannes Treutlein, Roger B Grosse, Vincent Conitzer,
and Jakob Foerster. Similarity-based cooperative equilibrium. Advances
in Neural Information Processing Systems, 36, 2024

– Note that this paper also appears in the list in Section 3.3.

• Emery Cooper, Caspar Oesterheld, and Vincent Conitzer. Characterising
simulation-based program equilibria. In Proceedings of the Thirty-Ninth
Annual AAAI Conference on Artificial Intelligence, 2025

3.3 (Learning in) “Newcomb-like” decision problems

Consider Newcomb’s problem [43], a well-known problem in (the more philo-
sophical branches of) decision theory:

Suppose a being in whose power to predict your choices you have
enormous confidence. (One might tell a science-fiction story about a
being from another planet, with an advanced technology and science,
who you know to be friendly, etc.) You know that this being has of-
ten correctly predicted your choices in the past (and has never, so far
as you know, made an incorrect prediction about your choices), and
further- more you know that this being has often correctly predicted
the choices of other people, many of whom are similar to you, in the
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particular situation to be described below. [...] [A]ll this leads you
to believe that almost certainly this being’s prediction about your
choice in the situation to be discussed will be correct.

There are two boxes, (B1) and (B2). (B1) contains $1,000. (B2)
contains either $1,000,000 ($M), or nothing. What the content of
(B2) depends upon will be described in a moment. You have a choice
between two actions: (1) taking what is in both boxes; (2) taking
only what is in the second box.

Furthermore, and you know this, the being knows that you know
this, and so on: (I) If the being predicts you will take what is in
both boxes, he does not put the $M in the second box. (II) If the
being predicts you will take only what is in the second box, he does
put the $M in the second box. The situation is as follows. First the
being makes its prediction. Then it puts the $M in the second box,
or does not, depending upon what it has predicted. Then you make
your choice. What do you do?

Decision theorists are famously divided over what the rational response to
this problem is [8]. Supporters of so-called evidential decision theory argue that
one should take only the opaque box, since doing so provides evidence that
the box contains the million dollars. Conversely, supporters of so-called causal
decision theory argue that one should take both boxes, because one’s decision
doesn’t causally affect the contents of the opaque box, but is guaranteed to earn
you an extra $1,000.3

Newcomb’s problem itself is non-strategic, since the predictor is not a strate-
gic agent. (We can easily make it strategic, though, by assuming the predic-
tor’s goal is simply to “match” the box contents with your eventual choice.)
Nonetheless, Newcomb’s problem is closely related to foundational questions in
game theory. After all, game theory is all about situations in which agents have
to make a decision under the knowledge that other players are predicting its
decisions. Newcomb’s problem poses a simple normative question about this
type of situation.

While the foundational relevance of Newcomb’s problem to game theory
seems hard to argue against, the practical relevance to everyday human decision
making is much less clear. It’s hard to think of a current-day interaction in which
(it’s sufficiently clear that) a human decision maker’s decisions are predictable
in the way required by Newcomb’s problem. Consequently, Newcomb’s problem
has received relatively little attention outside of philosophy.

For software agents, on the other hand, we might expect predictability to
be the norm. After all, an agent’s decision making algorithm could simply be
made publicly available. (Compare Section 3.2.)

Additionally, software agents may often face copies of themselves and, for
example, the Prisoner’s Dilemma against a copy is a Newcomb-like problem

3Besides causal and evidential decision theory, some other theories have also been proposed
[39].
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[9, 40]. EDT recommends cooperation and CDT recommends defection. More
broadly, EDT might allow for more cooperative, socially desirable behavior.
For example, when ChatGPT decides whether to help Alice fill out a long-shot
application to receive tax filing assistance from a non-profit, ChatGPT might
take into account that if it helps, other instances of ChatGPT are more likely
to analogously help with, say, long-shot applications. Thus, to decide whether
to help, ChatGPT has to consider the consequences of a society-wide increase
in long-shot applications to non-profits.4 Plausibly these effects are harmful
enough that even under alignment with the specific user, refusal is the correct
response.

Besides increasing the relevance of reasoning about Newcomb-like problems,
the AI perspective also often makes these situations less controversial. For
instance, imagine that I build a software agent. The software agent then faces
Newcomb’s problem. (The predictor reads the source code that I write and
makes a prediction based on that.) Then evidential and causal decision theorists
agree that I should build an agent that one-boxes. After all, I (in contrast to
my software agent) can causally influence the contents of the opaque box.

I’ve spent quite a bit of effort in my doctoral research on the decision theory
of Newcomb-like problems (see a list of papers below). One of my papers directly
contributes to the CDT versus EDT papers [48]. All my other papers specifi-
cally analyze how AI architectures and especially learning algorithms relate to
reasoning about Newcomb-like problems.

Published papers

• Caspar Oesterheld and Vincent Conitzer. Extracting money from causal
decision theorists. The Philosophical Quarterly, 71(4):pqaa086, 2021

• Caspar Oesterheld. Approval-directed agency and the decision theory of
Newcomb-like problems. Synthese, 198(Suppl 27):6491–6504, 2021

• Caspar Oesterheld, Abram Demski, and Vincent Conitzer. A theory of
bounded inductive rationality. In Rineke Verbrugge, editor, Proceedings
Nineteenth conference on Theoretical Aspects of Rationality and Knowl-
edge. arXiv, 2023

• James Bell*, Linda Linsefors*, Caspar Oesterheld*, and Joar Skalse*. Re-
inforcement learning in newcomblike environments. Advances in Neural
Information Processing Systems, 34:22146–22157, 2021

• Caspar Oesterheld, Johannes Treutlein, Roger B Grosse, Vincent Conitzer,
and Jakob Foerster. Similarity-based cooperative equilibrium. Advances
in Neural Information Processing Systems, 36, 2024

– Note that this paper also appears in the list in Section 3.2.

4For a discussion of this risk from the use of LLMs (the risk from removing mental-effort
hurdles), see, e.g., Wojtowicz and DeDeo [72].
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4 Current and planned work

4.1 Program equilibrium

• “Mediated versus program equilibrium”: It turns out that program equi-
librium is closely related to a concept called mediated equilibrium [42]
(compare [35] for a setting that I’d view as being in between program
and mediated equilibrium). Very roughly, a mediator in this context5 is
an entity that a contract on the table that the players can simultane-
ously (independently) decide to sign or not sign. Everyone who signs the
contract is bound by what is specified by the contract, but the actions
mandated by the contract can depend on the set of players that sign the
contract. A good real-world example of such a contract is the National
Popular Vote Interstate Compact (NPVIC)6, an agreement between states
in the US to give their electoral college votes to the winner of the popular
vote if more than half the popular vote’s worth of states sign the NPVIC,
and to vote in the traditional way (in most states for the winner of the
specific state) otherwise. In the Prisoner’s Dilemma, the following con-
tract turns cooperation into an equilibrium: Both players must cooperate
if the contract is signed by everyone; otherwise whoever signs this contract
must defect.

One desirable property of mediated equilibrium is that it allows only a
specific equilibrium (as given by the mediator). Thus, it avoids the equi-
librium selection problem that plagues other notions of commitment. Of
course, this benefit comes (at least in the basic story described above) at
a cost of centralization.

It turns out that mediators can allow the same set of equilibria that pro-
gram equilibrium allows. (I have an independent proof of this, but it also
follows from existing work, e.g., combining the folk theorems of Tennen-
holtz [66] and Kalai et al. [35].)

Following Monderer and Tennenholtz [42], we have also investigated solu-
tion concepts based on multi-player deviations (whereas Nash equilibrium,
and thus program and mediated equilibrium). Here we find differences be-
tween the program game and the mediator concepts: because deviations
are somewhat transparent in the program game setting, they can be pun-
ished more effectively.

My goal is to write these results up into a (conference-quality) paper to
be included in my dissertation.

• “Sequential program equilibrium”: As far as I know, prior work on pro-
gram games and mediators has only considered simultaneous play. What

5Others have used the term “mediator” to refer to completely different game-theoretic
concepts. The meaning used here also differed from how I’d understand the term “mediator”
in common English.

6https://en.wikipedia.org/wiki/National_Popular_Vote_Interstate_Compact
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happens if the players get to choose programs (or contracts) sequentially?
For instance, imagine Player 1 can propose and sign a contract (which gov-
erns what Player 1 and anyone else who signs the contract will choose);
then Player 2 gets to see the contract and chooses whether to sign the
contract or propose a new contract independently; and finally Player 3
gets to see all previously proposed contracts and either signs a contract
or chooses independently.

Compared to mediated and program equilibrium, the dynamics governing
what payoffs will be achieved in this sequential setting are much more
complicated. In fact, I have a (fairly complicated) proof sketch (worked
out as a lead contributor in a project with Vincent Conitzer and Jiayuan
Liu) that shows that it is NP-hard to determine what happens, even in
the three player case.

I hope to write this result up into a paper.

4.2 Connecting Newcomb-like problems to self-locating
beliefs

It turns out that there is a close connection between Newcomb-like decision
problems and so-called self-locating beliefs (a.k.a. anthropics or beliefs under
imperfect recall) [57, 23, 7].

• First, it turns out that decision-theoretic questions come up when making
decisions in decision problems of imperfect recall. For instance, consider
a variant of the Sleeping Beauty problem [23] in which a decision maker
is offered bets on the outcome of the coin flip. Should Beauty take into
account that accepting the bet provides that she also accepts the bet
on other awakenings? Evidential decision theory gives a positive answer;
causal decision theory gives a negative answer. This has been pointed out
before [36, 14, 1, 10, 62].

Most closely following prior work by Briggs [10], I have a working paper
with Vince, showing that to make good decisions, we need to match EDT
with the so-called (double) halfer’s position and CDT with the so-called
thirder’s position.

Working draft: Caspar Oesterheld and Vincent Conitzer. Can de se choice
be ex ante reasonable in games of imperfect recall? https://www.andrew.

cmu.edu/user/coesterh/DeSeVsExAnte.pdf

• Conversely, the self-locating beliefs perspective might come up when facing
Newcomb-like decision problems. For instance, in Newcomb’s problem,
should I believe that I am in a simulation in the predictor’s mind? If so,
CDT, too, might recommend one-boxing in order to cause the opaque box
to be filled.
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Working draft: Emery Cooper, Caspar Oesterheld, and Vincent Conitzer.
Can CDT rationalise the ex ante optimal policy via modified anthropics?
arXiv preprint arXiv:2411.04462, 2024

4.3 Safe Pareto improvements

• With Vince Conitzer, I am working on a draft, which takes a relatively
abstract perspective on safe Pareto improvements (whereas the original
safe Pareto improvements paper [49] focuses on a fairly specific class of
interventions on games).

Working paper: Caspar Oesterheld and Vincent Conitzer. Choosing what
game to play with no regrets or controversies – results on inferring safe
(Pareto) improvements in binary constraint structures, 2024. URL https:

//www.andrew.cmu.edu/user/coesterh/SPIxBCS.pdf7

• In equal co-authorshop with Nathaniel Sauerberg, I am working on a
project in which we consider safe Pareto improvements under what we call
ex post verifiable commitments on (normal-form) games. For instance, we
ask: if a player credibly commits against taking a particular action, is the
resulting game a safe Pareto improvement on the original game (the game
prior to the commitment). We give a mix of characterizations, efficient
algorithms and hardness results.

We plan to have a full version of the paper by the time of my graduation.

Working draft: Nathaniel Sauerberg* and Caspar Oesterheld*. Promises
made, promises kept: Safe Pareto improvements via ex post verifiable com-
mitments

4.4 Implementing theoretical ideas with language models

Over the past two to three years, language models have emerged as a leading
paradigm in AI. To assess the applicability of my theoretical work, I’ve started
exploring their implementation in language models. Throughout my PhD my
work has been relatively abstract, in part because I want it to be broadly ap-
plicable. Now seems like a good time to test whether I have achieved this goal.
I discuss two projects that have progressed relatively far below, and I will likely
work on additional projects as well.

• In joint work with Maxime Riché and Filip Sondej, as well as Jesse Clifton
and Vince, I have worked on a project on implementing safe Pareto im-
provements (Section 3.1) in language models, in particular so-called sur-
rogate goals.

Working paper: Caspar Oesterheld*, Maxime Riché*, Filip Sondej*, Jesse
Clifton, and Vincent Conitzer. Implementing surrogate goals for safer

7My blog post for the PhD program’s blog post requirements (available at https://hackmd.
io/PIbBmbx_QWK52cCQsyax0w) takes a similar high-level perspective as this paper.
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bargaining in LLM-based agents. URL https://www.andrew.cmu.edu/

user/coesterh/LLMxSG.pdf

• As discussed in Section 3.3, reasoning in particular ways about Newcomb-
like problems may enable greater cooperation. In joint work with Emery
Cooper, Chi Nguyen, Miles Kodama, and Ethan Perez, I’ve developed a
large, diverse, high-quality, hand-generated dataset of natural-language
questions about Newcomb-like problems, and analyze responses by a large
number of current language models.

Working paper: Caspar Oesterheld, Emery Cooper, Miles Kodama, Linh Chi
Nguyen, and Ethan Perez. A dataset of questions on decision-theoretic rea-
soning in Newcomb-like problems. URL https://arxiv.org/abs/2411.

10588
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A Other work and how it fits in

I here list a few other high-level topics that I’ve worked on during my PhD. Gen-
erally these works are less central to the high-level objectives of the dissertation.
They also often involve other co-authors more heavily, making inclusion in the
dissertation tricky. Finally, I don’t want to write (and I assume my committee
members don’t want to read) an overly long dissertation.

A.1 Equilibrium selection in (symmetric) common-payoff
games

Even in common-payoff games (i.e., games in which all players have the same
utility), equilibrium selection problems can arise. Common-payoff games and
equilibrium selection therein has seen a recent surge in interest as a model of
interactions between a human and an AI assistant [59, 63]. Even two-player
common-payoff games are surprisingly rich in some ways.

Besides equilibrium selection, there is another, perhaps more surprising, con-
nection to my work: There is a close connection between choice under imperfect
recall (see [57, 23]) and playing a symmetric team game with symmetry con-
straints.

Besides my aforementioned work on imperfect recall and its connection to
EDT/CDT, I’ve been involved in a few papers relating to equilibrium selection
in common-payoff team games, with a special focus on games with symmetries.

Finally, there’s a more technical connection to my work: identifying symme-
tries in a game is closely related to identifying isomorphisms between games,
which in turn is a key to identifying safe Pareto improvements.

My work on (symmetric) common-payoff games

• Scott Emmons*, Caspar Oesterheld*, Vincent Conitzer, and Stuart Rus-
sell. Observation interference in partially observable assistance games.
arXiv preprint arXiv:2412.17797, 2024

• Symmetries:

– Johannes Treutlein, Michael Dennis, Caspar Oesterheld, and Jakob
Foerster. A new formalism, method and open issues for zero-shot
coordination. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 10413–10423.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/

v139/treutlein21a.html

– Scott Emmons, Caspar Oesterheld, Andrew Critch, Vincent Conitzer,
and Stuart Russell. For learning in symmetric teams, local optima
are global nash equilibria. In International Conference on Machine
Learning, pages 5924–5943. PMLR, 2022
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– Emanuel Tewolde, Brian Hu Zhang, Caspar Oesterheld, Tuomas Sand-
holm, and Vincent Conitzer. Computing game symmetries and equi-
libria that respect them. In Proceedings of the Thirty-Ninth Annual
AAAI Conference on Artificial Intelligence, 2025

A.2 Commitment to payments

One high-level idea for addressing the equilibrium selection problem is to iden-
tify mechanisms that (a) introduce cooperative equilibria, but (b) don’t also
introduce lots of undesirable equilibria.

A natural candidate for such a mechanism is to allow players to commit to
outcome/behavior-conditional utility transfers (e.g., monetary payoffs). After
all, real-world cooperation (e.g., the cooperation between an employer and em-
ployee, or between a customer and a merchant) often works by having one party
commit to pay another if the other party behaves in a desirable way. Further-
more, it appears on first sight that offering to pay someone can do relatively
little harm. In the worst case, one might think, one can simply ignore such
offers.

An optimistic view of offers to payments has motivated a number of papers
(e.g., [34, 12, 27, 71]). I’ve been involved in some work on “committing to
payments” (see below). However, my plan is to not feature this work much
in my dissertation. For one, I’ve so far only worked on this as a non-primary
author. Second, during our own work we found that committing to payments
in general normal-form games is a more double-edged sword than one might
expect (cf. [34]). (That said, there are various directions toward more positive
results, e.g., [71, 26].)

My work on committing to payments

• Nathaniel Sauerberg and Caspar Oesterheld. Computing optimal com-
mitments to strategies and outcome-conditional utility transfers. In Pro-
ceedings of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1654–1663, 2024

• Ivan Geffner, Caspar Oesterheld, and Vincent Conitzer. Maximizing social
welfare with side payments. Draft submitted to EC ’25

A.3 Predictions, decisions and counterfactuals

One perspective on Newcomb-like problems (as discussed in Section 3.3) is that
predictions about counterfactual (i.e., untaken) actions are problematic. The
one-boxer finds the opaque box full and believes that were he to two-box instead,
the opaque box would be empty. The two-boxer expects the opaque box empty,
but believes that were she to one-box, the opaque box would still be empty. So
the one- and two-boxer might agree on what will in fact happen. But they might
disagree about what would happen if they were to take some different action.
Of course, the disagreement between these counterfactual beliefs is never tested.
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In some sense, the belief that the other action is bad causes this belief to remain
untested.

This phenomenon – predictions about the consequences of different decisions
influence which – can arise in other contexts as well. For instance, imagine that
we use a prediction market to predict the consequences of different actions, and
then use those predictions to make a decision [29, 30, 6, 31, 32]. Othman and
Sandholm [56] show that predictors are not necessarily incentivized to report
their predictions truthfully. A few different solutions to this problem has been
proposed [11]. I’ve proposed my own solution (which avoids eliciting beliefs
about counterfactuals altogether) [47], which has inspired my later work on
learning in Newcomb-like settings that allows for cooperation in a Prisoner’s
Dilemma against a similar opponent [53].

My work on predictions, decisions and counterfactuals

• Caspar Oesterheld and Vincent Conitzer. Decision scoring rules. In Web
and Internet Economics: 16th International Conference, WINE 2020, Bei-
jing, China, December 7–11, 2020, Proceedings, volume 12495, page 468.
Springer Nature, 2020

• Caspar Oesterheld, Johannes Treutlein, Emery Cooper, and Rubi Hudson.
Incentivizing honest performative predictions with proper scoring rules. In
Uncertainty in Artificial Intelligence, pages 1564–1574. PMLR, 2023

A.4 Games with simulations of other players

My work on program equilibrium has focused on programs that simulate each
other, e.g. in the Prisoner’s Dilemma: “with probability ϵ, cooperate; with the
remaining probability, simulate the opponent and copy whatever action they
play” [44]. I’ve also been involved in a line of work led by Vojta Kovarik on what
happens if (instead of the full program equilibrium framework) we specifically
give the players the ability to simulate each other.

While this line of work is both closely related to the program equilibrium
work and to the goal of achieving cooperation, it will not feature centrally in
the dissertation, given that Vojta has been the lead author on this line of work.

A.4.1 My work on games with simulations of other players

• Vojtech Kovarik, Caspar Oesterheld, and Vincent Conitzer. Recursive
joint simulation in games. arXiv preprint arXiv:2402.08128, 2024

• Vojtech Kovarik, Caspar Oesterheld, and Vincent Conitzer. Game theory
with simulation of other players. In Proceedings of the Thirty-Second In-
ternational Joint Conference on Artificial Intelligence, pages 2800–2807,
2023
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B Biographical information

My CV can be found at https://www.andrew.cmu.edu/user/coesterh/cv.

pdf and my Google Scholar profile is at https://scholar.google.com/citations?
user=xeEcRjkAAAAJ.

Most of my work is technical (theoretical computer science and game the-
ory). I have a strong technical background in mathematics. When I was in (the
German equivalent of) middle and high school, I took about a year’s worth of
coursework at the University of Hamburg (incl. Analysis I–III, Linear Algebra I
and II, and Discrete Mathematics). I also made it to the national round of the
Math Olympiad. Due to my interest in AI, I proceeded to obtain an undergrad-
uate degree in computer science, focusing my coursework on AI and theoretical
computer science (taking, among others, Math for CS, Theoretical CS I and II,
Algorithms on Graphs, Logic, Practical CS I–III, AI, Cognitive Systems, For-
mal Modeling, Petri Nets, and ML). I similarly focused my coursework at Duke
and CMU (Computational Microeconomics, Algorithms for Decision Making at
Scale, Information Theory, ML and Game Theory, AI). I’ve published 16 pa-
pers at major AI and multi-agent systems conferences (AAAI, AAMAS, IJCAI,
NeurIPS, ICML, TARK, WINE, UAI), most of which are closely related to the
focus of my dissertation.

Some of my work touches on more philosophical issues in decision theory.
Unfortunately, I have not enjoyed any formal, post-secondary education in phi-
losophy. Nonetheless, I’ve been able to publish some of my work in highly
regarded, peer-reviewed philosophical venues. In particular, I have two pub-
lications at Synthese, a leading philosophy journal8 and perhaps the leading
philosophy journal that commonly publishes work in mathematical philosophy,
as well as a paper in the highly regarded The Philosophical Quarterly9.

I’ve been awarded with a PhD fellowship from the Future of Life Institute.

C Instructions for the thesis proposal document

From the CSD PhD Student handbook [2, Sect. 10.3]: “T”he student submits
a written proposal to the faculty. The student also orally presents the thesis
proposal to interested faculty and students in a public colloquium.

A thesis proposal should:

• Explain the basic idea of the thesis topic (e.g., the problem to be solved
and the approach to solving it).

• Argue why that topic is interesting (e.g., what contributions to the field
would be made in carrying out the proposed work).

• State what kind of results have already been obtained and what further
results are expected.

8A 2022 survey by Brian Leiter ranks Synthese as the 11th-best philosophy jorunal.
9Leiter’s ranking puts The Philosophical Quarterly at 9th.
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• Argue that these results are obtainable within a reasonable amount of
time.

• Demonstrate the student’s personal qualifications for doing the proposed
work.

The main purpose of the thesis proposal is to convince the faculty that the cho-
sen thesis topic is significant and that the student’s approach has a reasonable
chance of success. [...] A thesis proposal should be short, about 15–20 pages.

A thesis proposal should not be:

• A dry run for the thesis

• A summary or abstract of the thesis

• The first chapter or part of the thesis

• A technical report

• A survey of the field

• An annotated bibliography

Any included list of references or bibliography should serve the purpose of sup-
porting the assessment of the state of the art and the student’s personal quali-
fications.
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